ebook img

NASA Technical Reports Server (NTRS) 19960016678: Computation of vertical profiles of longwave radiative cooling over the equatorial Pacific PDF

20 Pages·1.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 19960016678: Computation of vertical profiles of longwave radiative cooling over the equatorial Pacific

NASA-CR-200114 / ,' Reprinted from JOURNAL OF THE ATMOSPttERIC SCIENCES, Vol. 52, No. 10, 15 May 1995 American Meteorological _)ciet_ ,/.//,/ Computation of Vertical Profiles of Longwave Radiative Cooling over the Equatorial Pacific PERRY G. RAMSEY AND DAYTON G. VINCENT Department of Earth and Atmospheric" Sciences, Purdue University, West Lafayette, Indiana (Manuscript received 18February 1994, in final form 29August 1994) ABSTRACT An important quantity whose magnitude has not been thoroughly examined is the vertical distribution of heating in the Tropics. The details of the vertical distribution of heating have a significant impact on a number of phenomena, including the 30-60 day oscillation, sometimes known as the intraseasonal oscillation. Prior attempts to establish the structure of the heating relied on limited field data or assimilated data, coupled with climatological radiative heating parameters. The availability of high quality global-scale datasets has made it possible to make more accurate calculations than were possible a few years ago. An important component of the apparent heat budget is the longwave radiative cooling, which in this paper is found by using the ECMWF/WCRP/TOGA Archive II and ISCCP CI datasets, together with a well-estab- lished parameterization scheme. A method is developed that can be used to estimate the vertical structure of cloud amounts based on top-of-atmosphere cloud observations, and the results are used with a wide-band long- wave parameterization to produce Iongwave cooling rates over the tropical Pacific Ocean. Outgoing Iongwave radiation is calculated and compared to ERBE results. The calculated values are generally higher than those from ERBE, though the spatial distributions are similar. Some significant problems exist with the ECMWF upper-tropospheric water vapor amounts, which could imply uncertainties of 0.5°C day ' in the calculated cooling rates. This is comparable to the differences associated with the minimum or random overlap assumptions used to generate cloud profiles. 1. Introduction heating profiles. The primary purpose of this paper is to derive gridpoint profiles of iongwave radiation over The vertical distribution of diabatic heating is known the "warm pool" region of the western Pacific where to play an important role in the development and main- tropical convective systems frequently are initiated or tenance of atmospheric circulation systems on a variety enhanced. of space and time scales. Within the Tropics, it is often The overall objective of this research is to combine the convective latent heating component of the diabatic the longwave profiles discussed here with shortwave heating that is most important, particularly for synop- radiation and dry static energy (QI) components (to tic-scale systems that last several days. The problem is be discussed in a companion paper) to produce ver- that vertical profiles of convective latent heat release tical distributions of total convective heating (Yanai either need to be parameterized or determined as resid- et al. 1973). The focus of the present paper is on re- uals from some form of the thermodynamic equation. gional space scales and monthly timescales, although In the latter case, profiles of net radiation must be the results could be applied to smaller spatial and tem- known, especially the longwave component. For the poral scales. The latter will be addressed in the com- past 30 years, most researchers and numerical modelers panion paper. Because of uncertainties in many of the have relied on a variety of convective parameterization input quantities, a major focus of the paper is on ex- schemes (e.g., Kuo 1965, 1974; Arakawa and Schubert amining the sensitivity of the longwave radiation re- 1974) (or some modification or combination of these sults to the input errors. schemes) to distribute the latent heat vertically. With Historically, climatological profiles of radiative heat- the availability of new datasets, including those con- ing have been used in Ql-budget studies to represent taining cloud information, it is now possible to attempt shorter than climatological-scale processes. Later in to derive radiation profiles, which, taken together with this paper, we show that such profiles are not always routine analyses, can be used to produce convective representative of smaller-scale radiative distributions. In recent years, the direct calculation of short-term ra- diative components has become possible. M.-L. Wu and collaborators have produced all-sky results using Corresponding author address: Dr. Dayton G. Vincent, Depart- ment of Earth and Atmospheric Sciences, Purdue University, 1397 HIRS2/MSU (Wu and Cheng 1989; Wu and Susskind Civil Engineering Building, West Lafayette, IN 47907-1397. 1990; and Wu and Chang 1992). Others have used an- © 1995 American Meteorological Society 1556 JOURNAL OF THE ATMOSPHERIC SCIENCES VOL. 52. No. 10 alyzed datasets to calculate clear-sky outgoing long- spacecraft to detect and classify clouds. The ISCCP C1 wave radiation (OLR) (Kiehl and Briglieb 1992; dataset, used in this study, provides histograms of ob- Slingo and Webb 1992). served cloud amount on a 2.5° x 2.5° (approximate) One of the datasets most widely used to represent equal area grid in seven pressure layers. A variety of the large-scale atmospheric state is produced by the information is available; for this study the most impor- European Centre for Medium-Range Weather Fore- tant data are the IR-only cloudiness statistics. The pres- casts (ECMWF). The quality and quantity of obser- sure level at the top of an observed cloud is determined vations and the assimilation techniques have improved by comparing the observed temperature with the at- markedly through the years, and these routinely pro- mospheric temperature given by TOVS (TIROS Op- duced analyses are readily available in archived format. erational Vertical Sounder). If the cloud is optically Also, the International Satellite Cloud Climatology thick at IR wavelengths, this procedure produces reli- Project (ISCCP) (Schiffer and Rossow 1983) has cre- able results, but optically thin clouds are not accurately ated a global-scale cloud climatology. It is the objective represented. The IR-only cloudiness is normally avail- of this paper to examine the feasibility of combining able at all eight observing times throughout the day. ECMWF analyses and ISCCP C1data, together with a A second type of data available in ISCCP is the longwave radiative parameterization scheme to make cloud-top pressure/visible optical depth distributions, accurate calculations of radiative cooling profiles. As often called the PC-TAU distributions. It is produced noted above, an important part of this study is to test by comparing the IR-determined cloud-top pressure the sensitivity of the results to various parameters. and the visible brightness. When visible information is available, it is used to check the assumption that the 2.Analyticalprocedures cloud is optically thick and adjustments can be made to the cloud height. The IR thickness is assumed to be a. ECMWF dataset proportional to the visible optical thickness, and the pixel-containing thin cloud is reanalyzed on that basis. The atmosphericstateforthisstudyistakenfrom theWCRP/TOGA Archive IIversionoftheECMWF Since visible data are available only during the day- time, these corrections can be made in no more than global-scaleupper-airanalyses.A descriptionand as- three of the eight daily observations. A scheme that sessmentofthisdatasetisgivenby Trenberth(1992). uses this information to adjust the cloud field is dis- Itcontainsuninitializevdaluesoftemperature,humid- cussed in section 2e. ity,winds,and geopotentialheightat I0tropospheric Wu and Chang (1992) have used the ISCCP CI data and 4 stratospherilcevels.Italsocontainsa recordof with satellite-derived temperature and humidity data to surfacetemperature,2-m airtemperature,2-m airdew- make longwave radiation calculations and Darnell et pointtemperature,surfacepressure,sealevelpressure, and 10-m winds.Alldataareon a 2.5° x 2.5°lat-long al. (1992) used them to make downward flux compu- tations. These papers report top- and bottom-of-atmo- grid. sphere results but do not report vertical distributions of cooling. Further, neither study includes adjustments for b. Cloud dataset misidentification of thin cloud or for cloud overlap. Accurate representation of clouds has long been the The ISCCP equal angle and ECMWF grids are both most difficult problem in radiation calculations. The 2.5° × 2.5°, but the grid locations differ: the centers of quality and quantity of observations have historically the ISCCP equal angle grid correspond to the corners been inadequate for most applications. Because of the of the ECMWF archive grid. Since ISCCP cloud dis- strong interactions between clouds and the radiation tributions represent discrete quantities, while the field, anything less than complete coverage with high ECMWF data represent continuous fields, the ECMWF vertical and horizontal resolution gives results of little data were linearly interpolated to the ISCCP grid for usefulness. this study. Some studies rely on model-generated clouds in which a physical model is used to simulate temperature c. ERBE and humidity and clouds are generated through an em- pirical scheme based on physical parameters. The re- Cloudy- and clear-sky OLR ground truth data are sults are, unfortunately, highly dependent on the nature taken from Earth Radiation Budget Experiment of the cloud parameterization, and observational stud- (ERBE). The ERBE data are based on active cavity ies show that modeled clouds are not highly correlated radiometer observations. The data used in the project with the actual cloud distribution. are from the GEDEX (Greenhouse Effect Detection Recently, data from ISCCP have become available Experiment) CD-ROM disk, obtained from National (Rossow et al. 1988). The principle behind ISCCP is Space Science Data Center (NSSDC). Only the scan- to take radiances from imaging spacecraft (both geo- ner data were used for this study. Scanner data are taken stationary and polar orbiting) and combine them with at an approximately 40-km resolution and merged into vertical temperature soundings from polar-orbiting monthly averages on a 2.5° X 2.5° equal angle grid. 15MA'¢ 1995 RAMSEY AND VINCENT 1557 The ERBE cloudy-sky OLR is simply the summary of compared total-cloudiness to cloud fractions generated all observations taken through the 5-50-#m sensor. with various overlap assumptions. Using the original The ERBE clear-sky OLR is calculated from a sum- 42-km grid, they concluded that the best representation mary of clear observations. The accuracy is reported of total cloud cover was derived when layers without by Harrison et al. (1990) to be _+2 W m 2, with a intervening space were maximally overlapped and sep- systematic bias of 4 W m 2. arated layers were randomly overlapped. Upon com- bining data from adjacent grid boxes into a reduced d. Derivation of layer-by-layer cloud amount using resolution dataset, the best results were found using the assumed overlap method mean of the random and minimum overlap methods. Since cloud tops are the only data available in They cautioned that this conclusion may be an artifact ISCCP, some method for estimating the entire cloud of the resolution reduction method. The applicability structure must be used. Many authors (e.g., Gupta of their results to this study is also questionable because 1989) have assumed a constant thickness and no over- their observational domain is an area with considerable lap. A more general assumption in estimating cloud stratus cloud. amount is that clouds can be represented as some com- In this study, clouds will be estimated using a com- bination of maximally overlapping, minimally overlap- bination of the minimum and random overlap methods. ping, and/or randomly overlapping clouds. The maxi- By assuming that each layer can contain some mini- mally overlapping cloud assumption implies that mally and some randomly overlapping clouds, the clouds are stacked vertically as much as possible. The properties of each method can be combined to produce minimally overlapping assumption means that clouds a method that will yield an intermediate estimate of are not assumed to exist where they are not directly cloudiness that is still consistent with the satellite ob- observed. The randomly overlapping assumption im- servations. It must be acknowledged, however, that cu- plies that clouds are randomly distributed throughout a mulonimbus with large, thick anvils represents a path- scene so that there are clouds where they cannot be ological case that cannot be adequately analyzed by this directly observed in proportion to their fraction where method. Warren et al. (1986) report an average amount they are observed. of cumulonimbus in the region of interest of less than Though the maximum overlap assumption is com- 10%, but this is recognized to be a significant overes- monly used in general circulation models to represent timate due to reporting requirements. It isthus expected deep convective clouds, it is not a good way to estimate that the impact of ignoring cumulonimbus on long- low clouds from satellite data. As demonstrated by term, large-scale averages will not be large. Riehl (1979), cumulonimbus-type clouds cannot oc- In the following development, Vi represents the clear cupy more than a small fraction of the tropical belt. line of sight from space to the top of layer i, while Mi Maximum overlap would almost certainly lead to dras- and R_ are the amount of minimally and randomly over- tic overestimates of low clouds. The minimum overlap lapping cloud, respectively, contained in layer i. The method considers only clouds that are directly observed V_ term is the view of the top of the atmosphere to and, therefore, forms a minimum boundary on any es- space, so it is always 1. The V2 term equals V_ minus timate of low cloud. Minimum overlap is tacitly em- the fraction of layer I that contains clouds as seen by ployed by most researchers. In the case of randomly the satellite. Each subsequent Vg÷_is found by subtract- overlapping clouds it is assumed that the density of cloud ishorizontally uniform throughout alayer, so that the fraction of randomly overlapping clouds present in obscured areas is the same as in unobscured areas. This provides a mechanism for generation of some low-level t El clouds beneath the cloud tops. Consider the following numerical example. A sat- 2 ellite observes 25% cloudiness in a high layer and 25% cloudiness in a lower layer. This would be interpreted by the maximum overlap method to be 50% cloud in the lower layer, 25% by the minimum overlap method, and 33% by the random overlap method. Thus, some 4 type of assumption or observations of the low cloud amount, is required to distinguish between these alter- natives. If a closure assumption can be developed, it may be possible to develop a combined method that captures the best properties of more than one of the above methods. Tian and Curry (1989), in a study using Real Time FIG. 1. Guide to estimation of low cloud amount using a NEPH analysis (RTNEPH) data for the North Atlantic, combination of randomly and minimally overlapping clouds. 1558 JOURNAL OF THE ATMOSPHERIC SCIENCES VOL52,No.10 ing the directly observed cloud fraction of layer i from Separating the terms containing M, gives Vi. Referring to Fig. 1, i-I V,+, = [1 - ( 7-. Mr) - M,I V2=(I -M,) I I--_/, " (I) j=l The ( 1 - Mj ) term represents the portion of the level (5) that does not contain minimally overlapping cloud, and [1 - R_I(I - Mr)] represents the randomly overlap- ping clouds filling the remaining space that is cloudy. Defining: For layer 2 only, this reduces to (1 - R_ - M_), the i I expected result for the total cloud amount in a single B_-_ 1- 7_.Mr, (6) layer. Continuing in this manner, j-I V3 =(1 -M,-M:) 1 1 -_t4, 1 1 -_t42 " C_ =-- F[ 1 I - Mj]' (7) j=! (2) and substituting into (5) gives The minimally overlapping term has the form (1- M_ - ME) because each addition of minimally overlapping cloud excludes the possibility of a clear line of sight I/,.+, = [B, - M,] ( ! 1a-*--M-A_'/, ) C,. (8) through that portion of the column. The randomly over- lapping term has the form [1 - R_I( 1- Ma)][1 - R21 Multiplying by l - M, and collecting the M_ terms (l - ME) ] because it represents a reduction in the pos- gives sibility of a clear line of sight. Carrying this process to the general limit, we find (1 +a)-M_ + [- Vi+l ] L (! +a)'Bi- I + Ci j'Mi Vi+, =[1-(_ Mr) | 1 __ . (3) j"= I j=l V,+l (9) + Bi- Ci }=0, The number of nontrivial equations represented by (3) is equal to i (corresponding to V_ = 2, 3, .-., i which is a quadratic in Mi. Equation (9) can be further + 1), while there are 2. i unknowns (Bj and Cj,j = 1, simplified by recognizing that V_ = B, C_, and defining 2, ..-, i). An obvious closure condition that can be F_+_= E+_/V_: applied is to assume the amount of randomly overlap- ping clouds is proportional to the amount of minimally (1 + a).M 2+ [-(1 + a- F,+_).B_ - I].M_ overlapping clouds (i.e., Rj = a'Mr), so +Bi'(l -F_+l)=0. (10) n( This equation can be solved using the quadratic for- V,+, = [I - ( M,)] 1 I - Mr(cid:0)" (4) mula, giving '=1 j=l -[-(1 + a - F,+l)'Bi - 11 ___x/[-(l + a - F,+I)'B, - 1] 2 - 4(1 + a)Bi'(l - F_+l) (11) M j, _- 2(1 + a) which can be further simplified to [(1 + a - F_+,).B_ + 1] + _/[(1 + a - F_+,).B_ - 1]2+ 4aB, F_+, (12) M_ = 2( 1 + a) The choice of "+" or "-" in the relation is not tions is in lower triangular form and can easily be difficult: addition produces the unphysical result of M_ solved by back-substitution. Thus, a cloud field is cal- > 1, while subtraction always produces a physically culated that meets the random/minimum assumptions realistic result. Proof of this assertion is contained in given above and it is consistent with the ISCCP obser- appendix A of Ramsey (1993). The system of equa- vations. 15MAy 1995 RAMSEY AND VINCENT 1559 The bulk of this work is based on the random/min- imum parameter a = 0.5. There is no firm fundamental basis on which to make this estimate, though it is sim- ilar to Tian and Curry's (1989) conclusion that on a 240-km scale the mean of the results from the minimum NO Give Up. No Calculations and random assumption produces the best results. Since erePossible the procedure inherently produces a cloud field consis- YES tent with top-of-atmosphere observations, OLR is not dependent on the parameter. Net Surface Longwave r YES Radiation (NSLR) is dependent on the value, since a higher value results in more low cloud. The rationale for selection of a = 0.5 and the sensitivity of NSLR and the longwave profiles to the parameter is presented in section 5. Find Previous SubPlrixseclte Cfriormrus r and Subsequent e. Adjustments for cirrus LoweIsRt DaLtaayer in I] VIS Observations I As mentioned in section 2b, a significant problem --(_alcu let•Fractions Calculcte ofGridbox Covered with the ISCCP C1IR-only data is misidentification of Cloud Profile byCirrus the high thin cloud. It is a necessary assumption of the I PC<t80,_<1.15 IR-only analysis that the cloud be optically thick at the IR window channel wavelength. When this is not the Add Estlmaled case, the IR radiation from below the cloud will be Cirrus to Find #of Pixela transmitted through the cloud, resulting in an observed Top Layer Corresponding 1o radiance that is higher than the blackbody radiance of I CirIrnutesrpoilnateCurrsnFlroclGiorridmbox 1 _= Cirrus Frec" To_l Pixsle a cloud at that level. Since the ISCCP cloud retrieval method correlates the IR radiance to the cloud-top tem- perature, which is used to infer the cloud-top pressure, FIG.2.Schematicdiagram ofcirrusadjustmenttechnique. high, thin clouds are often misidentified as lower-alti- tude clouds. The IR-VIS process overcomes this diffi- culty by observing the visible optical depth and modi- fying the analysis if the cloud is shown by the visible 1100 cm-' ). The model considers clouds to be black observations to be optically thin. Adjustments can then but permits fractional cloudiness, which is computa- be made to the cloud-top height. tionally identical to semitransparent clouds. The model Since it was desired to use the IR-only data to permit was tested in the Inter Comparison of Radiation Codes both day and night calculations, a method was devel- for Climate Models (ICRCCM) (Ellingson et al. 1991 ) oped to adjust for this deficiency in the data. It is illus- and it compared very favorably to the line-by-line cal- trated in Fig. 2. The idea is to estimate the number of culations used as the baselines for that study. While cirrus-containing pixels in a grid box using the ISCCP this does not, in itself, guarantee that the model will visible data and to adjust the IR-only data accordingly. produce accurate results, it is the best available indi- Prior to the adjustment step, the entire IR-VIS dataset cator that the model is functioning properly with no is read and missing data is filled in by linear interpo- obvious deficiencies relative to the baseline used in that lation between the nearest previous and subsequent study. time points that have IR-VIS data. The thin cloud that Briglieb (1992) compared a narrowband model, in- is detected or estimated is removed from the lowest cluding extensive parameterizations of minor H20 and layer and a fraction of it is placed in the upper layer CO2 bands and trace gases, to the same model with only after the cloud overlap estimation algorithm (see sec- the major bands present. He found that the OLR over tion 2d) has been applied. This fraction is the cirrus tropical oceans in the model lacking minor bands was emittance _c,. 8-10 W m-2 higher than in the model with the more complete parameterization. It is thus expected that cal- culations with the Harshvardhan et al. (1987) model f Longwave parameterization will show a similar bias when compared to observed Longwave fluxes are calculated using the wide-band clear-sky OLR. model described in Harshvardhan et al. (1987). This The original model represented clouds as either max- model is an emittance model and includes the effects imally or randomly overlapped, consistent with the rep- of water vapor (two band centers, 0-340 cm i and resentation of convective and stratiform clouds in the 1380-1900 cm -I, plus four band wings), carbon di- Goddard Laboratory for Atmospheres general circula- oxide (620-720 cm i and wings), and ozone (980- tion model. For the reasons outlined in section 2d, the 1560 JOURNAL OF THE ATMOSPHERIC SCIENCES VOL. 52, No. 10 cloud routines have been modified to use minimally 310 mb ISCCP Layer Top and randomly overlapped clouds. Also, in the original model, presence of a maximally overlapped cloud su- perseded the presence of random cloud. To accom- modate the cloud estimation routine used here, the Center model was revised so that randomly overlapped clouds ......... Mean Cloud Top do not occupy the area covered by minimally over- lapped clouds. The fraction of each type of cloud is input independently, so that a layer can have any com- 440 mb Mean Cloud Base bination of randomly overlapping and minimally over- ISCCP Layer Bottom lapping clouds. FIG, 3. Schematic showing placement of cloud in two sublayers. g. Vertical discretization The vertical discretization of the model was made to the lowest ISCCP layer (800-1000 hPa) the layers are maintain the best correspondence to the seven-layer separated at 931 hPa. If cloud is detected, it iscontained ISCCP C1 data while attempting to avoid creation of in a layer that is bounded by 850 hPa and the mixing biases in final results. As such, the levels are based on condensation level, and a clear layer extends from the the ISCCP cloud-layer bin limits, and the ECMWF data MCL to the surface. The MCL is found from the upper- are vertically interpolated to match. According to Ros- air data at 1000 and 850 hPa. Temperatures and specific sow et al. (1988) the mean values of the pressure can humidities are used to establish the atmospheric con- be assumed to be near the center of the category, at dition, assuming that OO/Op and Oq/Op were constant least for long-term means. While this study requires before mixing occurred in the subcloud layer. The instantaneous values, itis still reasonable in the absence MCL is found using an iterative approach. Iterations of other information to require that the mean cloud top are performed until the process either converges or be at the center of the ISCCP layer. The ISCCP layers gives a value greater than 990 or less than 860 hPa. are quite thick, 120-200 hPa, which is probably much This guarantees that there is always a clear layer below thicker than real clouds. To place the clouds with the the MCL and always a cloudy layer at least 10 hPa tops at the center of their layer, and the bottom at the thick whenever clouds are detected by ISCCP. center of the layer below, would excessively increase There are two stratospheric layers, from 82.5 (the the downward Iongwave flux at the surface, which re- 75% point of the ISCCP 180-50-hPa layer) to ! hPa. duces NSLR. Placing the cloud in the lower half of the The radiation code also requires a l-0-hPa layer. layer with the base at the bottom would introduce ar- Stratospheric specific humidity is fixed at 2.5 10 -6 g/ tificial oscillations into the flux divergence profile be- g, and the temperature is interpolated from the cause the top half of a layer would always be cloud ECMWF 50-hPa temperature to 270 K at 1hPa. At all free. levels, temperature is interpolated in the logarithm of It was decided to partition the layers and put half of pressure from the original levels to the new levels, and the observed cloud in the top half and the other half in the logarithm of the specific humidity is interpolated in the lower part. The ISCCP defined layers are divided the logarithm of pressure. into two layers with tops at 25% and 75% of the pres- sure difference between the original layer limits, as 3. Clear-sky OLR shown in Fig. 3. Half of the detectable cloud is placed in each sublayer so that the total cloud coverage as As a first test of the model, clear-sky OLR values viewed from space is unchanged and the mean cloud- were calculated at all grid points in the region bounded top height is at the center of the original ISCCP layer. by 15°S- 15°N, 150°E - 120°W for several months and The mean base generated by this procedure is at the compared to the ERBE clear-sky values. A summary bottom of the original ISCCP layer. Because of the way is shown in Fig. 4. It is clear that there is a serious the overlap scheme works (see section 2d), there is discrepancy in January 1986, while May through July more cloud in the lower half of the revised layer than 1986 results compare more favorably even though there in the top whenever there is a random overlap com- is a noticeable bias. The January discrepancy is most ponent. This is required because the top layer partially likely due to the addition of satellite water vapor in- obscures the lower layer, hence, more cloud is required formation to the assimilation scheme on 11 March to make the field consistent with the observations. 1986. Because of these differences, no results prior to Thus, the area-weighted-mean cloud base is actually May 1986 will be subsequently used. The bias seen in slightly lower than the location indicated in Fig. 3. the May through July results, which consists of OLR For the near-surface cloud bases, a different ap- values being higher than those from ERBE, is attributed proach is used. There are always two layers bounded to acombination of the model deficiencies mentioned by 850 hPa and the surface. If no cloud is detected in in section 2f, as well as to insufficient upper-tropo- 15 MAY 1995 RAMSEY AND VINCENT 1561 _. 310 E .1"'"., :-,: "-.'- _,305 - •. •"" e ..:- *_ _." O3OO •_-_-o'_.-::: .:" . _ _:____ ••..,-E,".-.-.,_.__JAw"_I-r";¢.."! i n t _ 255 -- I J I e 275 ........ 275 280 285 290 296 300 305 275 280 285 290 296 3o0 ERBE Clear OLR (W/m2) ERBE Clear OLR (W/m2) (a) January 1986 (b) May 1986 _310 ..... E _305 - 300 -- .>"....": _ 295 _285 = 250 - 7J 275 4 i * 275 280 285 290 295 300 305 275 2110 2115 290 2911, 300 308 ERBE Clear OLR (W/m2) ERBE Clear OLR (W/m21 (a) June 1986 (b) July 1986 F_G. 4. Calculated and ERBE clear-sky OLR in W m "for January, May, June, and July 1986. spheric water vapor in the ECMWF analyses (Tren- ancy at the low end of the scale, with absolute errors berth 1992). approaching 20 W m-2. Use of _c_= 0.66 is an obvious overcorrection, with low biases and increased scatter throughout the range. For _c_ = 0.30, it appears that 4. All-sky OLR there remains the problem of excessively high OLR at a. Cirrus emittance the low end of the scale, but the random error is re- duced. OLR is strongly affected by high clouds, so the cirrus The absolute bias is considered not to be the best emittance parameter ec, was calibrated by comparing parameter on which to base the optimization. This is OLR values calculated using several _c,to results from because the clear-sky results calculated above indicate ERBE. Cirrus emittance values of 0.10, 0.20, 0.40, a general high bias in the method so that the emittance, 0.50, and 0.66 were used to calculate cloud amount which reduces the bias to zero, is probably overcom- profiles and those profiles used to calculate outgoing pensating by introducing excessive amounts of high longwave radiation fields for the month of July 1986. cloud. For this reason, differences, rms errors, and cor- An OLR calculation using an unadjusted cloud profile relation coefficients were calculated and are shown in was also made. Scatter diagrams for the same region Fig. 6. It is seen that the rms error is minimized at _c, as in Fig. 4 are shown in Fig. 5 and depict the relation- = 0.40, but the correlation is highest at ec_= 0.20. A ship between ERBE and calculated OLR for the un- compromise between these two considerations of op- adjusted profile and for _c_= 0.10, 0.30, and 0.66. For timization was made, and ec_= 0.30 was chosen for all the unadjusted profile, there is considerable discrep- subsequent work. 1562 JOURNAL OF THE ATMOSPHERIC SCIENCES VOL. 52, NO. 10 (a) No Adjustment (b) I_ci---0.10 320 320 E 2ao E_ ,.J O 240 _-t-_i _ O>.,240 oO 220 _ =_220 ,< 2O0 < 2O0 180 180 180 200 220 240 260 280 300 320 180 200 220 240 260 280 300 320 ERBE CloudyOLR (W/m2) ERBECloudyOLR(W/m2) (C) eci---0.30 (d) eci--0.66 32O 320 "_ 300 _._3oo E C¢ 260 "_.._" ' ' _'_':° ._- 0 ,.__""__'_ o 2_ -;::¢_:- _;._" >, -."_; :':" = 220 Y ,- 180 180 200 220 240 260 280 300 320 180 200 220 240 260 280 300 320 ERBE CloudyOLR(W/m2) ERBE CloudyOLR (W/m2) FIG. 5. Relationship between calculated and ERBE cloudy-sky OLR for several values of the cirrus emittance parameter _c,- Values are in W m 2. b. OLR fields maps. The regression coefficients for the 3 months are shown in Table 1.The r2values are typically 0.96, and Using the cirrus emittance _c_ = 0.30, cloud fields a typical regression function is OLRERaE = 50 were calculated and used to calculate all-sky OLR. + 0.8" OLRc_c. This indicates that the modeled OLR Maps of calculated and ERBE OLR for May, June, and is following the trends in the overall observed field, July 1986 are shown in Figs. 7, 8, and 9, respectively. though the gradients from west to east are too low. The The top panel of each map is the calculated OLR, the difference in the mean could be attributed to difficulties middle panel is ERBE OLR, and the bottom panel is with the radiation parameterization, but the errors in the difference field. Note that the contour interval of the gradient would be of the opposite sense if this were the OLR maps is 10 W m-2 but for the difference field the only problem. It is more likely that the ECMWF it is 5 W m-2. In general, the pattern agreement be- water vapor gradients are too weak. The errors in the tween the two fields is quite good, particularly with all-sky analyses are approximately the same as in the respect to the placement of secondary features such as clear-sky analyses, lending credence to this conclusion. the relative minimum near the date line in the ITCZ for July. The gradient from east to west, however, is lower c. Sensitivity to tropospheric water vapor in the calculated field than ERBE. Specifically, in the western edge of the domain the calculated values are Because of the uncertainty in the quality of analyzed typically 15 W m-2 higher than ERBE. This is a rep- fields of upper-tropospheric water vapor, some sensi- etition of the type of discrepancies noted in the clear- tivity studies were made. One analysis involved mul- sky and cirrus emittance tests, though it is of larger tiplying the upper-tropospheric (above 470 hPa) spe- magnitude. cific humidity by a fixed amount over the entire region Scatter diagrams for all grid points within the region and comparing OLR and heating profiles. OLR was shown are given in Fig. 10 for each of the 3 months. calculated from the baseline humidity and from 125%, These figures confirm the observations made with the 150%, and 200% of the baseline values. Examination 15MAY 1995 RAMSEY AND VINCENT 1563 (a)Calculated I i 0 8 / \ _ / ¢ w _ t- 6 O ,4 0.9B "_ I_E lflO l_OW l_:_OW 4 oo (b) ERBE o 2 _f______-__.:-- .... 0 i i i i i t i 0.96 No Adj 0.1 0.2 0,3 0.4 0.5 0,66 Cirrus Emittance 15OE 11_ 150w 120W -_- Oiflerence .-l- RMS _ CorrelationI (c) Calculated minus ERBE FIG. 6. Differences in W m 2and correlation between calculated 15N , I IJI. _ I I I I I I I , I , i , and ERBE cloudy-sky OLR for several values of the cirrus emittance ^. .... ,_ C'-_'/O/"<> t .r )> _ <,_ <",' parameter q.,. of the differences between the calculated fields (not shown) indicated that the effects of the changes were 150_ 180 150W 12'oW quite uniform spatially, with OLR approximately 2 W m 2lower than the baseline value for the 150% case FIG. 8. As in Fig. 7, except for June 1986. and 3.5 W m 2lower for the 200% case. Figure 11 shows the mean differences, rms differences, and cor- relation coefficients between the four calculated OLR fields and ERBE. The correlation increases as upper- tropospheric humidity increases, but a close examina- (a) Calculated 1_ i i t i b I L _ i , i , i tion reveals that the increase is very slight. The impact of these changes on the distribution of longwave cool- L. i' _ _ <Lm.n ing will be examined in section 6c. 5. NSLR and sensitivity to cloud overlap parameter To test the sensitivity of the method to the assumed 1_ 180 l_W l_W cloud overlap parameter (see section 2d), cloud frac- tion profiles were calculated based on several different (b) ERBE 15N L i _ i i i , i i i i i i , i , overlap parameters and compared to data from a cloud atlas. Maps of NSLR were calculated from these pro- files. Since no reliable large-scale observations of NSLR exist, results can only be compared to each other to determine their sensitivity to the cloud overlap pa- rameter. -- _BO < Cloud profiles were calculated for January and July 1986 for cloud overlap parameters of 0 (all minimum (c)Calculated minusERBE 1_1 i i i I i i i l_ I _ i j 1 i I i overlap), 0.5, 1, and 2. January and July 1986 were chosen to represent different times of the year while avoiding the El Nifio that began influencing the region in the latter half of 1986 (Climate Analysis Center 1986a,b). The region of interest was then subdivided into nine regions, as shown in Fig. 12. To test these calculated cloud amounts, the ocean cloud atlas of War- I_OE 180 150W 120W ren et al. (1988) was used. This atlas is a summary of cloud cover reported in the 1952-81 Comprehensive FIG. 7. Calculated and ERBE cloudy-sky OLR in W m 2for May 1986. Ocean-Atmosphere Data Set. Clouds of type "cumu- 1564 JOURNAL OF THE ATMOSPHERIC SCIENCES VoL. 52, No. I0 (a)Calculated not of great importance, while in the cloudy areas it can lm make a difference in the monthly mean of up to 5 W m-_. Based on the results of this section, it seems unlikely that the overlap parameter can exceed 1,mak- [.o ing the uncertainty in the final NSLR less than 2.5 W m-:, even in the most extreme cases. 1515 6. Vertical profiles of Iongwave radiative cooling 150E 180 I$OW 1_4N (b)ERBE The vertical profiles of longwave cooling were cal- ,_N , k , '--' ' ' ' ' ..L ; L ' '_'.___ culated for the months of June 1986 through June 1987. November 1986 was not used due to missing ISCCP data. Selected results are examined here in detail and are compared to results from prior studies. In addition to the baseline results, effects of modification of the upper-tropospheric water vapor, cloud amount, and cloud overlap parameter are examined. (c)CalculatedminusERBE a. Comparison toprevious results IN , v I , t , I _ , I L I .4, . I _ I , Figure 17 shows the monthly mean longwave profile in regions NW and SE (as defined in Fig. 12) for the 5_ _" _o_ month of July 1986, along with the associated monthly mean cloud amounts in each time period. The key dif- ference between the two is the considerable longwave cooling near the surface in the SE profile. This is at- I_OE 180 150W 120W tributed to lower water vapor content, as well as less FIG. 9. As in Fig. 7, except for July 1986. cloud, providing a clearer path from the lower tropo- sphere to space. These results are compared with the results of Dopplick (1970), Cox and Griffith (1979) (hereafter CG), and Ackerman and Cox ( 1987 )(here- lus" and stratus-type clouds ("stratus + stratocumulus after AC) in Fig. 18. The profile for the current work + fog") are considered to be most representative of is the July 1986 profile averaged over the entire anal- clouds seen by the observer on the ground. Type "cu- mulonimbus" is not included in this analysis because ysis domain. The Dopplick profile is a climatological it only covers a small fraction of the ground (Riehl average for June, July, and August at 10°N. The CG 1979). It :s assumed that the best estimate of ground profile is for Phase III of GATE and was compiled for cover is to add the atlas cloud amounts and that this A/B-scale ship array. The AC profile is from their Fig. sum corresponds to the calculated mean cloud amounts 17and is an average over the four phases of the summer monsoon in the eastern Arabian Sea. Ackerman and in the lowest three cloud layers. That comparison is Cox presented total radiative heating, so the CG short- made in Figs. 13 and 14. The bars on the figures rep- resent the atlas data, and the numbers in each column wave profile was subtracted from total radiative heating to produce an estimate of their longwave profile. The show the low cloud fraction calculated for each overlap shapes of the four profiles are quite similar, with very parameter. While the agreement between these two in- good agreement between Dopplick's and the one from dependent estimates is not expected to be exact, they provide at least some evidence that the combined ran- the present method. The other two profiles differ some- dom/minimum estimation method gives better results what, with this work indicating less cooling at the sur- than either the minimum or random assumption alone. face and at the tropopause and more cooling at the mid- An overlap parameter of 0.5 provides the best agree- levels. Of particular interest is the location of the max- imum cooling: in this work, it is higher than in either ment with the atlas data and was used for the main body of this work. CG or AC, and the magnitude is greater than that given by Dopplick. It is difficult to assess the reasons for the Maps of net surface longwave radiation were gen- detailed differences between these profiles, since they erated for overlap parameters of 0, 0.5, and 2.0, and use different data assumptions and radiation parame- are shown in Fig. 15. The patterns of NSLR are quite terizations and they are for different domains and pe- similar for all of the values analyzed. Virtually no dif- riods. ferences are seen in the less cloudy regions, with some differences in the cloudy regions. A scatter diagram b. Sensitivity to cloud overlap parameter showing the individual averages compared to the a = 0.5 case is shown in Fig. 16. This confirms the con- The effect of the cloud overlap parameter on the ver- clusion that in clear regions the overlap parameter is tical profile of longwave cooling was examined by cal-

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.