ebook img

NASA Technical Reports Server (NTRS) 20040086843: A Pseudo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navier-Stokes Equations PDF

16 Pages·1.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20040086843: A Pseudo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navier-Stokes Equations

AIAA 99-3360 A Pseudo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navier-Stokes Equations J. A. White NASALangleyResearchCenter Hampton,VA23681 J. H. Morrison AnalyticalServicesandMaterials,Inc. 107ResearchDrive Hampton,VA23666 14th AIAA Computational Fluid Dynamics Conference June 28–July 1, 1999/Norfolk, VA Forpermissiontocopyorrepublish,contacttheAmericanInstituteofAeronauticsandAstronautics 1801AlexanderBellDrive,Suite500,Reston,VA22091 A Pseudo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navier-Stokes Equations (cid:3) J. A. White NASA Langley Research Center, Hampton, VA 23681 y J. H. Morrison Analytical Services and Materials, Inc., Hampton, VA 23666 A multi-grid, (cid:13)ux-di(cid:11)erence-split, (cid:12)nite-volume code, VULCAN, is presented for solving the elliptic and parabolized form of the equations governing three-dimensional, turbulent, calorically perfect and non-equilibrium chemically reacting (cid:13)ows. The space marching algorithms developed to improve convergence rate and or reduce computa- tional cost are emphasized. The algorithms presented are extensions to the class of implicitpseudo-timeiterative,upwindspace-marchingschemes. Afullapproximatestor- age, full multi-grid schemeis also describedwhich is used to accelerate the convergence of a Gauss-Seidelrelaxation method. The multi-grid algorithm is shown to signi(cid:12)cantly improveconvergence on high aspectratio grids. Introduction schemesthatsolvetheunsteady formofthe Eulerand 2,18,19 PNS equations have also been employed using Scramjet engines and nozzles employed by hy- relaxation schemes that iterate at each spatialstep in personic vehicles operate in a viscous super- pseudo-time to reach a steady-state solution. sonic/hypersonic (cid:13)ow regime. Such conditions allow the useofspace-marchingsolutionalgorithmswithout A large number of the problems of interest can in- adversely a(cid:11)ecting the (cid:12)delity ofthe calculationwhen clude subsonic and/or separated (cid:13)ow regions, which the (cid:13)ow is steady and unseparated in the marching requires that the space marching algorithmbe imple- direction. Numerous algorithms have been developed mented within the broader context of a code capa- for solving the Euler, Navier-Stokes, and Parabolized ble of solving the Navier-Stokes equations. VULCAN Navier-Stokes (PNS) equations (e.g. Refs. 1{7) for a (Viscous Upwind aLgorithm for Complex (cid:13)ow ANal- thermally and calorically perfect gas. Extensions of ysis) is a cell-centered (cid:12)nite-volume, structured grid, space marching algorithms have also been made to multi-blockcode whichsolves the equations governing handle both equilibrium and non-equilibrium e(cid:11)ects inviscid and viscous (cid:13)ow of a calorically perfect gas (e.g. Refs. 8{15). In addition,the PNS equations can or of an arbitrary mixture of thermally perfect gases besolvedmuchmoree(cid:14)cientlythantheNavier-Stokes undergoingnon-equilibriumchemicalreactions. VUL- equations, which makes the PNS equations very at- 16 CAN allows the (cid:13)ow domain to be decomposed into tractive foruse indesign andoptimizationmethods. regions in which the most suitable algorithm (ellip- Space marching methods can be broken down al- tic or marching) can be utilized. The inviscid (cid:13)uxes gorithmically into two groups, steady-state equation 20 are computed using the MUSCL scheme with either solvers and pseudo-time iterative solvers. Steady- 21 the approximate Riemann solver of Roe or the low state equation solvers, as the name implies, solve 22 dissipation (cid:13)ux splitting scheme of Edwards. The the steady-state form of the Euler and PNS equa- 3,5,10,17 4,11,14 viscous (cid:13)uxes can be evaluated either with or with- tions. Explicit and implicit steady-state out cross derivative contributions. VULCAN solves space-marching schemes have been used with consid- elliptic (cid:13)ows by marching the unsteady form of gov- erable success. Pseudo-time iterative space-marching erning equations in time. Hyperbolic (cid:13)ows (e.g. the (cid:3) Eulerequationsinsupersonic(cid:13)ow)andparabolic(cid:13)ows Aerospace Engineer, Hypersonic Airbreathing Propulsion Branch, Aero- and Gas-DynamicsDivision,Research Technol- (e.g. the parabolized Navier-Stokes equations) are ogyGroup. solvedbyspace marchingwhileiteratingthe unsteady y SeniorResearchScientist,SeniorMemberAIAA. equations in pseudo-time to a steady state solution. Copyright(cid:13)c 1999bytheAmericanInstituteofAeronauticsand Astronautics, Inc. No copyright is asserted in the United States The pseudo-time iterative approach was chosen be- under Title 17, U.S. Code. The U.S. Government has a royalty- cause it allows the time marching solution algorithms freelicensetoexerciseallrightsunderthecopyrightclaimedherein and convergence acceleration techniques developed to for Governmental Purposes. All other rights are reserved by the copyrightowner. solve the elliptic Euler equation and FNS equations 1 of15 AmericanInstituteof Aeronautics and Astronautics Paper99{3360 to be used to reduce the computational cost of the averaged variables (indicated as (cid:30)) as space marching scheme. The explicit PNS algorithm described in a previous paper,23 while extremely ef- (cid:26)f~i !_i (cid:12)cient for inviscid and moderate Reynolds number 2 ... 3 2 ... 3 (cid:13)ows, was found to be too computationallyexpensive wwlbaiahrligsetenydnescusooimlgnvnsbinteerdgraiohntfoitgssh.palaRlcoTeewhymentoahclreodcdsheeilnnliugsptmtsritubceceptarsun(cid:13)rrdeoewqsoupsfiardcVeuedUembLtyoCarsAtcthhaNe-- Q = J1 6666666 (cid:26)f(cid:26)(cid:26)(cid:26)~Nwuv~~~cs 7777777 S = 6666666 !_N000cs 7777777 (4) ing schemes to share numerical algorithms developed 66 (cid:26)E~ 77 66 0 77 to solve and/or accelerate the convergence of the gov- 66 (cid:26)k~ 77 66 Sk~ 77 erning equations to steady state. The code has in- 666 (cid:26)~l 777 66 S~l 77 corporated within it four time marching schemes: a 66 (cid:26)g~ 77 66 Sg~ 77 multi-stage Runge-Kutta scheme, a diagonalized ap- 66 (cid:26)F~ 77 664 SF~ 775 proximate factorization scheme, a block approximate 4 5 factorizationscheme,andadiagonallydominantalter- (cid:26)f~iU nating direction implicit scheme with a factorization .. 2 . 3 error correction sub-iteration. Each of these schemes (cid:26)f~NcsU can be used as the smoothing algorithm in a full ap- 6 7 6 (cid:26)u~U +(cid:24)^xp 7 proximatestorage(FAS)fullmulti-grid(FMG)scheme 6 7 andtherebyacceleratetheconvergencetosteadystate. (cid:24) 66 (cid:26)v~U +(cid:24)^yp 77 E = jrJ j 66 (cid:26)w~U +(cid:24)^zp 77 (5) 66 (cid:26)H~U 77 6 7 6 (cid:26)k~U 7 6 7 6 (cid:26)~lU 7 Governing Equations 6 7 6 (cid:26)g~U 7 6 7 The unsteady three-dimensional form of the Favre 6 (cid:26)~U 7 6 F 7 averaged Navier-Stokes and species transport equa- 4 5 (cid:26)f~iV tionscanbewritteninnonorthogonalcurvilinearform . as 2 .. 3 (cid:26)f~NcsV 6 7 6 (cid:26)u~V +(cid:17)^xp 7 Qt + (E(cid:0)Ev)(cid:24) + (F(cid:0)Fv)(cid:17) + (G(cid:0)Gv)(cid:16) = S (1) (cid:17) 666 (cid:26)v~V +(cid:17)^yp 777 F = jr j 6 (cid:26)w~V +(cid:17)^zp 7 (6) J 6 7 6 (cid:26)H~V 7 wherethesubscripts(cid:24),(cid:17),and(cid:16) denotepartialdi(cid:11)eren- 6 7 tiation with respect to the nonorthogonal curvilinear 66 (cid:26)k~V 77 coordinates and the subscript t denotes partial dif- 66 (cid:26)~lV 77 6 7 ferentiation with respect to time. The contravariant 6 (cid:26)g~V 7 6 7 components of the curvilinear nonorthogonal coordi- 6 (cid:26)~V 7 6 F 7 nate system are 4 5 (cid:26)f~iW . . 2 . 3 (cid:24) =(cid:24)(x;y;z); (cid:17) =(cid:17)(x;y;z); (cid:16) =(cid:16)(x;y;z) (2) (cid:26)f~NcsW 6 7 6 (cid:26)u~W +(cid:16)^xp 7 6 7 and (cid:16) 66 (cid:26)v~W +(cid:16)^yp 77 G = jrJ j 66 (cid:26)w~W +(cid:16)^zp 77 (7) @((cid:24);(cid:17);(cid:16)) 66 (cid:26)H~W 77 J = (3) 66 (cid:26)k~W 77 (cid:12)(cid:12)@(x;y;z)(cid:12)(cid:12) 66 (cid:26)~lW 77 (cid:12) (cid:12) 6 7 (cid:12) (cid:12) 6 (cid:26)g~W 7 6 7 where (cid:24)(cid:11), (cid:17)(cid:11), and (cid:16)(cid:11) ((cid:11) = x, y, or z) are the compo- 6 (cid:26)~W 7 6 F 7 nents ofthe cell face area normalvector, while (cid:24)^(cid:11), (cid:24)^(cid:11), 4 5 where (cid:26) is the mixturedensity; f~i is the massfraction and(cid:24)^(cid:11) arethecomponentsofthecellfaceunitnormal. th and!_iisthespeciesproductionrateofthei chemical The Q, E, F, G, and S vectors are de(cid:12)ned using species; Ncs is the total number of chemical species; Favreaveragedvariables(indicatedas(cid:30)~)andReynolds p is the static pressure; u~, v~ and w~ are the Cartesian 2 of15 AmericanInstituteof Aeronautics and Astronautics Paper99{3360 00 00 velocitycomponents;andE~andH~ arethetotalenergy (cid:26) udjifi+udjifi (cid:16)^xj and total enthalpy respectively. The variables k~ and ~l 2 h .. i 3 aretheturbulentkineticenergyandaturbulentlength f e . g00 00 scchaelmeiesqturyatiinotnervaacrtiiaobnleva(eriiathbelers!~g~oarn(cid:15)~d).~Tahreettuhrebeunleenrgcye 666 (cid:26) udjNcsfNcs+udjNcsfNcs (cid:16)^00xj00 777 00 00 F 6 (cid:16)^x(cid:28)hxx+(cid:16)^y(cid:28)xy+(cid:16)^z(cid:28)xz (cid:16)^xj(cid:26)iu uj 7 varNi=iac1snfcie00fei00.e T,haendcotnhterasvuamrianotf tvheelocsipteiecsiesarveadriea(cid:12)nnceeds Gv = 6666 (cid:16)^y(cid:28)xfy+(cid:16)^y(cid:28)fyy+(cid:16)^z(cid:28)yzg(cid:0)(cid:0)(cid:16)^xj(cid:26)vg0000u0j000 7777 (11) as g 66 (cid:16)^x(cid:28)xz+(cid:16)^y(cid:28)yz+(cid:16)^z(cid:28)zz (cid:16)^xj(cid:26)w uj 77 P g 66 (cid:16)^xev+(cid:16)^yfv+(cid:0)(cid:16)^zgv g 77 66 (cid:16)^xDk~x+(cid:16)^yDk~y+(cid:16)^zDk~zg 77 6 7 U =(cid:24)^xu~+(cid:24)^yv~+(cid:24)^zw~ 66 (cid:16)^xD~lx+(cid:16)^yD~ly+(cid:16)^zD~lz 77 66 (cid:16)^xDg~x+(cid:16)^yDg~y+(cid:16)^zDg~z 77 V =(cid:17)^xu~+(cid:17)^yv~+(cid:17)^zw~ (8) 6 7 6 (cid:16)^xDF~x+(cid:16)^yDF~y+(cid:16)^zDF~z 7 W =(cid:16)^xu~+(cid:16)^yv~+(cid:16)^zw~ 6 7 4 5 The components of the species moleculardi(cid:11)usion ve- th th locity of the i specie in the j direction, udjifi, are expressed using a Fickian model and their turbulent 00 00 counterparts, udjifi , are closed using a grafdienet dif- Theviscous(cid:13)uxvectors Ev,Fv,andGv arewritten fusion model as as g 00 00 (cid:22) (cid:22)t @f~i (cid:26) udjifi+udjifi = + (12) (cid:0) Sc Sct @xj (cid:18) (cid:19) h i (cid:26) udjifi+u0d0jifi00 (cid:24)^xj where f(cid:22) aned (cid:22)t agre the molecular and turbulent vis- cosity and Sc and Sct are the laminar and turbulent 2 h .. i 3 f e . g00 00 Schmidt numbers. The Cartesian components of the 66 (cid:26) udjNcsfNcs+udjNcsfNcs (cid:24)^xj 77 viscous energy (cid:13)ux are 6 00 00 7 6666 (cid:24)(cid:24)^^xy(cid:28)(cid:28)hxxfxy++(cid:24)(cid:24)^^yy(cid:28)(cid:28)fxyyy++(cid:24)(cid:24)^^zz(cid:28)(cid:28)xyzzg(cid:0)(cid:24)(cid:24)^^xxjj(cid:26)(cid:26)ivu00uu0jj0 7777 fevv == uu~~(cid:28)(cid:28)xxxy++vv~~(cid:28)(cid:28)xyyy++ww~~(cid:28)(cid:28)yxzz(cid:0)qqyx++DDk~k~yx (13) Ev = 6 (cid:0) g00 00 7 (9) (cid:0) 66 (cid:24)^x(cid:28)xz +(cid:24)^y(cid:28)yz +(cid:24)^z(cid:28)zz (cid:24)^xj(cid:26)w uj 77 gv = u~(cid:28)xz +v~(cid:28)yz+w~(cid:28)zz qz+Dk~z 66 (cid:24)^xev+(cid:24)^yfv+(cid:0)(cid:24)^zgv g 77 (cid:0) 66 (cid:24)^xDk~x+(cid:24)^yDk~y +(cid:24)^zDk~zg 77 where(cid:27)kistheturbulentPrandtlnumberforthedi(cid:11)u- 6 7 sionofturbulentkineticenergy. TheCartesianviscous 66 (cid:24)^xD~lx+(cid:24)^yD~ly+(cid:24)^zD~lz 77 stresses are de(cid:12)ned as 66 (cid:24)^xDg~x+(cid:24)^yDg~y+(cid:24)^zDg~z 77 6 7 @u~ 2 @u~ @v~ @w~ 6 (cid:24)^xDF~x+(cid:24)^yDF~y+(cid:24)^zDF~z 7 (cid:28)xx = (cid:22) 2 + + 6 7 @x (cid:0) 3 @x @y @z 4 5 (cid:20) (cid:18) (cid:19)(cid:21) @v~ 2 @u~ @v~ @w~ (cid:28)yy = (cid:22) 2 + + @y (cid:0) 3 @x @y @z (cid:20) (cid:18) (cid:19)(cid:21) @w~ 2 @u~ @v~ @w~ (cid:28)zz = (cid:22) 2 + + (14) @z (cid:0) 3 @x @y @z (cid:20) (cid:18) (cid:19)(cid:21) @u~ @v~ 00 00 (cid:28)xy = (cid:22) + (cid:26) udjifi+udjifi (cid:17)^xj @y @x (cid:18) (cid:19) 2 h .. i 3 @u~ @w~ 6 f e . g00 00 7 (cid:28)xz = (cid:22) @z + @x 6 (cid:26) udjNcsfNcs+udjNcsfNcs (cid:17)^xj 7 (cid:18) (cid:19) 6 00 00 7 @v~ @w~ 666 (cid:17)^x(cid:28)hxfx+(cid:17)^y(cid:28)fxy+(cid:17)^z(cid:28)xzg(cid:0)(cid:17)^xj(cid:26)iu00u0j0 777 (cid:28)yz = (cid:22)(cid:18)@z + @y(cid:19) Fv = 666 (cid:17)^y(cid:28)xy+(cid:17)^y(cid:28)yy+(cid:17)^z(cid:28)yz (cid:0)(cid:17)^xj(cid:26)vg00uj00 777 (10) and the total heat (cid:13)uxes are given as 6 (cid:17)^x(cid:28)xz+(cid:17)^y(cid:28)yz +(cid:17)^z(cid:28)zz (cid:17)^xj(cid:26)w uj 7 6 (cid:0) g 7 Ncs 6 (cid:17)^xev+(cid:17)^yfv+(cid:17)^zgv 7 (cid:22)t @T~ (cid:22) (cid:22)t 66666 (cid:17)^(cid:17)^xxDDk~~lxx++(cid:17)^(cid:17)^yyDDk~~lyy++(cid:17)^(cid:17)^zzDD~lk~zzg 77777 qx =(cid:0)(cid:18)(cid:21)+ Prt(cid:19) @x (cid:0) (cid:26)(cid:18)Sc + Sct(cid:19)XiN=c1s~hif~ix 66666 (cid:17)^(cid:17)^xxDDF~g~xx++(cid:17)^(cid:17)^yyDDFg~~yy++(cid:17)^(cid:17)^zzDDg~F~zz 77777 qy =(cid:0)(cid:18)(cid:21)+ P(cid:22)rtt(cid:19)@@Ty~ (cid:0) (cid:26)(cid:18)S(cid:22)c + S(cid:22)ctt(cid:19)Xi=1~hif~iy (15) 4 5 3 of15 AmericanInstituteof Aeronautics and Astronautics Paper99{3360 Ncs 24 (cid:22)t @T~ (cid:22) (cid:22)t Menter areavailableintwoforms;thebaselinemodel qz =(cid:0) (cid:21)+ Prt @z (cid:0) (cid:26) Sc + Sct h~if~iz and the Shear Stress Transport (SST) model. A cor- (cid:18) (cid:19) (cid:18) (cid:19)Xi=1 rection to each model for compressibility e(cid:11)ects has where (cid:21) is the gas mixturemolecularthermalconduc- alsobeen implementedusingthe compressibledissipa- tivity and Prt is the turbulent Prandtl number. The tionmodelofSarkaretal.29forthek~ (cid:15)~basedmodels (cid:0) 28 turbulence modeling equation di(cid:11)usion terms D(cid:30)~x, and the compressibilitymodelsuggested by Wilcox, D(cid:30)~y, and D(cid:30)~z, where (cid:30) is either k~, (cid:15)~, !~, g~, or F~, wlahgigcihnginfcuonrcptoiorant,e30s Sfoarrkaalrl’osfmthodeek~las!w~ebllaasesdZmemoadne’lss are modeled as (cid:0) (including Menter’s). (cid:22) (cid:22)t D(cid:30)~x =(cid:18)Prl(cid:30) + Prt(cid:30)(cid:19)(cid:30)~x NeTahreWnaelalrTwuarlblubleehnacveioMroodfetlhse k~ ~(cid:15) two equation D(cid:30)~y = P(cid:22)rl(cid:30) + P(cid:22)rtt(cid:30) (cid:30)~y (16) mlowodRelseyinsocldonstnroulmlebdetrhmrooudgih(cid:12)ctahteioinns(cid:0)troofdAucbtiido.n31ofTthhee (cid:18) (cid:19) (cid:22) (cid:22)t near wall behavior of the k~ !~ two equation models D(cid:30)~z = Prl(cid:30) + Prt(cid:30) (cid:30)~z is treated in either a high R(cid:0)eynolds number manner (cid:18) (cid:19) by integrating the high Reynolds number form of the Turbulence Models equations to the wall without any special wall treat- 00 00 TheReynoldsstress term((cid:26)ui uj )modelisdepen- ment or by integrating the low Reynolds form of the dent on the type of turbulence model selected. Cur- Wilcoxk~ !~ two equation model28 to the wall. (cid:0) rently,onlytwoequationmodelsgareavailableinVUL- If integration to the wall is not feasible for a CAN. However, the two equation model implemen- givenproblem,thewallmatchingfunctionapproachof 28 tation allows (cid:13)exibility when modeling the Reynolds Wilcox can be used. This approach models the wall stresses. If one of the eddy viscosity based two equa- shearstress andheattransferbyenforcingacompress- tion turbulence models is selected, the Boussinesq ap- ible law of the wall which includes additional terms 32 proximation is made where the Reynolds stresses are that model streamwise pressure gradients. Wilcox modeled as showed that inclusion of the pressure gradient terms in the wall matching function dramatically improved 00 00 @u~i @u~j 2@u~k 2 (cid:26)ui uj =(cid:22)t + (cid:14)ij (cid:26)k~(cid:14)ij predictions of shear stress. The wall matching func- (cid:0) @xj @xi (cid:0) 3@xk (cid:0) 3 + (cid:20)(cid:18) (cid:19) (cid:21) tion has been successfully used on grids where the y (17) g (=p(cid:28)w=(cid:26); (cid:28)w is the wallshear stress) varied between If an explicit algebraic Reynolds stress two equa- 0.5and150.0andproduced wallskinfrictionandheat tion turbulence model is selected, then the Reynolds transfer predictions that agreed well with results ob- stresses are modeled as tained on grids that were integrated to the wall for + (cid:26)ui00uj00 = 2(cid:26)k~(cid:14)ij +2(cid:22)(cid:3)t Sij 1Skk(cid:14)ij y <1:0. Thisisaveryusefulcharacteristicwhichsig- (cid:0) (cid:0)3 (cid:0) 3 ni(cid:12)cantly reduces (cid:13)ow solution sensitivity to the grid (cid:18) (cid:19) (cid:3)(cid:3) (cid:11)4 and greatly reduces the required amount of a priori g +2(cid:22)t (SikWkj+SjkWki) + !~ knowledgeabout the range ofy when generating the (cid:3)(cid:3) (cid:11)5h 1 i computationalgrid. 2(cid:22)t SikSkj SklSkl(cid:14)ij (18) (cid:0) !~ (cid:0) 3 Pressure and Thermodynamic Models (cid:20) (cid:18) (cid:19)(cid:21) where VULCAN was written to modelthe working gas ei- 1 @u~i @u~j ther as a single component calorically perfect gas or Sij = + (19) 2 @xj @xi as an arbitrary mixture of thermally perfect gases. (cid:18) (cid:19) For a single component calorically perfect gas, the 1 @u~i @u~j Wij = (20) solutionvectorofconserved variablesinEq.(4)iscon- 2 @xj (cid:0) @xi (cid:18) (cid:19) tracted to contain only a single continuity equation and !~ = ~(cid:15)=k~. The de(cid:12)nitions for (cid:22)(cid:3)t, (cid:22)(cid:3)t(cid:3), (cid:11)4, and (cid:11)5 (cid:26) (with !_ = 0), three momentum equations (cid:26)u~, (cid:26)v~, can be found in Abid et al.25 and (cid:26)w~, the energy equation (cid:26)E~ and the turbulence The two equation turbulence models in VULCAN equationsfor(cid:26)k~ and(cid:26)~l. The pressure, staticenthalpy, can be categorized as k~ ~(cid:15) based models, Wilcox’s28 totalenthalpy,andtotalenergyforasinglecomponent k~ !~ based modelsandM(cid:0)enter’s24 k~ !~ models. The caloricallyperfect gas are k~(cid:0)(cid:0)(cid:15)~basedmodelscanbesolvedwithe(cid:0)ithertheBoussi- p=(cid:26)RT~ (21) nesq model or an explicit algebraic Reynolds stress model.25{27 The Wilcoxk~ !~ based modelsare avail- (cid:13)R (cid:0) 28 h~ = T~ (22) able inthree forms;ahigh Reynoldsnumber model, (cid:13) 1 28 (cid:18) (cid:0) (cid:19) a lowReynolds numbermodel, and an explicit alge- braic Reynolds stress model.27 The k~ !~ models of H~ =h~+ 1 u~2+v~2+w~2 +k~ (23) (cid:0) 2 4 of15 (cid:0) (cid:1) AmericanInstituteof Aeronautics and Astronautics Paper99{3360 p 35 E~ =H~ (24) VULCAN. Wilke’sformula is then applied tomodel (cid:0) (cid:26) the mixture molecularviscosity as whereRisthegasconstantand(cid:13) istheratioofspeci(cid:12)c Ncs heats. (cid:31)i(cid:22)i (cid:22)= Ncs (32) Thepressure, speciesenthalpy,staticenthalpy,total i=1 j=1(cid:31)j(cid:30)ij enthalpy and total energy for an arbitrary mixture of X thermallyperfect gases are modeled as where P 1 1 2 (cid:22)i 2 Mj 4 Ncs f~i 1+ (cid:22)j Mi p=(cid:26)RuT~Xi=1 Mi (25) (cid:30)ij = (cid:20) p(cid:16)8 1(cid:17)+(cid:16)MMji (cid:17)12 (cid:21) (33) T~ (cid:16) (cid:17) h~i =h~oi + CpidT (26) and (cid:31)i is the ith chemicalspecies molefraction. To The molecular thermal conductivity, (cid:21), of a single- Z component gas is modeled using the Prandtl number Ncs such that h~ = h~if~i (27) Cp(cid:22) i=1 (cid:21)= (34) X Pr where u is the universal gas constant, i and Ri The molecular thermal conductivity of a multi- R M (= u= i)arethemolecularweightandgasconstant component gas is modeled using either using R Mth o of the i species, respectively, and hi is the refer- Eqs. (32,33,34) or by using Sutherland’s formula for th ence enthalpy at a reference temperature, To, of i the chemical species molecular thermal conductivity chemical species. The speci(cid:12)c heat at constant pres- (cid:21)i such that sure,enthalpy,andGibbsfreeenergyforeachchemical 3 species are modeled with a polynomialof static tem- 2 T~ o;i+ i perature. Forexample,the Cpi polynomialismodeled (cid:21)i =(cid:21)o;i T S (35) as either33 To;i! T~+Si Cpi =Ai+BiT~+CiT~2+DiT~3+EiT~4 (28) where (cid:21)o;i, To;i, and Si are constants that are speci(cid:12)c Ri to the chemicalspecies of interest and are availableas part of the thermodynamics data base supplied with or as34 VULCAN. Wassiljewa’s formula36 is then applied to Cpi = Ai+Bi+Ci+DiT~+EiT~2+FiT~3+GiT~4 (29) modelthe mixture molecularviscosity Ri T~2 T~ Ncs (cid:31)i(cid:21)i The coe(cid:14)cients Ai;Bi;Ci;Di;Ei;Fi; and Gi are read (cid:21)= Ncs (36) i=1 j=1(cid:31)j(cid:8)ij from thermodynamic curve (cid:12)t data base (cid:12)les com- X piled for each polynomial from the data in McBride where P 33,34 1 1 2 et al. (cid:21)i 2 Mj 4 1+ (cid:21)j Mi Molecular Transport Models (cid:8)ij = (cid:20) (cid:16) (cid:17) (cid:16) (cid:17)21 (cid:21) (37) The molecular viscosity, (cid:22), of a single-component p8 1+ MMji gas is modeled using Sutherland’s formulawhere (cid:16) (cid:17) 3 Chemical Source Term Model 2 T~ To+S The chemical source term, !_i, represents the mean (cid:22)=(cid:22)o (30) th To! T~+S of the net rate ofproduction of the i species in each chemicalreaction. Thissourcetermcanbemodeledei- where (cid:22)o, To, and S are constants that are speci(cid:12)ed ther withorwithoutturbulence/chemistry interaction for the gas of interest. The molecular viscosity, (cid:22)i, of e(cid:11)ects. The chemical source term, without turbu- each component of a multicomponent gas is modeled lence/chemistry interaction e(cid:11)ects, is modeled in the 39 using Sutherland’s formula manner of, such that (cid:22)i =(cid:22)o;i TTo~;i!32 TTo~;i++SSii (31) !_i =MiXNj=cr1(cid:16)(cid:23)j00i(cid:0)(cid:23)j0i(cid:17)"Kfj mNY=cs1Cm(cid:23)j0m (cid:0)KbjnNY=cs1Cn(cid:23)j00n# (38) where (cid:22)o;i, To;i, and Si are constants that are speci(cid:12)c Eq.(38)istheproductionrateoftheithspecies asde- to the chemicalspecies of interest and are availableas termined by the lawof massaction where Cm a0nd Cn part of the thermodynamics data base supplied with are the participating species concentrations, (cid:23)jm and 5 of15 AmericanInstituteof Aeronautics and Astronautics Paper99{3360 00 (cid:23)jn their stoichiometric coe(cid:14)cients, and fj and bj where I represents the cell interface, L and R repre- the reaction rate coe(cid:14)cients of the forwarKd and baKck- sent the left and right states, and A^~ is due to Roe’s ward reactions. In addition, the constraint imposed 21 Ncs approximateRiemannsolver. A (cid:12)low(cid:12)dissipation(cid:13)ux by mass conservation exists such that i=1!_i = 0. (cid:12) (cid:12) 22 splitting scheme based on the me(cid:12)tho(cid:12)d of Edwards The forward and backward reaction rate coe(cid:14)cients P that addresses some of the entropy violation proper- are calculated based on the Arrhenius law and the ties of Roe’s scheme is also implemented. The low equilibriumrate coe(cid:14)cient, which are de(cid:12)ned as dissipation (cid:13)ux split (cid:13)ux construction is de(cid:12)ned as Kfj =AjT~Bjexp(cid:18)(cid:0)REuaT~j(cid:19) (39) EI =a21 (cid:26)LC+EcL(cid:0)(cid:26)RC(cid:0)EcR +Ep DL+pL+DR(cid:0)(p4R3) bj = Kfj (40) where Ec(cid:2) is the convection co(cid:3)ntribu(cid:2)tion to the (cid:13)ux(cid:3) p K eqj and E is the pressure contribution to the (cid:13)ux. The K (cid:6) (cid:6) The constants in the Arrhenius law, j; j; and aj, parameters C and D (see Ref. 22) are functions A B E fora hydrogen-airreaction system and acomplete de- of the left and right contravariant Mach number and scriptionofthemethodused toobtaintheequilibrium a21 =(aL+aR)=2withathefrozenspeedofsound. In rate coe(cid:14)cient can be found in Drummondand Hus- both (cid:13)ux construction methods, the MUSCL scheme saini37 or Carpenter.40 is used to reconstruct values ofthe primitivevariables The chemicalsource term modelwhich includes the at the left and right states. The primitive variables e(cid:11)ects of turbulence/chemistry interaction uses as- used are the species mass fraction f~i, the density (cid:26), sumedprobabilitydensityfunctions(PDF)tocompute the Cartesian velocity components u~, v~, and w~, the the mean species production rate. In this approach, static pressure p, and the turbulence variables k~, ~l, g~, the law of mass action is written as and ~. F The viscous (cid:13)uxes are discretized using a (cid:12)nite- Ncr Ncs 0 Ncs 00 00 0 (cid:23)jm (cid:23)jn volume representation of a central di(cid:11)erence opera- !_i = i (cid:23)ji (cid:23)ji fj m bj n 46 M (cid:0) 2K C (cid:0)K C 3 tor which can be con(cid:12)gured to evaluate the cell j=1 m=1 n=1 X(cid:16) (cid:17) Y Y interface gradients using either an approximategradi- 4 (415) ent construction where the cross-derivative terms are The mean reaction rate coe(cid:14)cients, fj and bj, are K K neglected or a full gradient construction in which all computedusingatruncated Taylorseries expansionof 46 components of the derivative are included. theratecoe(cid:14)cient equationswithrespect tothemean and (cid:13)uctuating static tem00perature, where the static EllipticSolution Procedures temperature (cid:13)uctuation T is obtained fromthe solu- TheNavier-Stokesequations,Eq.(1),arehyperbolic 00 00 tion of the energy variance, e e ,00transport equation. intimeandellipticinspaceand,therefore,canbeinte- The higher order moments of T introduced by the gratedintimetoprovideasteadystatesolutionthatis Taylor series expansion are cgomputed from either an elliptic in space. VULCAN has several time integra- assumed Gaussian or (cid:12) PDF as described in Ga(cid:11)ney tion procedures from which to choose, depending on 41,43 et al. The mean forward and backward species the type of problem being solved. A temporally sec- 0 00 Ncs (cid:23)jm Ncs (cid:23)jn ond order accurate low storage, explicit, multi-stage production terms m=1Cm and n=1Cn are com- Runge-Kuttascheme47 can be used tointegrate either puted from a multivariate (cid:12) PDF where the sum of Q Ncs 00 00 Q to a steady state solution or in a time accurate man- the species variance i=1fi fi transport equation is ner. Alternately, due to the sti(cid:11) nature ofthe govern- solvedandthevarianceisusedinthemannerdescribed ing equations and the expense involved in computing 42 P 43 in Girimaji and Ga(cid:11)ney egt al. the chemical source terms, implicit time integration Spatial Discretization schemes can be selected to integrate the equations to steady state. An Euler implicit time integration The governing equations, Eq. (1), are discretized scheme is written in delta formas: withacellcentered, (cid:12)nitevolumerepresentation. The convection terms are treated in a second order ac- I n [ +(cid:14)(cid:24)EQ+(cid:14)(cid:17)FQ+(cid:14)(cid:16)GQ SQ](cid:1)Q= R (44) curate manner with the primitive variable extrapo- J(cid:1)t (cid:0) (cid:0) 20 lation/interpolation scheme (MUSCL) of van Leer. @E @Ev @F @Fv Discontinuitiessuchasshocksarecapturedbyemploy- where EQ = @Q @Q , FQ = @Q @Q, GQ = @G @Gv (cid:0)@S n+1 (cid:0)n n ing(cid:13)uxlimitersor byvariantson the MUSCL scheme @Q @Q , SQ = @Q, (cid:1)Q = Q Q , and R is 44,45 (cid:0) (cid:0) which employdi(cid:11)erentiable limiters. The numeri- thesteadystateresidualattimen. Thedirectsolution cal (cid:13)ux at the cell interface maybe constructed using of Eq.(44) results in a large banded N N system of (cid:2) a (cid:13)ux-di(cid:11)erence-split scheme where the (cid:13)ux construc- equations(where N isthenumberofequations)which tion is de(cid:12)ned as must be inverted at each timestep. Solving Eq. (44) for even a medium sized three- EI = 1 EL+ER 1 A^~ QR QL (42) dimensional problem is impractical due to storage 2 (cid:0) 2 (cid:0) (cid:0) (cid:1) (cid:12)(cid:12) (cid:12)(cid:12)(cid:0) (cid:1) 6 of15 (cid:12) (cid:12) AmericanInstituteof Aeronautics and Astronautics Paper99{3360 requirements. However, Eq. (44) may be factored to reduce the storage. Three approaches to the (cid:3) n [M+(A(cid:24)+B(cid:24)+C(cid:24))](cid:1)Qi;j;k= R approximate factorization of Eq. (44) are currently (cid:0) (cid:3)(cid:3) (cid:3) implemented in VULCAN. The approach with the [M+(A(cid:17) +B(cid:17) +C(cid:17))](cid:1)Qi;j;k=M(cid:1)Qi;j;k least factorization error and highest storage require- (cid:3)(cid:3) [M+A(cid:16) +B(cid:16) +C(cid:16)](cid:1)Qi;j;k=M(cid:1)Qi;j;k (49) ments is a planar Gauss-Seidel relaxation which uses n+1 n aDiagonallyDominantAlternatingDirectionImplicit Qi;j;k =Qi;j;k+(cid:1)Qi;j;k 49 (DDADI) scheme to factor the cross stream plane. where The forward sweep in i of a nonlinear planar Gauss- I M= SQ (50) Seidel relaxation of Eq. (44) maybe written J(cid:1)t (cid:0) Both factorized schemes above result in a tridiagonal I [ +B(cid:24)+B(cid:17)+B(cid:16) SQ](cid:1)Qi;j;k+ systemofblockN N matriceswhichmustbeinverted J(cid:1)t (cid:0) ineither the two((cid:2)(cid:17);(cid:16)) orthe three ((cid:24);(cid:17);(cid:16))directions. A(cid:17)(cid:1)Qi;j(cid:0)1;k+C(cid:17)(cid:1)Qi;j+1;k+ Note that Eq. (50) contains only the source term Ja- cobian. A(cid:16)(cid:1)Qi;j;k(cid:0)1+C(cid:16)(cid:1)Qi;j;k+1= The schemes described above are storage and op- n n+1 n+1 n n n eration intensive. A third scheme commonly referred R (Qi(cid:0)2;j;k;Qi(cid:0)1;j;k;Qi;j;k;Qi+1;j;k;Qi+2;j;k) (cid:0) to as a diagonalizedapproximatefactorization (DAF) (45) 50 scheme signi(cid:12)cantly reduces the storage and num- and the backward sweep as ber of operations by diagonalizing the Jacobians and I reducingtheN N blocktridiagonalstoasystemofN [ +B(cid:24)+B(cid:17)+B(cid:16) SQ](cid:1)Qi;j;k+ (cid:2) J(cid:1)t (cid:0) scalar tridiagonals. The DAF scheme may be written as A(cid:17)(cid:1)Qi;j(cid:0)1;k+C(cid:17)(cid:1)Qi;j+1;k+ (cid:3) n [I J(cid:1)tSQ](cid:1)Qi;j;k = J(cid:1)tR (cid:0) (cid:0) A(cid:16)(cid:1)Qi;j;k(cid:0)1+C(cid:16)(cid:1)Qi;j;k+1= (cid:0)1 (cid:3)(cid:3) (cid:3) T(cid:24)[I+J(cid:1)t(cid:14)(cid:24)((cid:21)(cid:24);c (cid:21)(cid:24);v)]T(cid:24) (cid:1)Qi;j;k =(cid:1)Qi;j;k n n n n n+1 n+1 (cid:0) (cid:0)R (Qi(cid:0)2;j;k;Qi(cid:0)1;j;k;Qi;j;k;Qi+1;j;k;Qi+2;j;k) T(cid:17)[I+J(cid:1)t(cid:14)(cid:17)((cid:21)(cid:17);c (cid:21)(cid:17);v)]T(cid:0)(cid:17)1(cid:1)Q(cid:3)i;(cid:3)j(cid:3);k =(cid:1)Q(cid:3)i;(cid:3)j;k (46) (cid:0) (cid:0)1 (cid:3)(cid:3)(cid:3) where A(cid:11), B(cid:11), and C(cid:11) are block N N matrices T(cid:16)[I+J(cid:1)t(cid:14)(cid:16)((cid:21)(cid:16);c (cid:21)(cid:16);v)]T(cid:16) (cid:1)Qi;j;k =(cid:1)Qi;j;k (cid:2) (cid:0) associated with replacing the (cid:14)(cid:11) of Eq. (44) with a n+1 n Qi;j;k =Qi;j;k+(cid:1)Qi;j;k (51) (cid:12)rst order di(cid:11)erence in the (cid:11)=(cid:24) ,(cid:17), and (cid:16) directions. (cid:0)1 Each sweep is factored in the (cid:17);(cid:16) plane as where T(cid:11) and T(cid:11) are matrices of the left and right eigenvectors,(cid:21)(cid:11);caretheinviscideigenvalues,and(cid:21)(cid:11);v (cid:3) n [M+(cid:18)(A(cid:17)+C(cid:17))](cid:1)Qi;j;k = R are a diagonalizedformof the viscous eigenvalues. (cid:0) (cid:3) [M+(cid:18)(A(cid:16) +C(cid:16))](cid:1)Qi;j;k=M(cid:1)Qi;j;k (47) Space Marched Equations n+1 n The Navier Stokes equation, Eq. (1), can be made Qi;j;k =Qi;j;k+(cid:1)Qi;j;k parabolic in space while remaininghyperbolic in time where by dropping all di(cid:11)usive terms in the streamwise ((cid:24)) 1 (cid:13)uxvectorandbyemployingVigneron’s treatmentof I M= +B(cid:24) +(cid:18)(B(cid:17)+B(cid:16)) SQ (48) the streamwise pressure gradient terms. This results J(cid:1)t (cid:0) in an equation of the form and (cid:18) is a parameter that determines the order of ac- Qt+E(cid:24)+(!v 1)E(cid:20)!(cid:24)v +(F Fv)(cid:17)+(G Gv)(cid:16) =S curacy of the time derivative and also can be used (cid:0) (cid:0) (cid:0) (52) to control the stability of the scheme. A value of 2 where is suggested in Ref. 51 and Ref. 52 and is used here 0 as well. Note that the diagonal term M contains the . . diagonal contributions of (cid:14)(cid:24)EQ, (cid:14)(cid:17)FQ, (cid:14)(cid:16)FQ as well 2 . 3 0 as SQ and is shared by both factors. This relaxation schemecouldalsobewrittenasaconventionaltwofac- 66 (cid:24)^xp 77 6 7 torscheme18 where the B(cid:17) andB(cid:16) termsare removed 6 (cid:24)^yp 7 from M and combined with their A and C contribu- E(cid:20)!v = jr(cid:24)j 66 (cid:24)^zp 77 (53) 6 7 tions. However,thiswouldincrease factorizationerror J 6 0 7 6 7 without reducing cost or storage appreciably. 6 0 7 6 7 A three factor approximate factorization method 6 0 7 6 7 that has lower storage requirements maybe written 6 0 7 6 7 6 0 7 6 7 6 0 7 6 7 4 5 7 of15 AmericanInstituteof Aeronautics and Astronautics Paper99{3360 The (!v 1)E(cid:20)(cid:24)!v term that appears in Eq. (52) is and a correcti(cid:0)on to the streamwise (cid:13)ux di(cid:11)erence, E^(cid:24), M= I +B!(cid:24)c SQ (58) J(cid:1)t (cid:0) that parabolizes the streamwise pressure gradient. This correction term contains Vigneron’s streamwise However, anapproachthat hasless factorizationerror pressure-gradient coe(cid:14)cient, !v, which is constrained is to factor Eq. (56) in the cross stream plane using such that the hyperbolic-parabolic nature of the gov- DDADI erning equations is preserved with respect to the (cid:3) n streamwise direction. The constraint equation that [M+(cid:18)(A(cid:17)+C(cid:17))](cid:1)Qi;j;k = R (cid:0) Vigneron obtained from an eigenvalue analysis is (cid:3) [M+(cid:18)(A(cid:16) +C(cid:16))](cid:1)Qi;j;k=M(cid:1)Qi;j;k (59) 2 (cid:27)(cid:13)M(cid:24) n+1 n !v =min 1; 2 (54) Qi;j;k =Qi;j;k+(cid:1)Qi;j;k " 1+((cid:13) 1)M(cid:24) # (cid:0) and 2 M(cid:24)2 = (cid:24)x2+(cid:24)y2U+(cid:24)z2 (cid:13)p=(cid:26) (55) M= I +B!(cid:24)c +(cid:18)(B(cid:17) +B(cid:16)) SQ (60) J(cid:1)t (cid:0) where (cid:13) is the frozen(cid:0)ratio of spec(cid:1)i(cid:12)c heats and (cid:27) is a The DDADI factorization is an expensive algorithm, safety factor (usually = 0.95) included to account for especially when the number of equations is large. nonlinearitiesthatarenotconsideredintheeigenvalue 1 Therefore, a modi(cid:12)ed planar Gauss-Seidel relaxation analysis. whichuses the diagonalizedapproximatefactorization Eq. (52)is written in acorrection formina manner 19 scheme is proposed that has lower storage and oper- similarto Morrison and Korte. Morrison and Korte ation requirements for use on moderate aspect ratio found that the implementation of Vigneron’s stream- grids. This scheme will converge poorly when the wisepressuregradientapproximationinacellcentered streamwise grid aspect ratio becomes large; however, (cid:12)nite volume context required special treatment to by combiningthe DAF factorizationwith wallmatch- avoid the introduction of arti(cid:12)cial pressure gradient ing functions, the wall normal grid spacing (and thus termswhichinturncauseerrors thatarestronglygrid 19 aspect ratio) can be relaxed and acceptable conver- dependent. As in Morrison and Korte, !v is evalu- gence behavior recovered. A planar relaxation based atedatthecellcenterbyaveragingthecellfacemetrics on DAF maybe written as and cell face primitive variables obtained from either a (cid:12)rst or second order fullyupwind reconstruction. !c (cid:3) n I+J(cid:1)t B(cid:24) SQ (cid:1)Qi;j;k = J(cid:1)tR (cid:0) (cid:0) Space Marching Solution Procedures h (cid:16) (cid:17)i Following Newsome et al.,18 Eq. (52) is solved by T(cid:17)[I+J(cid:1)t(cid:14)(cid:17)((cid:21)(cid:17);c (cid:21)(cid:17);v)]T(cid:0)(cid:17)1(cid:1)Q(cid:3)i;(cid:3)j;k =(cid:1)Q(cid:3)i;j;k constructingthe(cid:13)uxesandsourcetermsforaconstant (cid:0) (cid:0)1 (cid:3)(cid:3) (cid:24) plane (three-dimensional) or line (two-dimensional T(cid:16)[I+J(cid:1)t(cid:14)(cid:16)((cid:21)(cid:16);c (cid:21)(cid:16);v)]T(cid:16) (cid:1)Qi;j;k =(cid:1)Qi;j;k (cid:0) and axisymmetric)of cells and then applying the for- (61) n+1 n ward sweep step ofthe planar Gauss-Seidel relaxation Qi;j;k =Qi;j;k+(cid:1)Qi;j;k scheme presented in Eq. (45). Eq. (45) is modi(cid:12)ed Eitheroftherelaxationprocedures givenaboveisthen slightlyfor the space marching procedure to become used to solve each (cid:24) plane of cells beginning at the I !c in(cid:13)ow plane and sweeping in positive (cid:24) through the [J(cid:1)t +B(cid:24) +B(cid:17)+B(cid:16) (cid:0)SQ](cid:1)Qi;j;k+ computational domain. Each (cid:24) plane of cells is iter- ated in pseudo-time until convergence is reached (a A(cid:17)(cid:1)Qi;j(cid:0)1;k+C(cid:17)(cid:1)Qi;j+1;k+ four order reduction in the sumof the L2 normof the A(cid:16)(cid:1)Qi;j;k(cid:0)1+C(cid:16)(cid:1)Qi;j;k+1= continuity, momentum,and energy residuals is gener- n n+1 n+1 n allysu(cid:14)cient). The solutionisthen projected intothe R (Qi(cid:0)2;j;k;Qi(cid:0)1;j;k;Qi;j;k) (56) (cid:0) next plane of cells as an initialcondition. This proce- !c where B(cid:24) is the Jacobian of the parabolized stream- dureisrepeatedforeachplaneofcellsuntiltheout(cid:13)ow wise (cid:13)ux, E(cid:24) +(!v 1)E(cid:20)!(cid:24)v. plane is reached. (cid:0) Extending the approach of Newsome et al. to in- clude source terms, the cross-stream plane is factored Convergence Acceleration using a two factor scheme VULCAN has three techniques for accelerating the (cid:3) n convergence of Eqs. (1) and (52). The (cid:12)rst technique [M+(A(cid:17)+B(cid:17)+C(cid:17))](cid:1)Qi;j;k= R (cid:0) is local time stepping, the second technique is coarse- (cid:3) to-(cid:12)ne grid sequencing, and the third technique is the [M+(A(cid:16) +B(cid:16) +C(cid:16))](cid:1)Qi;j;k=M(cid:1)Qi;j;k (57) FullApproximateStorage (FAS) multi-gridscheme of n+1 n 53 Qi;j;k =Qi;j;k+(cid:1)Qi;j;k Brandt. 8 of15 AmericanInstituteof Aeronautics and Astronautics Paper99{3360 The FAS grid transfer operators for the solution, constructed using second order, fully upwind extrap- residual, and coarse grid corrections are those intro- olation and the cross-stream (cid:13)uxes were constructed 54 duced by Jameson. The multi-grid strategy can be using MUSCL with (cid:20) = 1=3 and the smooth lim- 48 45 either a V(1,0) or W(1,0) type cycle. The correc- iterofVenkatakrishnan. Agridsub-steppingfeature tions after each prolongation are smoothed using a available in VULCAN was employed to control oscil- scalarcoe(cid:14)cientimplicitresidualsmoothingtoremove lations near the shock. Space marching results in a high frequency errors introduced by the prolongation lack of downstream information during the stream- operator. To provide a su(cid:14)ciently smoothinitialcon- wise (cid:13)ux construction makingit impossibleto employ dition for the (cid:12)ne grid, the Full Multi-grid (FMG) (cid:13)ux limiters in the \classical" sense. However, VUL- method can be invoked. The use of FMG is similar CAN can be made to \sub-step" on the grid. Sub- to coarse-to-(cid:12)ne grid sequencing with the exception stepping is a procedure that linearly sub-divides the that multi-grid cycles are performed on each level of input streamwise cells, thereby reducing the gradients the coarse-to-(cid:12)ne grid sequence. in the streamwise direction and increasing accuracy The multi-gridschemealsohasseveralfeatures that while also reducing oscillations. Figure 3 shows the arenotcommonlyemployed. Thegoverningequations typicalconvergence behaviorof several computational are allsolved inafullycoupled fashiononallgridlev- planes from the solution. Each plane was initialized els. Additionally,it was found useful for higher Mach withthesolutionfromthepreviousplaneandtheCFL number(cid:13)ows toconstruct the viscous (cid:13)uxes aswellas wasrampedfromaninitialvalueof100toa(cid:12)nalvalue the source terms on all coarse grids. The turbulence of 1000 over 5 iterations. All planes converged 4 or- modelequations are solved onallgridlevels; however, ders intheL2 normin15iterationsorless. Multi-grid some special treatment for wall boundary conditions was not found to appreciably improvethe already ex- are employed. The wall boundary condition on the cellent convergence rate ofthisproblem. The problem dissipation equation is either restricted from the (cid:12)ne wasalsorunusingtheDAFbasedGauss-Seidelscheme grid or computedon the coarse grid by evaluatingthe using a CFL ramped from 1 to 10 over 5 iterations. wallmatchingfunction on the coarse grid. The DAF scheme required 20 iterations on average Implementation of the FAS and FMG methods is to reduce the L2 four orders of magnitude. However, identicalforthehyperbolic-ellipticandthehyperbolic- theDAFschemehadapproximatelythesamecost per parabolic forms of the equations with one exception. plane due to its lower cost per iteration. Whensolvingthe hyperbolic-ellipticformofthe equa- Figure 4 presents the Mach contours from a su- tion, the grid is coarsened in all directions uniformly. personic, calorically perfect ((cid:13) = 1:4) calculation of However, when solving the hyperbolic-parabolic form turbulent (cid:13)ow over a 0.5 meter long (cid:13)at plate. The of the equations, the grid is coarsened in the cross unit free stream Reynolds number is 2:64 107 and (cid:2) (cid:13)ow plane only. For two-dimensionaland axisymmet- the wall temperature ratio Tw=T1 = 0:65. The base- ric problems this results in grid coarsening in the (cid:17) line k~ !~ turbulence modelwas solved to the wallon (cid:0) direction only; while for three-dimensional problems, acomputationalgridof200cellsinthe(cid:24) directionand thisresultsincoarseninginthe(cid:17)and(cid:16) directionsonly. 153cellsinthe(cid:17)direction. Thestreamwise(cid:13)uxeswere constructed using second order, fully upwind extrap- Results olation and the cross-stream (cid:13)uxes were constructed Four example problems are presented to demon- usingMUSCL with(cid:20)=1=3andthe smoothlimiterof 45 + strate the capabilities of the multi-grid,space march- Venkatakrishnan. The y of the (cid:12)rst cell center o(cid:11) ing, relaxation algorithm. The (cid:12)rst test case is in- thewallwaslessthan0.5fortheentireplate. Figure5 viscid, calorically perfect, Mach 2 (cid:13)ow over a two- provides the computed out(cid:13)ow velocity and eddy vis- dimensional bump in a channel; the second is calor- cositypro(cid:12)ledemonstratingthattheboundarylayeris ically perfect, turbulent, viscous, Mach 6 (cid:13)ow over well resolved. Figure 6 presents several typical \post- a (cid:13)at plate; the third is calorically perfect, laminar, transition" convergence histories at a location where Mach3(cid:13)owoverathree dimensionalcompressioncor- the grid aspect ratio was 300. The line Gauss-Seidel (cid:25) ner; and the fourth is a two-dimensional supersonic relaxation space marching scheme was used with a turbulent di(cid:11)usion (cid:13)ame. W(1,0)cycle FMGwith 3grid levels. The L2 normof Figure 1 shows the two-dimensional computational theresidualisreduced 12orders ofmagnitudeoneach grid for a Mach 2 simulation of inviscid (cid:13)ow over a streamwise step in 32 multi-gridcycles. Although not bumpinachannel. The gridconsists of64cellsinthe shown, it is importantto note that the residual ofthe streamwise ((cid:24)) direction and 32 cells in the cross (cid:13)ow k~ and !~ equations both converged at the same rate ((cid:17)) direction. The grid aspect ratio can be seen to be and to the same level as shown here. The problem nearlyoneforallcellsandthegridisorthogonaltothe was run without multi-grid and was found to require lower boundary. Figure 2 presents density contours more than 130 cycles to converge to the same level as from a space marched solution obtained using line shown in (cid:12)gure 6. Gauss-Seidel relaxation. The streamwise (cid:13)uxes were The third case is the supersonic laminar three- 9 of15 AmericanInstituteof Aeronautics and Astronautics Paper99{3360

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.