ebook img

NASA Technical Reports Server (NTRS) 20020051230: Mechanics of Nanotubes and Nanotube-Polymer Composites PDF

7 Pages·0.64 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20020051230: Mechanics of Nanotubes and Nanotube-Polymer Composites

NA,gAIVlission Mechanics of Nanotubes and Nanotube-Polymer Need_ Composites Deepak Srivastava, NASA Ames Research Center C"hengyu Wei, Stanford University/NASA Ames • Onboard computing sy;tems i_orfuture Kyeongjae Cho, Stanford University autonomou= intelligent vehider -powerful, compact,low '_;_'_.a9 Madhu Menon, University ofKentucky power" Mohamed Osmau, Washington State University/Pulhrmn COnsumption,radiation h_d '_Highperformance computing . (Tera- and Peta-flop=) -processing _tellite data -integrated spacevehicle engineering -climate modeli_ • Revolutionary computing technologies • Smart, compact senmrs, ulttarmalll_obes • "Advanced miniaturization ofallsystems Microspacecxaft Q "Thinking" spacecraft o Micro-, nano-rovers forplanetary exploration CarboNnanotube CVD Carbon Nanotube SEM Images CNT is atubular form ofcarbon with diameter assmall as Irim. Length: few nmto microns. CNT isconfigumtionally equivalent toa two dimensional gmphene sheet rolled into atube. CNT exhibits extmordinar), mechanical properties: Young's modulus over 1Tera Pascal, asstiff as diamond, and tensile strength - 200 GPa. CNT can be metallic orsemiconducting, depending onchirality. http://www.ipt.arc.nasa.gov at Ames Research Center m Outline - High value ofYoung's Modulus (1.2 -1.3 TPa for SWNTs) • Nanomechanics of nanotubes (C and BN nanotubes) plastic collapse - Elastic limit upto 10-15% strain anisotropic swain-release nanostructured skin-effect • C nanotube reinforced polymer composite increased thermal expansion coefficient increased Young's modulus mechanisms and limits of load transfer •redistribution ofstrain •sharp buckling leading tobond rupture •SWNT isstiffer thanMWNT / •Experiment: buckling and collapse of nanotubes embedded f.._r 7 in polymer composites. /-_ .... _ Compression o._ " o.oo:_ _' " ' " ' , I 16%S_m t SI.minElzregy - /' v_s ."_ x'_ Bending Buckle, bend and loops of thick fractureofthin tubes.. oooi...... +'o " ' ''_.' 90degf°Id o.4o, . , ., , . , .!- o..:o / "L_m_,._a -] o.2o ./ / Torsion _•:._o.ti,-/"//_----_sirO_l _'+'+" 1 720 deg twist o..oj._ - 5o io._ J_._ _£v' "rune(ps) D.Srivastava, M. Menon and ILCho, Phys. Rev. Lett. VoL 83, 2973 (1999) D. Srivastava, M. Menon and ILCho, Ph_'s. Rev. B. toappear, 2OOl •BN nanot_u_bbe_ based....._:_'_compos*iSte':__'_N:_+_:+'_'__with_aanisotropic'm_l plasticity [__ •Nanostructured skin effect ! ll ll -Previous MD simulations with high strain rate: elastic up 30% (Yakoboson et al *) Sinmlation: 30% yielding strain from fast strain rate (1/ps) molecular dynamics simulations -Experimentally feasible strain rate and Temperature Experiments: 6% maximum strain inSWCNT ropes; 12% maximum strain inMWCNTs Simulation: T=0K, Tersoff-Bretmer potential: Super-elastic up m20% T=0K, Tight Binding: diamond like defects, collapsed at 12% Experiment: Collapsing ofCNT within polymer matrix under compression stress 150GPA 11.5% tensile strained 9%tensile strained (TEM study) (10,0) T=1600K (5,5) T=2400K *Yakoboson elal, Comput. Mater• Sci.8,341(1997) I x a _1 _1 [-! ITensile strainapplied toa60._long(I0.0)CNT 1 -Arrhenius formula: t----_-1 e(E0 -VKE)/ksT nsite V _'o-, ).(.,_ .'.k/ . (Eyring's plastic doforn_ation theory on polymers) -Activation energy as a function of strain: Ev = E°v - VK_ F_.-VK£ - Yielding: strongly dependent onstrain rate and Temperature -Transition rate: 1- 1 1e kBT _] rlsite _ _ inversion -Arrhenious Behavior: Linear dependent on temperature ofthe slope ofyield strain vsstrain rate -Parameters obtainedfromfitting of MD simulations' data e_,= EV,,K+ _ksT In(_) N_ = 3.6eV; ..... ,d :Strain rate; I: Constant related with vibrational frequency -3 -1 = 8x10 _s I .:Fon:e constantI :Activation volume: I :Activation energy :Number ofprocess involving inyielding; _1_ :Site available -Experimental feasible conditions length ~ 1/_m; strain rate - 1/hour; T - 300K Length effect: [,Aev= _ kVaTK ln(n _-,°/n°_,e) Yieldstrain:9_ 1% Temperature effect: (__.___ )r, = (_--_-__. )r: I _'_Po!;/._er_CN_com_ostte ,_,_ 12 o rm,: "r Structural and thermal properties Load transfer and mechanical properties i i ............ -_o.2, - SEM images of polymer (polyvinylacohol) ,i -_ _,,, 1 i i,o,,o, SEM i_mges of epoxy-CNT composite ribbon contained CNT fibers & knotted CNT r2 ........-_"_'mo) .,v_...a.''r" (s.s) fibers ' Strainml__t.'y_) , • C.Wei, D. Srivaslava, and K. Cho, Phys. Rev. Left. (submitted) • D. Srivastnva, C. Wei, and K. Cho, Appl. Mech. Review (2002) (L.S.Sdladlcr cLal., AppLPhys. Leal.V731:'3842,1998) lB. Vigolo eLaL,Scimlee, V_9_ P|331. "_) _ _._¸_:!i¸i_!_¸:¸_::_?_i!i::!_!!!!:!i_`i_i_i_ii¸_+_¸i¸¸_:_i_i_:!_:_W_`_:_ _ •Thermal conductivityofsingle-wallnanotubes Classical MD: Tersoff-Brenner potentials and VDW interactions •Nanotube/polymer composites ashighthermalexpansion coefficient materials Polyethylene &(1O,O)CNT :(80d_im #PE relaxed byMonteCarlo methods, NI_10:20A •Thermal conductivity ofnanotube/polymer composite long CNT 8%volume ratio) . _,.."--__-" Composites prepared at300k;cooled downto 10K Polymer-CNT composite with rate IK/lps composites change from liquid statethrough rubber state toglassystate m .... i •cvo DlalmM 1300-2OOO,,',//askt,_ *Gr|phim (battl pltne) IgO0- 2000W/InK _I i *CVDS_lom Ctr_idt 2_ -272WtmK _t Alumirmm Nit/i_ (tln_red) 174- lg2XV/mK*_ -C_!_I_a, 4_0 W/mKaa •single_11CarImnn_ tope 1750-_M_ _:_-iK# ,_ ,._o._=,, =..itr:.-et-xo,e._,l_st,, i.*_) .e .lILQ/I¢I_ =._,I_¢_._d&ItcllttdIdIKl]dall7.L¢10-I_04,{L_911. i :_'._*_"_ __...,t,: _000 Small system: L/D-2, Np=10 Results: J •Thermal peak position has astrong o - ' , i , , dependence onthe radius of the tube .¢_2_O000O .(,b). , . ," ,ri/O'.xto) __ ,.4i and weak dependence on chirality 0m'i g_ssi TM fr-oGmlass 1.5t0raKnsitionto 175Ktemperature Tg increased (s'_._iys'l_ _ °Typical peak thermal conductivity ! o_[ composite-'_ liqMd -Thermal expansion coefficients: (K-_) oof \ _i ,0o0o _ "m,;"*"_,* t isab°ut2000"3000W/mK PE PE-CNT / polymer _ \ r<Tg 3.Sxl0 -'4 4.5xI0 _ 1"18% _300[. _ , = . t . _ , _ . with highly directional beat-flmowaterial T>Tg 8.6 x10-'4 IZOxI0 -'4 1"40_o 2CO0 [- (c) ...._ (to.o) _ •High thermal conductivity .... ] andwca..k..d..e.h in.idt, 0 't_l-empera_°_r e(K_m '°°(Experimental value: 1.0 x10-4 K- 1;T <Tg) O0 100 200 300 400 _0 60_ T_-,',_ (K) M. Osmun nnd D.Srivastava, Nunotechnololev, i VoL 12,21(2001) i L__i_:_Ifi_c.r..e...a..s...c......... .._m.:::__ermal:_ex:p::a.nston .of_/_'e_o;_m-_p'osdcS._¢-__•_._ _: 1_/_4[ I [_Bm_an,motmn,and S_Cc Phonon M_es,pt_Nano_¢_ J CUT:LO-2 un_c_l_._trM*r,_.t o _n_,ot, -,romt_-_ T=2OOK eompo_le __"(>;S pol./mot_k s,,._._ ,,.-" ,._.__._.... _VW.-4_ ._" _VW.- _N_ u_: lr_ ....... i -45 _h8mol;3ni_o6#llCowN67,d > -as CNT: UO-2 unit ofpolyethylene=l? _ . cN=_otaL_ !b._ "470.74 0.75 0.76 0.77 0.78 0.79 o.0 0.81 0.82 Oenmty(..q/ctr_3) (Halpin- Tsai' sformula) Small system: L/D-2, Np=10 Diffusion coefficients of polymer r'_" = E_,E,.,ErVr:MVodoululumse roaftiocomopfositfei,ber matrix and fiber ] with CNTs embedded [ Dependent on geometry, packing of (ivi, iM,,-i) _: fiber; -aspect ratio of fiber Diffusion coefficient increased, especially along CNT axis direction, toCNT_'oa_n ., indicating enhancement of themaal _[ Ecnt/Em- 1000 conductivity '! , 1 *Experiments on ABS/CNT & RTV/ CNT show large increase (Rick Bermrg's group at RICE) 4_ Tempe_atme(K) *C. Wei. D. Srivastava. and K. Cho (submitted) 5 i_._,_._;_._. _. ........ _ ,. _,_¢÷_*-._:_.;._ _ _:..,_-x_.1_ 2o1618 L./D-1000 I --.// __o °i - :L (MWCNT) (SWCxNT, L/D?I ..... ,Lg.'_, " ...... " _.000 0,010 0.020 0.030 Volume RatioofCNTfiber I1"1D. (_ian etat.A_p. Phi. Let,. V76. P2868. 2000:. R.Andrews etal.Ar_. Ph_.LeL. V75. PI329.1999 T=50K I Work hardening ofcomposim TinEMapolyimmaegres moaftrixalignmebnyt stretchionfgCNT 1| / with stretching / -°_ 0.004 .:/Elastio enercjy ofan _" 0,003 //I isolated CNT(10,0) , __i_i_:_.:_ :_ / o.oo2 i_ CNTembedded Inpolymer oO,' • • • • • • 0.001 / CNT: L/D-2 • .'" unit ofpolyethylene=10 0.5 1 1.5 2 2.5 3 Straino|thecomposite (%) (/Jin _.al.. Appl.Phy¢ LolL,V'/3PI197.199S) ::::......I.I.J' I -Young's modul_zs of CNT composites 30% higher than polymer matrix -Stretching treatments enhance Yby 50% (L/D-2. Np=10) 0.4 [11:Polynle_bulk;Y.1492MPa [2]: Po_mmlxdka_e_sh_Ch_l_ ;Y.I5_SMPa 0.3 |3]:Composim:Y.1907MPa [4]:Coml_im att_$treching;Y,,,2308MPa --0.2 ." //._"_ [1] J -.J_-es_tale=Ib.a_1,_ o 0.3 _ I_ S_dn_) Comments NaQomechardcs ofindividual nanotubes explained experimental observations, andrevealed novel aJzisotropic strain release inBN nanotubes • Realistic strain-rate, temperatureandlength dependent deformation ofnaaotubes under tensilestrain iddeveloped • Polymer-nanotube composite isahighthermal expansion coefficient and diffusion material above glass transition temperature • Young's modulus increases byupto 30%forlow strainvalues, thiscanbe further increased bystretching-unstretching cycling ofcomposite • Multiple-site chemical bonding favors load transfer 7

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.