ebook img

NASA Technical Reports Server (NTRS) 20050166876: A Gas-Poor Planetesimal Feeding Model for the Formation of Giant Planet Satellite Systems: Consequences for the Atmosphere of Titan PDF

0.14 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20050166876: A Gas-Poor Planetesimal Feeding Model for the Formation of Giant Planet Satellite Systems: Consequences for the Atmosphere of Titan

Lunar and Planetary Science XXXVI (2005) 2053.pdf A GAS-POOR PLANETESIMAL FEEDING MODEL FOR THE FORMATION OF GIANT PLANET SATELLITE SYSTEMS:CONSEQUENCESFORTHEATMOSPHEREOFTITAN.P.R.Estrada,NASAAmesResearchCenter,Moffett FieldCA94035,USA,([email protected]), I.Mosqueira,NASAAmesResearchCenter/SETIInstitute,MoffettField CA94035,USA([email protected]). tmloeTootfoehovfnfhneirecsmsetmtnatehssGIhfiattebntcuegekarieelavisetttlgrnahueltielantaperneymoesbrtrnsfiosoupospodet(uguladhl,acermarsreetnonefnpshldanesscseretcsomdeetphteclsilhraabe(renaodcai(cid:0)rnenntuectsardet)egnraln,ramteymthissdveowti)ioiotleqnnpoyluhdimiualndlfietaoditceoblneiefehomre[sefnqvt1ocgrthdiauea,ersamt2esarrmnep.-y]testlor-eayspaeonIdptsuftlopeiheheeionbsaeslinlandntolnun[stuieg,i3cliteilaanreseea,sKsle4gs,tldtt,ee]yoaosoii,wspnntsonswaclkdteeeuotsgihhrlf[bpnrnafir2iabeaegspecs]tulniceh-.eoidltioetehffiedwspvpnetrciaeehtsichtrlnsketecwlaeuhishtmbndreouvovmege-reawiie.bcctltvuneauahueIasrydnyee-slt. 23232323232323232323232323234343434343434343434343434343G23232323232323232323232323234343434343434343434343434343ian23232323232323232323232323234343434343434343434343434343t 23232323232323232323232323234343434343434343434343434343Pl23232323232323232323232323234343434343434343434343434343~an 23232323232323232323232323234343434343434343434343434343kemt2222222222222244444444444444 sizº3º3(cid:236)3(cid:236)3eºº(cid:236)(cid:236)d ØØŒŒobject(cid:237)(cid:237)(cid:238)(cid:238)sªª(cid:228)(cid:228) ••‚‚~„3„3”3”33(cid:239)3(cid:239)3(cid:239)3(cid:239)3(cid:240)3(cid:240)3(cid:240)3(cid:240)30„„””(cid:239)(cid:239)(cid:239)(cid:239)(cid:240)(cid:240)(cid:240)(cid:240) R(cid:229)(cid:229)(cid:230)(cid:230)}}~~(cid:147)(cid:147)(cid:148)(cid:148) 5566 (cid:143)(cid:143)(cid:144)(cid:144)»3»3;;<<(cid:127)(cid:127)(cid:128)(cid:128)»»……778899::(cid:129)(cid:129)(cid:130)(cid:130) (cid:141)(cid:141)(cid:142)(cid:142)==>>(cid:145)(cid:145)(cid:146)(cid:146)A3A3B3B3ˇ3ˇ3—3—3Q3Q3(cid:139)3(cid:139)3(cid:181)(cid:181)¶¶˝˝˛˛AABBˇˇ——(cid:231)3(cid:231)3(cid:231)3Ł3Ł3Ł3QQRR(cid:139)(cid:139)(cid:140)(cid:140)E3E3F3F3(cid:209)(cid:209)(cid:210)(cid:210)ÆÆ(cid:226)(cid:226)(cid:231)(cid:231)(cid:231)ŁŁŁEEFF??@@(cid:131)(cid:131)(cid:132)(cid:132)G3G3H3H3(cid:149)3(cid:149)3(cid:150)3(cid:150)3‰‰(cid:190)(cid:190)``´´ GGHH(cid:149)(cid:149)(cid:150)(cid:150)CCDD££⁄⁄˙˙¨¨(cid:137)3(cid:137)3(cid:138)3(cid:138)3¿¿(cid:192)(cid:192)]]^^(cid:137)(cid:137)(cid:138)(cid:138)¸¸(cid:204)(cid:204)OOPPIIJJ¡¡¢¢ M3M3N3N3(cid:135)3(cid:135)3(cid:136)3(cid:136)3––††(cid:223)(cid:223)(cid:224)(cid:224) MMNN(cid:135)(cid:135)(cid:136)(cid:136)[[\\(cid:151)(cid:151)(cid:152)(cid:152)¥¥ƒƒSSTT(cid:157)(cid:157)(cid:158)(cid:158)KKLL(cid:155)3(cid:155)3'3'3‡3‡3flfl(cid:176)(cid:176)(cid:201)(cid:201)˚˚Y3Y3Z3Z3«3«3‹3‹3(cid:211)3(cid:211)3(cid:212)3(cid:212)3(cid:213)3(cid:213)3(cid:214)3(cid:214)3(cid:155)(cid:155)(cid:156)(cid:156)''““‡‡··YYZZ««‹‹(cid:211)(cid:211)(cid:212)(cid:212)(cid:213)(cid:213)(cid:214)(cid:214)§3§3UUVV§§¤¤__‘‘(cid:215)(cid:215)(cid:216)(cid:216)(cid:153)(cid:153)(cid:154)(cid:154)(cid:221)(cid:221)(cid:222)(cid:222)(cid:159)(cid:159)(cid:160)(cid:160)a3a3b3b3(cid:133)3(cid:133)3(cid:134)3(cid:134)3WWXXaabb(cid:133)(cid:133)(cid:134)(cid:134)››fifiˆˆ˜˜ (cid:219)(cid:219)(cid:220)(cid:220)(cid:217)(cid:217)(cid:218)(cid:218)uuvvccdd mmnnw3w3gghh¯¯˘˘ wwxxeeff iijjssttooppkkll{{||y3y3z3z3qqrryyzz æææææ(cid:242)(cid:242)(cid:242)(cid:242)(cid:242) focus of this abstract, we assume that steady hydrodynamic J turbulenceissufficientlystrongtocausetheevolutionofthe ~ RH /2 circumplanetarygasdiskonashortertimescalethanthatfor Possible irregular satellites? satellite accretion. This approach uses steady turbulence to removethegasfromthecircumplanetarydiskbutnottofine- tuneconditionsofthesubnebularenvironment. Giantplanet Satellite embryos satelliteformationisthenunderstoodintermsofplanetesimal dynamics that are largely uncoupled from the gas with the Figure1:Graphicrepresentationofsomeofthecharacteristics gas surface density left unspecified. However, we do allow ofthecircumplanetaryswarmfromwhichthesatellitesofthe forthepresenceofsomegastohelpexplaintheobservations. giantplanetswilleventuallyform. Thissecondofthetwo-endmembermodelsthusconstitutesa address inorder to provide a viable alternativeto the model gas-poormodel,wheresatellitesforminamannersomewhat of [1,2]. In particular, one must demonstrate that it is pos- analogoustotheterrestrialplanets. sible to deliver enough mass and angular momentum to the circumplanetary disk to form the regular satellites. From Someoftheplausiblefeaturesofthismodel(seeFigure1) point (2) above, the net angular momentum of the circum- are:(1)late-arrivingplanetesimalscollidingwithinthevicinity planetary swarm, which will determine the size of the disk ofthegiantplanetmaycreateadisko(cid:2)(cid:4)f(cid:3)(cid:6)pr(cid:5)(cid:8)o(cid:7)gradeandretro(cid:2)(cid:9)gr(cid:3)ade (cid:1) f(cid:31)!r o"m$ whic h"%ıthe "sate l"li(cid:5)tesıwil l" acc r"ete,canıbe e" stimatedfrom objectsextendingouttoasfaras [5,6],where is (cid:25)(cid:244)(cid:243) (cid:11) (cid:15)(cid:247)(cid:246) (cid:243) (cid:11) (cid:15)(cid:247)(cid:246) (cid:11) (cid:15) where isadistribu- theHillradiusofthegiantplanet. Weinitiallyassumeapower- (cid:10)(cid:12)(cid:11)(cid:14)(cid:13)(cid:16)(cid:15)(cid:18)(cid:17)(cid:19)(cid:13)(cid:21)(cid:20)(cid:23)(cid:22) tionfunctionthatdescribestheaccretionofmassandangular lawmassdistribu(cid:5)(cid:30)ti(cid:29)onofplanetesimals withan (cid:24)(cid:26)(cid:25)(cid:28)(cid:27)(cid:8)(cid:27) momentum [9]. We will show that the size of the disk can exponent (seefootnote2)characteristicforafrag- belargeenoughprovidedthatmostofthemassthatgoesinto m(cid:31)! #e"%n$ tedpopulation[6];(2)thenetspecificangularmomentum makingthesatellitesoriginatedfromtheoutermostregionsof ofthecircumplanetaryswarmisinitiallyverysmall;(3) theplanet’sfeedingzone. Usingadistributio(cid:7)(cid:30)n(cid:2)(cid:9)o(cid:3) fsemi-major closetotheplanet,hypervelocityimpactscanultimatelylead (cid:1) axesdepletedinsideanannulusofwidth centeredon toavarietyofoutcomes(i.e.,Jovian-likeversusSaturnian-like theplanet,wefind satellitesystems);(4)oncethedensityofsolidsintheswarm becomes sufficientlylarge, the removal ofmaterialfrom the (cid:31)! (" $ outerdiskisbalancedbyplanetesimalcapturebylargerswarm (cid:31)! " $ (cid:29)(cid:8)(cid:252)(cid:253)(cid:2) (cid:3)(cid:255)(cid:254) (cid:2) ) (cid:2) particles. Werelyonfragmentationtodecreasethesizesofin- (cid:1)ł’œøß ) (cid:1)(cid:0) (cid:25) (cid:2)(cid:4)(cid:3)(cid:6)(cid:5) (cid:1)(cid:244)ß(cid:30)’ (cid:5) ø (1) comingplanetesimals,butnottocapturethemintotheswarm. Excludingsatelliteembryos,atanygiventimethediskmass Point(5)aboveprovides(cid:5)(cid:30)(cid:252)anotherconstraintgiventhatan islessthanagalileansatellite((cid:1)&(cid:27)(’*),+ g);(5)thesatellitefor- accretiontime (cid:1) (cid:20)(cid:19) (cid:0) (cid:1) (cid:27)-’ . 0 (cid:27)(’ + yearsimplies (cid:27)-’/.(cid:6)01(cid:27)-’ + (cid:7)(cid:9)(cid:8)(cid:9)(cid:10)(cid:11)(cid:10) (cid:13)(cid:12)(cid:15)(cid:14)(cid:17)(cid:16)(cid:18)(cid:14) mationtimescaleof years(presumablyconsistent aninnerdiskmass(excludingembryos)of with Callisto’spartiallydifferentiated state[7])is controlled bythefeedingofplanetesimalsontothecircumplanetarydisk [d8is].triWbuetifiornstocfosnastterlulictteadmenosditeylwfoirthJodvisiatannscyesftreomminthwehpircimhathrye (cid:3) (cid:0) (cid:1) (cid:21) (cid:14) (cid:23)(cid:25)(cid:24) (cid:12)ß (cid:14) )(cid:29)(cid:28)(cid:31)(cid:30)(cid:4) (cid:3) !#(cid:14) "(cid:4)$ (cid:28)%(cid:30) (cid:2) (cid:0)’) &(cid:4)& (cid:3) (cid:14)(cid:20)( (2) (cid:7)(cid:9)(cid:8)(cid:9)(cid:10)(cid:22)(cid:10) (cid:27)(cid:26) isquiteuniform,andthenadaptanddrawconclusionsforthe Saturniancase. where (cid:3) , , and (cid:21) are the mass, density, and orbital (cid:14) (cid:12)(cid:15)(cid:14) (cid:14) period of Callisto. This yields a surface density of solids Thereareseveraloutstandingissuesthatthismodelmust (cid:19) (cid:0) (cid:1) (cid:27)-’(cid:4)01(cid:27)(’(cid:8)’ gcm(cid:20) ) . Intheouterdiskwherethebulkof Lunar and Planetary Science XXXVI (2005) 2053.pdf materialiscaptured,amass(cid:3) (cid:0) mustbedeliveredtotheinner volatile elements such as Ar that condense at much lower diskandalso(cid:5) re" plenishedtotheswarmina“collisionalcycle” temperatures & ß(cid:30)’ K.Itisimportanttonote,however,thatto (cid:7) (cid:10)(cid:1)(cid:0)(cid:3)(cid:2)(cid:4)(cid:2) (cid:1) "(cid:21) ) (cid:7) ) . This provides a constraint on the optical formtheclathrateofAr,themod(cid:29)elof[16]requiresaverylow depth1 (cid:7) ) intheouterdisk solarnebulatemperature$ (cid:1) ß K.Sinceevenpassivedisk " ß (cid:19) (cid:21) (cid:3)(cid:8)(cid:7) modelsofTTauristars[17,18]maybetoowarmatthelocation (cid:7) ) (cid:25) ! ) (cid:1) ) (cid:3) (cid:0) (cid:1) (cid:9)(cid:11)(cid:10) (cid:27)-’ (cid:20) (cid:12) ( (3) ofJupiterfortheincorporationofArintoplanetesimals,itis (cid:12)(cid:6)(cid:5)(cid:31)(cid:16) ) (cid:7) (cid:8)(cid:9)(cid:10)(cid:11)(cid:10) difficulttoexplainwhythereisanyenrichmentofArineither wherequantitieswithsubscript“2”refertotheouterdisk, is model. (cid:12)(cid:13)(cid:5) thesatellitesimaldensity,(cid:16) ) isthecutoffsizeofthedistribution However, it cannot be assumed that material condenses ofswarmpariticles,and (cid:3) (cid:7) isthefinalmassofthesystem. from a cooling protoplanetary nebula at its solar abundance The surface density needed in the outer disk is (cid:19) ) (cid:1)(cid:255)(cid:27)-’(cid:30)’ g and remains in place. Significant radial migration of solids (cid:20) ) cm . Hence,forJupiter,aconstantsurfacedensity(solids) willtakeplace. Indeedthereiscompellingobservationalev- diskmaysatisfythesystemconstraints. (cid:1) (cid:27)-’(cid:30)’ idence that disks around T Tauri stars can be AU or Giventheseassumptions,wecananalyticallyestimatethe more [19,20]. Furthermore, some gas disks around young amountofmassdepositionperunittimeintothecircumplan- stars show flat density distributions [21,22], implying that a etaryswarm (cid:3) (cid:14) usingamassinflowrate andprobabilityof (cid:15) significantfractionofthemassofthediskislocatedatlarge capture [5] (cid:16) distances from the star. Since an ice grain may retain its (cid:1) (cid:27)(’ amorphousstateforthelifetimeofthenebula( years) &% (cid:3) (cid:14) (cid:25) (cid:7) (cid:24)(cid:18)(cid:17) (cid:11) (cid:2) (cid:15) (cid:11) (cid:2) (cid:15) (cid:2) (cid:246) (cid:2) providedthetemperatureis&(’ (cid:9) K[23],itmaybepossiblefor (cid:15) (cid:19)(cid:16) planetesimalsthattrappedargoneitherasclathrateorinamor- (cid:2) " (cid:5) " " (4) (cid:11) (cid:15) (cid:25) (cid:11) (cid:15) ) (cid:11) 0 (cid:15) phousiceincoldregionsofthedisktopreservethemasthey (cid:15) (cid:12) (cid:7) ) (cid:16) ) (cid:16) (cid:28) (cid:7) ) (cid:8)(cid:22)(cid:24)(cid:23) (cid:7) ) ( migratetowarmerregions. Ifso,ourplanetesimalcollisiona(cid:29)l $ (cid:1)ł’ ø’ where , , and$(cid:21)(cid:20) $ are the p$ lanetesimal volume density, captureformationmodelwouldappeartoimplyAr/N) (cid:12) (cid:16) mean velocity, and cutoff size (quantities with subscript “1” [24]andthatthemolecularnitrogeninTitan’satmospherewas $ (cid:20) $ $ refertothesolarnebula). Duringeachcollisionalcycle, we deliveredastrapped) ) . However,beforesuchaconclusion requireamass(cid:1) (cid:3) (cid:14) (cid:10) beprovidedtotheinnerdisk. The can be reached one must first gain an understanding of the (cid:7) (cid:10)(cid:25)(cid:0)(cid:26)(cid:2)(cid:4)(cid:2) totalmassdeliveredover(cid:1)&(cid:27)-’ . yearsforareasonablechoice consequencesofplanetesimalcollisionalgrindingontrapped ofparametersis (cid:1) (cid:27)-’/),+ g[3,10]. However, acaveathereis volatiles. (cid:24) that the the power-law index , and the upper size cutoff of ThisworkissupportedbytheNationalResearchCouncil, thecircumplanetaryswarm(cid:16) ) arenotwellconstrainedatthis andaNASAPGGgrant. time2. Furthermore,thiscalculationdoesnottakeintoaccount References[1]Mosqueira,I.,andP.R.Estrada2003a. Icarus (cid:1) (cid:27)-’ . theclearingofJupiter’sfeedingzonein years(which 163, 198-231. [2] Mosqueira, I., and P. R. Estrada 2003b. maybereplenishedwithsufficientlysmallparticles). Icarus 163, 232-255. [3] Estrada, P. R., and I. Mosqueira Applyingthis approachforSaturn, wefindthatthegas- 2003. 34thDPS.[4]Estrada, P.R.,andIMosqueira2004a. poorplanetesimalmodelmaybeconsistentwiththemassand 35thDPS.[5]Ruskol,E.L.1975. OriginoftheMoon,NASA angularmomentumofTitan. However,lowdensityIapetusis Transl. into english of the book “Proiskhozhdeniye Luny” difficulttoreconcile. IfIapetusformedatitspresentlocation, Moscow, Nauka Press, p. 1-188. [6] Safronov, V. S., et wewouldexpectittohaveadensitylikethatofPhoebe[4], al. 1986. In Satellites, U. Arizona Press, p. 89-116. [7] becausetheangularmomentumofmaterialfedfromheliocen- Anderson, J. D., et al. 1998. Science 280, 1573-1576. [8] tric orbit strongly implies that Iapetus (like Callisto) should Mosqueira,I.,etal. 2000. 32ndDPS.[9]Dones,L.,andS. beofroughlysolarcomposition. Aplausiblescenarioisthat Tremaine1993. Icarus103, 67-92. [10]Estrada, P.R., and Iapetusformedcloserin[11,12]. I. Mosquiera 2004b. Fall AGU. [11] Mosqueira, I., and P. Ar/N) inTitan’satmosphere: TheGalileoprobefoundthat R. Estrada2004. Fall AGUg. [12] Mosqueira, I., and P.R. theheavyvolatileelementglobalabundances,excludingneon Estrada,thisconference. [13]Atreya,S.K.,etal. 1999. Plan. ß andoxygen,areabout timessolar[13,14]. Atthistimethere SpaceSci. 47,p. 1243-1262. [14]Mahaffy,P.R.,etal. 2000. aretwoapproachesintryingtoaccountforthisobservation. J.Geophys. Res. 105,p. 15061-15072. [15]Bar-Nun,A.,et Thefirstideareliesondeliveryofvolatilesthatweretrapped al. 1988. Phys. Rev. B,38,p. 7749-7754. [16]Gautier,D., inamorphousiceandthenincorporatedinplanetesimals. This etal. 2001. Astrophys. J.559,p. L183-L183. [17]Chiang, approach,whichisbasedonlaboratorywork[15],initiallyled E.I.,andP.Goldreich1997. Astrophys. J.490,p. 368. [18] totheexpectationthat, sinceplanetesimalsforming nearthe Sasselov, D. D., and M. Lecar 2000. Astrophys. J. 528, p. snowline(takenbysomemodelstobelocatedat ß 0 (cid:9) AU) 995-998. [19]Koerner,D.W.,2001. ASPConferenceSeries likely dominated the delivery of heavy elements to planets 231, p. 563. [20] Zuckerman, B., 2001. Ann. Rev. Astr. forming at that location, Jupiter might not be enhanced in Astrophys. 39, p. 549-580. [21] Dutrey, A., et al. 1996. 1Noteherethattheopticaldepthisdefined bythelargestparticle Astr. Astrophys. 309, p. 493-504. [22]Wilner,D.J., et al. size,whichcapturesthebulkofthemassforourchosen . 2000. Astrophys. J.534,p. L101-L104. [23]Schmitt,B.,et (cid:27) 2Forsimplicity,wehaveassumedthatthepower-lawexponentfor al. 1989. InPhysicsandMechanicsofCometaryMaterials, boththeplanetesimalmassdistributionandsatellitesimaldistribution ESA,p65-69. [24]Owen,T.C.2000. Plan. Space. Sci. 48, areboththatoffragmentedpopulations,i.e. (cid:27) (cid:27) ) (cid:27) . p. 747-752. Mostofthemassremainsinthelargestparticles. $(cid:29)(cid:28) (cid:28) (cid:28)(cid:31)(cid:30) (cid:30)(cid:3)!#"

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.