ebook img

Nanotechnology & Society: Current and Emerging Ethical Issues PDF

314 Pages·2009·2.257 MB·English
Save to my drive
Quick download

Preview Nanotechnology & Society: Current and Emerging Ethical Issues

Nanotechnology & Society Current and Emerging Ethical Issues Fritz Allhoff (cid:127) Patrick Lin Editors Nanotechnology & Society Current and Emerging Ethical Issues Editors: Fritz Allhoff Patrick Lin Western Michigan University California Polytechnic State University Kalamazoo San Luis Obispo USA USA ISBN: 978-1-4020-9385-2 (PB) ISBN: 978-1-4020-6208-7 (HB) e-ISBN: 978-1-4020-6209-4 Library of Congress Control Number: 2007940885 © 2009 Springer Science + Business Media B.V. No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written p ermission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed on acid-free paper 9 8 7 6 5 4 3 2 1 springer.com Dedication This volume is dedicated to our families and to our many possible futures. We are indebted to many others, including but not limited to: Western Michigan University, Cal Poly (San Luis Obispo), Fritz Schmuhl, Charles Erkelens, Natalie Rieborn, Rafael Capurro, Brenna Robertson, and all of our esteemed colleagues who have contributed papers to this anthology. Special thanks goes to Marcus Adams for his extensive copy-editing help. This material is also partly based upon work supported by the US National Science Foundation under Grant No. 0620694 and 0621021. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. Contents Foreword. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Biosketches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi Part I Foundational Issues 1 On the Autonomy and Justifi cation of Nanoethics . . . . . . . . . . . . . . . . 3 Fritz Allhoff 2 The Presumptive Case for Nanotechnology. . . . . . . . . . . . . . . . . . . . . . 39 Paul B. Thompson 3 The Bearable Newness of Nanoscience, or: How Not to Get Regulated Out of Business. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Arthur Zucker Part II Risk and Regulation 4 Ethics, Risk, and Nanotechnology: Responsible Approaches to Dealing with Risk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Commission de l’Éthique de la Science et de la Technologie 5 Intuitive Toxicology: The Public Perception of Nanoscience. . . . . . . . 91 David M. Berube 6 Environmental Holism and Nanotechnology. . . . . . . . . . . . . . . . . . . . . 109 Thomas M. Powers Part III Industry and Policy 7 Nanotechnology’s Future: Considerations for the Professional . . . . . . . 127 Ashley Shew vii viii Contents 8 The Tangled Web of Tiny Things: Privacy Implications of Nano-electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Jeroen van den Hoven 9 Carbon Nanotube Patent Thickets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Drew L. Harris Part IV The Human Condition 10 Ethical Aspects of Nanomedicine: A Condensed Version of the EGE Opinion 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 European Group on Ethics 11 Emerging Issues in Nanomedicine and Ethics. . . . . . . . . . . . . . . . . . . 207 Raj Bawa and Summer Johnson 12 Nanoscience, Nanoscientists, and Controversy. . . . . . . . . . . . . . . . . . 225 Jason Scott Robert Part V Global Issues 13 Nanotechnology and the Poor: Opportunities and Risks for Developing Countries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 Todd F. Barker, Leili Fatehi, Michael T. Lesnick, Timothy J. Mealey, and Rex R. Raimond 14 Cultural Diversity in Nanotechnology Ethics . . . . . . . . . . . . . . . . . . . 265 Joachim Schummer 15 Transnational Nanotechnology Governance: A Comparison of the US and China. . . . . . . . . . . . . . . . . . . . . . . . . . . 281 Evan S. Michelson and David Rejeski Foreword: The Double Language of Science, and Why It Is So Difficult to Have a Proper Public Debate about the Nanotechnology Program Jean-Pierre Dupuy The promoters of nanosciences and nanotechnologies are numerous, powerful and influential: scientists and engineers enthused by the prospect of fabulous breakthroughs; industrialists attracted by the hope of gigantic markets; governments of nations and regions of the globe terrified at the idea of losing an industrial, economic and military race in which the stakes are not only jobs and growth, but also the defense capacities of tomorrow; and, finally, the representatives of that vast and anonymous collective entity made up of everyone who is rushing blindly to find technological solutions to the unin- tended and undesirable effects produced by technology itself. It is therefore hardly surprising that the benefits for humanity of the scientific and technical revolution now underway are everywhere praised in giddily hyperbolic terms. A rhetorical record has probably been set by the National Science Foundation 2002 report, whose full title is “Converging Technologies for Improving Human Performances.” It foresees nothing less than the unification of sciences and technolo- gies, pacific and mutually advantageous interaction between human beings and intel- ligent machines, the disappearance of all obstacles to generalized communication and notably those resulting from the diversity of languages, access to inexhaustible sources of energy, and the end to worries about environmental destruction. The report speculates that “the twenty-first century could end in world peace, universal prosper- ity, and evolution to a higher level of compassion and accomplishment”; and that humanity may eventually “become like a single, distributed and interconnected ‘brain’ based in new core pathways of society” (Roco and Bainbridge, 2002) A few grassroots researchers are lucid enough to realize that, by going too far in lauding the “fabulous” consequences of the revolution underway, one may end up provoking equally exaggerated criticisms bent on nipping it in the bud. If one takes Eric Drexler’s program seriously, then one cannot help being frightened by the unprecedented risks it would entail. The success of Michael Crichton’s novel Prey has made all America aware of the risk of gray goo, also called global ecophagy: the risk that a programming accident could spawn an uncontrolled replication of the nanoma- chines dear to one of the most (in)famous founders of the nanotechnological program. The biosphere would then be partly or wholly destroyed as the nano-engines in ques- tion consume the carbon needed for their self-reproduction. This risk can only frighten those who truly believe such machines are possible. Those who do not share this belief will dismiss the pseudo-risk with a shrug of the shoulders. ix x J.-P. Dupuy Many scientists would agree with the director of the NanoBio project, a show- case for French nanobiotechnology, who wrote to her troops: “I do not think a normal scientist could identify with Drexler’s visions” (Françoise Charbit, private conver- sation). A tiny minority of researchers, however, admit to having been much influenced by Drexler’s book, Engines of Creation. The truth is that the scientific community uses a double language, just as it has so often done in the past. When scientists need to sell their product, grandiose vistas are conjured up to beguile the politicians who hold the pursestrings. But when the com- motion attracts the attention of critics who raise the question of risks, the same scien- tists beat a hasty retreat, emphasizing the exceedingly modest nature of their research. First we are told that the genome contains the very essence of every living creature; then we hear that DNA is just a molecule like any other—why, it is not even alive! Thanks to GMOs, it is claimed, the problem of world hunger will at last be solved once and for all; then it turns out that humanity has been improving its food supply through genetic engineering ever since the Neolithic. Nanobiotechnologies will give us miracle cures for cancer and AIDS, but there’s nothing new there either—it is just more of what medicine has been doing right along. By resorting to this kind of double language, scientists elude the responsibilities incumbent upon them. “Science does not think,” Heidegger (1977) said. He obviously did not mean that scientists are all thick-headed. The thesis is that science is constitutively inca- pable of undertaking the type of self-reflection that characterizes all responsible human activity. The debate over nanotechnologies, already intense in the US but still at an embryonic stage in Europe, and especially in my country, France, has every likelihood of degenerating into utter confusion. Reflection will soon be nearly impossible, if indeed that is not already the case. Insofar as it is not yet too late, I would like to make a few suggestions. First, it would be best not to get bogged down in cost-benefit analysis, the calculation of risks or the (very European) tendency to invoke the “precautionary principle.” Not that the development of nanotechnologies is without danger! But the danger is of a sort that conventional methods are powerless to apprehend. Multiplying potential damages by subjective probabilities is an approach ill-suited to assessing the effects of what the technology’s most enthusiastic advocates herald as a “change in civilization.” The essential question is the following one: how has technoscience become an activity so “risky” that, according to some leading scientists, it now represents the principal threat to the survival of humanity?1 Philosophers answer this question by saying that Descartes’s dream—“to become the master and possessor of nature2”— 1 See the much noticed and discussed warning from one of the most brilliant American computer scientists, Bill Joy, published in the very “hip” magazine Wired under the eloquent headline: “Why the future doesn’t need us” (April 2000). Also see the book by the royal British astronomer Sir Martin Rees, Our Final Hour. A Scientist’s Warning: How Terror, Error, and Environmental Disaster Threaten Humankind’s Future in this Century—on Earth and Beyond (New York, Basic Books, 2003). 2 René Descartes, Discourse on Method, John Veitch (trans.) (London: Orion Publishing, 1992 [1637]), VI. Foreword xi has gone wrong. They say it is high time we go back and try to “master mastery.” These philosophers do not get it. They have not understood that the technoscience expected to emerge from the generalized “convergence” of disciplines aims pre- cisely at non-mastery. The engineer of tomorrow will not be a sorcerer’s apprentice out of negligence or incompetence, but as a matter of method. He will design complex structures and endow them with the capacity to self-organize, and he will seek to find out what they can do, by exploring the landscape of their functional properties—a “bottom-up” approach. He will be as much an explorer and an experi- menter as a maker. His successes will depend more on his own creations’ surprising him than on their conforming to a pre-established set of criteria. Disciplines such as artificial life, genetic algorithms, robotics and distributed artificial intelligence already correspond to this scheme. Moreover, since the scientist will increasingly be someone who explores the properties of his own inventions rather than discovering an independent reality (let us say the artificial intelligence expert rather than the neurophysiologist), the roles of the engineer and the scientist will tend to merge. A grouping of European research centers has adopted the name Nano2Life, which stands for “Bringing Nanotechnologies to Life.” The ambivalence of the expression is a prize example of the double language which I denounced earlier. It can mean, in a modest attitude of retreat, “Bringing nanotechnologies into existence,” or else “Bringing nanotechnologies closer to the life sciences.” But it is impossible not to hear an echo of the demiurgic project of using technology to manufacture life. And the person who wants to manufacture—in fact, to create—life must have the ambition of replicating its essential capacity, which is that of creating in its turn the radically new. Today the nanotechnology lobby is afraid. It fears that its public relations opera- tion may culminate in an even more resounding failure than what was witnessed with genetic engineering. And yet, at the 1975 Asilomar conference, things had gotten off to a good start. The scientific community managed to obtain the exclu- sive right to regulate the field. Thirty years later, the disaster has been consum- mated. The public, especially in Europe, sees the smallest biotechnological accomplishment as a monstrosity. Aware of the danger, nanotechnologists look to “communication strategies” for a solution: calming things down, reassuring, estab- lishing “acceptability.” There is something indecent about this ad-biz vocabulary on the lips of scientists. What is to be done? It would be naive to believe in the possibility of a moratorium, or even, in the short term, a legislative or regulatory framework, which, in any event, would have to be worldwide. Such an approach would not stand a chance given the forces and dynamics in play. The best we can hope for is to accompany at the same pace and if possible to anticipate the onward march of nanotechnologies with impact studies and a permanent scrutiny no less interdisciplinary than the nanosciences themselves. A sort of real-time reflection on scientific and techno- logical change would be a first in the history of humanity. The acceleration of the phenomena at issue would seem to make it inevitable. Science, in any case, can no longer evade its responsibility. This obviously does not mean science should be given a monopoly on decision-making power. Few scientists desire this. What it does mean is that science must be forced to abandon xii J.P. Dupuy its splendid isolation from the affairs of the community. The question of the respon- sibility of science has become much too serious for the debate to be left to scientists alone. The responsibility for decision must necessarily be shared. Yet that is precisely what scientists, as they are trained and organized at present, do not want. They are much happier hiding behind the myth of scientific neutrality: let them go on working to expand knowledge undisturbed, and society can decide where to take things from there. If this kind of talk ever had the slightest relevance, it is unacceptable now. The conditions of possibility for an articulation and division of responsibilities between science and society are not met anywhere today. One of these conditions, the most important perhaps, would call for a mental revolution from both partners. As French physicist Jean-Marc Lévy-Leblond neatly puts it, science needs to be “cultured” (Lévy-Leblond, 1997). To understand science is quite a different thing from keeping abreast of it. The inadequacy of the scientific programs that the mass media offer the public results, incidentally, from the confusion between scientific information and scientific culture. Clearly, the way science is taught at both the high school and university levels must be completely rethought. Adding the history and philosophy of science to the curriculum is a must, but it is far from enough: reflection upon science must be part and parcel of a scientist’s training. From this standpoint, most scientists are no more cultivated than the man in the street. The reason for this is the specialization of the scientific profession. Max Weber (1989) already grasped this back in the early years of the twentieth century. In his 1917 lecture, Wissenschaft als Beruf, he pronounced these chilling words: In our time, the internal situation, in contrast to the organization of science as a vocation, is first of all conditioned by the facts that science has entered a phase of specialization pre- viously unknown and that this will forever remain the case. Not only externally, but inwardly, matters stand at a point where the individual can acquire the sure consciousness of achieving something truly perfect in the field of science only in case he is a strict special- ist. […] Only by strict specialization can the scientific worker become fully conscious, for once and perhaps never again in his lifetime, that he has achieved something that will endure. A really definitive and worthwhile achievement is nowadays always a specialized achievement. Therefore, anyone who lacks the capacity to put on blinders, so to speak, […] may as well stay away from science. He will never have what one may call the “personal experience” of science. Despite their brio, it must be hoped that Max Weber’s analyses will be contradicted by future developments. Scientists with blinders are precisely what our societies can no longer afford to train, maintain and protect. Our survival hangs in the balance. We need “reflexive” scientists: less naive with respect to the ideological dross enveloping their research programs; but also more conscious of the fact that the science they do rests ineluctably upon a series of metaphysical decisions. That said, the nanoethics volume that follows this foreword makes important early steps in overcoming the obstacles in integrating science with our culture. It offers the latest thinking in the field by several leading scholars and organizations worldwide, such as Joachim Schummer, Jeroen van den Hoven, Woodrow Wilson International Center for Scholars, Meridian Institute, European Group on Ethics in Science and New Technologies, and others.

See more

The list of books you might like

Upgrade Premium
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.