ebook img

Nanotechnology Formulations for Antibacterial Free Fatty Acids and Monoglycerides PDF

19 Pages·2016·2.85 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nanotechnology Formulations for Antibacterial Free Fatty Acids and Monoglycerides

molecules Review Nanotechnology Formulations for Antibacterial Free Fatty Acids and Monoglycerides JoshuaA.Jackman,BoKyeongYoon,DanlinLiandNam-JoonCho* SchoolofMaterialsScienceandEngineeringandCentreforBiomimeticSensorScience, NanyangTechnologicalUniversity,50NanyangDrive,Singapore637553,Singapore; [email protected](J.A.J.);[email protected](B.K.Y.);[email protected](D.L.) * Correspondence:[email protected];Tel.:+65-6790-4925;Fax:+65-6790-9081 AcademicEditor:PeterJ.Rutledge Received:1February2016;Accepted:23February2016;Published:3March2016 Abstract: Freefattyacidsandmonoglycerideshavelongbeenknowntopossessbroad-spectrum antibacterialactivitythatisbasedonlyticbehavioragainstbacterialcellmembranes. Consideringthe growingchallengesofdrug-resistantbacteriaandtheneedfornewclassesofantibiotics,thewide prevalence, affordable cost, and broad spectrum of fatty acids and monoglycerides make them attractiveagentstodevelopforhealthcareandbiotechnologyapplications. Theaimofthisreview istoprovideabriefintroductiontothehistoryofantimicrobiallipidsandtheircurrentstatusand challenges,andtopresentadetaileddiscussionofongoingresearcheffortstodevelopnanotechnology formulationsoffattyacidsandmonoglyceridesthatenablesuperiorinvitroandinvivoperformance. Examplesofnano-emulsions,liposomes,solidlipidnanoparticles,andcontrolledreleasehydrogels arepresentedinordertohighlightthepotentialthatliesaheadforfattyacidsandmonoglyceridesas next-generationantibacterialsolutions. Possibleapplicationroutesandfuturedirectionsinresearch anddevelopmentarealsodiscussed. Keywords: antimicrobial lipid; fatty acid; monoglyceride; nanotechnology; emulsion; liposome; solidlipidnanoparticle;hydrogel 1. Introduction Antibioticresistanceisoneofthemostseriouspublichealthissuesintheworld,sparkedinpart bytheoveruseofantibioticsinmedicineandagriculture[1]. Inthefaceofmultidrug-resistantbacteria, manyantibioticsarelosingeffectiveness,andthereisgrowingrecognitionthatapost-antibioticera isapproaching[2]. Antibioticsareakeysectorofthepharmaceuticalindustry,asevidencedbyhigh annual expenditures of up to US $10.7 billion in the United States alone [3,4]. The majority of the expenditurecomesfromoutpatientdrugprescriptions[4]. Thewidespreadprescriptionofantibiotics, especiallyintheoutpatientsetting,inevitablyresultsintheriseofmultidrug-resistantbacterialstrains. Inrecentyears,therehasbeengrowingrecognitionoftheriseinmultidrug-resistanceamongvarious bacterial strains as a major public health crisis [5]. Antibiotic-resistant bacterial strains have been estimatedtoaffect2millionpatientsannuallyintheEuropeanUnionalone[6]. Meanwhile,inthe UnitedStates,antibiotic-resistancecostsmorethanUS$20billionperyearaswellasanadditionalone totwoweeksofinpatientcareperpatient,whichstrainstheexistingmedicalinfrastructure[6]. The antibiotic-resistance problem is further aggravated by the fact that new antibiotic drug developmenthaslaggedbehindtheevolutionofantibiotic-resistantbacterialstrains. Fromthe1960s upthrough2011,merelyfournewclassesofantibioticsweresuccessfullydevelopedandmarketed[6]. A2013studyrevealedthatonlyfourlargepharmaceuticalcompanieshaveactiveR&Dprograms todevelopnewantibiotics,ascomparedto20companiesinthe1980s[3]. Asidefromthescientific difficultyindevelopingnewantibiotics,thelackofnewantibioticshasbeenattributedtoaperceived Molecules2016,21,305;doi:10.3390/molecules21030305 www.mdpi.com/journal/molecules Molecules2016,21,305 2of19 lackofpotentialprofitduetocompetitionfromlowcost,off-patentgenericdrugsandtheshort-course nature of antibiotic treatment. Historically unfavorable regulations and policies by government agencies such as the United States Food and Drug Administration (FDA) have also been cited as afactorwhichdiscouragesthedevelopmentofnewantibiotics[7]. Thereareincreasingdemands fornarrow-spectrumantibioticswithfocusedactivityagainstspecificbacteriainordertomitigate thechanceforantibiotic-resistantbacterialstrainstoemerge[8]. Broad-spectrumantibacterialswith targetsthathaveveryhighbarrierstogeneratingresistancemutationsarealsoingreatdemand. Recently, there has been serious attention directed to this issue because the number of drug-resistant bacteria, or so-called super bacteria, continues to rise unabated [9,10]. There is even growing discussion about the end of the antibiotic era altogether. In order to encourage the developmentofnewantibiotics,theFDAhascreatedanewproductcategorycalledtheQualified InfectiousDiseaseProduct(QIDP)[11]. Drugsinthiscategoryhaveaspecialdesignationfromthe FDA,whichshortenstheapprovalreviewprocessandincreasesthetime(anadditional5years)for exclusivemarketing. Thesebenefitsareimportantbecauseitmeansthatnewantibioticscanreach patientsmorequickly,andthereismoreeconomicmotivationforpharmaceuticalcompaniestodevelop newantibiotics. Inturn,therehasbeenapositiveriseinthenumberofnewantibioticsinthepasttwo years[12]. However,nearlyallofthesenewlyapprovedantibioticsareinfactderivativesofexisting antibioticsandshareoverlappingmechanismsofaction.Hence,theproblemofdrug-resistancequickly emergingisnotavoidedbutratherprolonged,andthereisaneedforantibioticsagainstnovelbacterial targets,especiallythosewithveryhighbarrierstomutation. Inthisregard,membrane-activeantibacterialagentsholdsignificantpromise[13].Importantly,the developmentofresistantbacterialstrainsagainstmembrane-activecompoundshaslowfrequency becausethereisahighbarriertomutationofthebacterialcellenvelope[14].Membrane-activepeptides emergedasanattractivecontenderandcanhavepotentantibacterialactivity[15]. Therearemany academicstudiesonmembrane-activeantibacterialpeptidesandafewcandidateshaveevenreached clinical trials (with at least one in Phase III trials) in the late 90s [16,17]. However, a particularly stringentFDAapprovalprocessatthetimeledtothelackofapprovalforpeptidecandidatesofthat era,andtherewasaconcomitantpushinthebiotechnologyindustryatlargetomovebeyondpeptide therapeutics[18]. Inaddition,therearecommontechnicalissueswithmostmembrane-activepeptides, includingweakperformanceinphysiologicalsaltconditions[19],cationiccharacteroftenrendersthem toxictohumancells[20],andtypicaldependenceonaminoacidsecondarystructurewhichissensitive toenvironmentalconditions. Moreover,membrane-activepeptidescanbecostlytoproduce[17]. At the same time, there is already a documented solution—naturally abundant and low cost freefattyacidsandmonoglycerides(so-calledantimicrobiallipids)withbroad-spectrumantibacterial activity—whichhaslongbeenknown,yetwascastasideinfavorofsmallmoleculeantibioticsforthe pastfewdecades[21]. Withthecurrentchallengesinantibioticdrugdevelopment,antimicrobiallipids deserverenewedattentionandrepresentpotentialsolutionstotheproblemofdrug-resistantbacteria. Thepotentialoffreefattyacidsforbiotechnologyapplicationshasbeenhighlightedinatleasttwo reviewsinthepastsixyears[22,23]. However,arguablythegreatestpotentialforantimicrobiallipids, includingfreefattyacids,liesinnanotechnologyformulationswhichtakeadvantageofthepotent antibacterialpropertiesofthesecompoundswhileimprovingtheirpharmacologicalpropertiesand providingsuperiordeliveryvehicles. Indeed,theseeffortsfallundertheconceptofnanoarchitectonics, anemergingsetofdesignguidelinestoincorporatefunctionalmoleculesintoapplication-oriented nanostructures [24–27]. In recent years, there have been extensive efforts to achieve the goal of establishingnanotechnologyformulationsforantimicrobiallipids,yetthecollectionofresearchefforts towardsthisgoalhasnotbeensummarized. The aim of this review is to introduce antimicrobial lipids as a class of potent antibacterial agentsandtohighlightemergingnanotechnologyformulationsoffattyacidsandmonoglycerides. Anoverviewofantimicrobiallipidsisfirstprovided,followedbyadetaileddescriptionofformulation strategies based on nano-emulsions, liposomes, solid lipid nanoparticles, and controlled release Molecules2016,21,305 3of19 hydrogels. Finally,theapplicationpotentialofthenanotechnologyformulationsisdiscussedinthe contextofdevelopingeffectivesolutionstodrug-resistantbacteria. 2. OverviewofAntimicrobialLipids Antimicrobiallipidswerefirstrecognizedasacomponentofthehumanbody’sinnateimmune system. Modern interest in innate antibacterial compounds started with the discovery of the antibacterialenzymelysozymeintheearly1900s[28].Sincethen,thetherapeuticpotentialofadditional antibacterialcompoundsfoundwithintheinnateimmunesystem,includingantimicrobiallipids,has been validated. On the human skin surface, there are two main types of innate host molecules thatcontributetoantibacterialactivity,namely,antimicrobialpeptidesandantimicrobiallipids[29]. Recentresearchhasrevealedthatantimicrobialpeptidesareproducedbydifferentclassesofhuman skincellsandhumanskinprokaryoticmicrobiotaastheimmunesystem’sfirstlineofdefenseagainst bacterialinfection. Astherapeutics,however,antimicrobialpeptidesarecostlytoproduceinsufficient quantities[28]andhaveothertechnicaldrawbacksasmentionedintheprevioussection. Ontheother hand, antimicrobial lipids are abundant in prodigious quantities and exhibit broad-spectrum and strongantimicrobialactivityontheskinsurface[30]. 2.1. BriefHistory Theearliestreportsofantimicrobiallipidsoriginatedinthelate19thcenturywhenKochobserved thatfreefattyacidsinhibitthegrowthofBacillusanthracis[21]. Thisfindingrepresentedasignificant advanceinscientificunderstandingbehindthehistoricalroleofsoaps—alkalisaltsoffattyacids—as disinfectantsandcleaningagents. Intheensuingdecades,numerousstudiesdemonstratedthatfatty acidsinhibitorkillawidespectrumofpathogens,leadingtospeculationaboutpossibletherapeutic applications[31]. Inthe1930sand1940s,Burtenshawandcontemporariesidentifiedthatantimicrobial fattyacidsandotherlipidsarefoundonhumanskinandactasnaturaldisinfectantstoregulatetheskin microbiome[32]. However,theexplorationofantimicrobiallipidswastemperedbythewidespread clinicaluseofpenicillinbeginninginthelate1940s,whichusheredinthemoderneraofantibiotics andledtodramaticimprovementsinhumanhealthcare[33]. 2.2. ClassesofAntimicrobialLipids Free fatty acids are a widely studied type of antimicrobial lipid, and are composed of a carboxylicacidgroupandasaturatedorunsaturatedcarbonchain. Theyfunctionasmildsurfactants whichperturbbacterialcellmembranes[34],causingeitherbacteriostaticorbactericidaleffects[22]. Partialsolubilizationofthebacterialcellmembranecanimpairmetabolicregulationand/orcellular energyproduction,whichleadstoinhibitionofbacterialgrowth. Moreextensivesolubilization,or membranelysis,cantriggercelldeath,whichoftenoccursonthetimescaleofminutes. Assuch,there are multiple ways by which fatty acids affect bacterial cell membranes; as a result, there is a high barriertobacterialstrainsdevelopingresistancemutations[35]. Bycomparison,antibioticstypically inhibitenzymesinvolvedinspecificpartsofthebacteriallifecycle,therebyincreasingthelikelihood ofresistantstrainsemerging. A wide range of antimicrobial lipids have been discovered or synthesized, and possess a spectrum of antibacterial efficacies and targets. The main approach to classifying antimicrobial lipidshasbeenstructure-activityrelationshipserieswhereininvitrostudiesfocusonmeasuringthe inhibitionofbacterialgrowthinordertodeterminetheeffectofpermutations,suchashydrocarbon chain length or the numbers of degrees of unsaturation, within a family of antimicrobial lipids. Kabaraandcolleaguesconductedpioneeringstudiesontheantibacterialpropertiesofmedium-chain saturatedfattyacids[36–38]. Basedondetailedstudiesofsaturatedfattyacidswithchainlengths between6and18carbons, lauricacidwasidentifiedashavingthemostpotentinhibitoryactivity againstGram-positivebacteria[39]. The1-monoglyceridederivativeoflauricacidiscalledglycerol monolaurateandwasdiscoveredtohavealowerminimuminhibitoryconcentrationthanlauricacid, Molecules2016,21,305 4of19 Molecules 2016, 21, 305 4 of 18 albeitagainstanarrowerrangeofbacteria[40]. Bothlauricacid(LA)andglycerolmonolaurate(GML) RareecoGgenniezreadl lAysR Seacfoeg (nGizReAdSA) sbyS athfee (UGnRiAteSd) Sbtyattehse FUoondit eadndSt DatreusgF AooddmainndistDrartuiognA adsm foiondis tardadtiiotnivaess f[o41o]d. Tahded icthiveemsi[c4a1l ]s.trTuhcetucrheesm oifc LaAls atrnudc tGuMreLs oafreL pAreasnedntGedM iLn aFrigeuprree s1e, nantedd hiinghFliigguhrte th1,ea tnwdo hmigahinli gclhatssthese otwf aonmtimaiincrcolabsisael sliopfidasn ttihmati carroeb wiaildlieplyid sstuthdaitedar: efrweeid faeltytys atuciddise da:nfdr emeofantotyglaycciedrsidaensd. monoglycerides. Figure 1. Chemical structures of a representative free fatty acid and monoglyercide. Figure1.Chemicalstructuresofarepresentativefreefattyacidandmonoglyercide. 2.3. Activity Spectrum 2.3. ActivitySpectrum Antimicrobial lipids have demonstrated effectiveness against various drug-resistant bacteria, Antimicrobial lipids have demonstrated effectiveness against various drug-resistant bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) [29]. Considering the challenges faced includingmethicillin-resistantStaphylococcusaureus(MRSA)[29]. Consideringthechallengesfacedby by traditional antibiotics, developing therapeutic strategies based on natural compounds which are traditionalantibiotics,developingtherapeuticstrategiesbasedonnaturalcompoundswhicharepartof part of the human innate immune system arsenal is highly advantageous. Antimicrobial lipids are thehumaninnateimmunesystemarsenalishighlyadvantageous.Antimicrobiallipidsareparticularly particularly attractive because of their wide abundance in nature, perceived acceptance (several attractive because of their wide abundance in nature, perceived acceptance (several antimicrobial antimicrobial lipids are considered as GRAS by the US FDA), and bactericidal properties against lipidsareconsideredasGRASbytheUSFDA),andbactericidalpropertiesagainstdifferenttypesof different types of microorganisms including algae, bacteria, fungi, protozoa, and virus [22,36,39]. microorganismsincludingalgae,bacteria,fungi,protozoa,andvirus[22,36,39]. Owingtoaunique Owing to a unique mechanism of action, antimicrobial lipids are less prone to the evolution of mechanismofaction,antimicrobiallipidsarelesspronetotheevolutionofdrug-resistantbacterial drug-resistant bacterial strains, as compared to traditional antibiotics. Indeed, antimicrobial lipids strains, ascomparedtotraditionalantibiotics. Indeed, antimicrobiallipidsinterferewithbacterial interfere with bacterial cell membranes, and can cause cell lysis or a range of indirect effects hindering cellmembranes,andcancausecelllysisorarangeofindirecteffectshinderingcellmetabolism[22]. cell metabolism [22]. As mentioned above, structure-function relationships have shown that optimal Asmentionedabove,structure-functionrelationshipshaveshownthatoptimalbactericidalactivity bactericidal activity is obtained with saturated antimicrobial lipids with 10- or 12-carbon long fatty isobtainedwithsaturatedantimicrobiallipidswith10-or12-carbonlongfattyacidssuchaslauric acids such as lauric acid, which has successfully exhibited antibacterial activity against a wide range acid,whichhassuccessfullyexhibitedantibacterialactivityagainstawiderangeofclinicallyrelevant of clinically relevant pathogens, including S. aureus and P. acnes [22,42]. Antimicrobial lipids with pathogens,includingS.aureusandP.acnes[22,42]. Antimicrobiallipidswithsimilarchainlengths similar chain lengths (10 to 14 carbons) also show potent antimicrobial activity [37]. Other unsaturated (10to14carbons) also show potent antimicrobial activity [37]. Other unsaturated fatty acids such fatty acids such as linoleic acid and oleic acid have shown strong antibacterial activity too [43]. as linoleic acid and oleic acid have shown strong antibacterial activity too [43]. Interestingly, in Interestingly, in many cases, the activity of a particular compound will overlap but not be identical manycases,theactivityofaparticularcompoundwilloverlapbutnotbeidenticaltothatofother to that of other antimicrobial lipids [22]. These findings motivate a more detailed understanding of antimicrobiallipids[22]. Thesefindingsmotivateamoredetailedunderstandingofthecorresponding the corresponding mechanisms, yet such information has proven largely elusive. mechanisms,yetsuchinformationhasprovenlargelyelusive. The main focus of structure-activity relationships of fatty acids and monogylcerides has been Themainfocusofstructure-activityrelationshipsoffattyacidsandmonogylcerideshasbeen concentration-dependent measurement of bacterial growth inhibition. The specific interaction between concentration-dependentmeasurementofbacterialgrowthinhibition. Thespecificinteractionbetween antimicrobial lipids and bacterial cell membranes remains to be understood. Indeed, the lipids antimicrobial lipids and bacterial cell membranes remains to be understood. Indeed, the lipids present a spectrum of mechanistic behaviors (e.g., permeabilization, lysis, etc.), with the specific details present a spectrum of mechanistic behaviors (e.g., permeabilization, lysis, etc.), with the specific depending on the chemical structure and concentration of the lipid [44]. In a few cases, transmission details depending on the chemical structure and concentration of the lipid [44]. In a few cases, electron microscopy has been utilized in order to analyze fixed specimens of bacteria after treatment transmissionelectronmicroscopyhasbeenutilizedinordertoanalyzefixedspecimensofbacteria with high (5–10 mM) concentrations of certain fatty acids and monoglycerides [45]. However, there aftertreatmentwithhigh(5–10mM)concentrationsofcertainfattyacidsandmonoglycerides[45]. have been very few direct investigations of the membrane destabilization process caused by However, there have been very few direct investigations of the membrane destabilization process antimicrobial lipids. As presented in Figure 2, recent studies employing model membrane systems causedbyantimicrobiallipids. AspresentedinFigure2,recentstudiesemployingmodelmembrane called supported lipid bilayers have revealed that free fatty acids and monoglycerides can induce systems called supported lipid bilayers have revealed that free fatty acids and monoglycerides different kinds of morphological changes in the membrane [46,47]. A physicochemical explanation caninducedifferentkindsofmorphologicalchangesinthemembrane[46,47]. Aphysicochemical based on the lipid charge and critical micelle concentration was invoked in order to explain the explanation based on the lipid charge and critical micelle concentration was invoked in order to relationship between measured antibacterial activity and fundamental interactions with lipid explaintherelationshipbetweenmeasuredantibacterialactivityandfundamentalinteractionswith bilayers [47]. lipidbilayers[47]. Molecules2016,21,305 5of19 Molecules 2016, 21, 305 5 of 18 Figure 2. (a) Treatment of supported lipid bilayers with docosahexaenoic acid (DHA) induces three- Figure 2. (a) Treatment of supported lipid bilayers with docosahexaenoic acid (DHA) induces dimensional membrane morphological changes; (b) Schematic of DHA-induced, elongated lipid three-dimensional membrane morphological changes; (b) Schematic of DHA-induced, elongated structures on top of supported lipid bilayer. Top-down view of changes in the morphology of supported lipid stlirpuidct buirlaeyserosn, intoclpudoinfgs u(cp) pmoermtebdranliep siodlubbiillaizyaetiro.nT (SoDpS-d troewatnmevnite)w; (do) fmcehmabnrganees biundtdhinegm (GoMrpLh ology ofsupptroearttmedenlti)p; aidndb (iel)a myeerms,brinancelu fidbrinillgat(ioc)n m(LAem trbeartamneenst)o. lTuhbei sliczaalet iboanrs (iSnD alSl mtriecraotgmraepnhts) ;ar(ed 2)0m μemm. brane buddinRgep(rGodMucLedt rweiathtm peernmt)i;ssaionnd fro(em) Rmefesm. [4b6r,a47n]e. fibrillation (LA treatment). The scale bars in all micrographsare20µm.ReproducedwithpermissionfromRefs.[46,47]. 2.4. Formulation Challenges 2.4. FormulDateisopnitCe hthaell penrogmesising antibacterial features of fatty acids and monoglycerides, there are technical challenges which hinder the in vivo performance of compounds in the free form. One drawback that Despitethepromisingantibacterialfeaturesoffattyacidsandmonoglycerides,therearetechnical needs to be overcome is the poor solubility of antimicrobial lipids in aqueous buffer solutions [48]. challenWgehsilew ahnitcimhihcrinobdiealr ltihpeidisn cvainv obpe edrifsosormlveadn cine osoflcuotimonps ocuonndtasiniinngt hdeimfreetehyfol rsmulf.oOxindee d(DraMwSOba),c kthat needsDtoMbSeOo ivs ea rsckoinm ireriitsantht aenpd otooxrics o[4l9u].b Oiltihtyero imfapnorttiamnitc fraoctboirasl toli poviderscoinmea qaruee tohue ssebnusiftfiveirtys otol ulitpiiodn s[48]. Whilecaonntciemntircartoiobni a(el.gli.p, cirditsiccaal nmibceelled icsosnoclevnetrdatiionn)s oanludt eionnvisrocnomnetnatianli nfagctodrism (ee.gth., ydlivsaulelnfot xcaidtieon(sD). MSO), For these reasons, there has been strong motivation to develop improved formulations that overcome DMSO is a skin irritant and toxic [49]. Other important factors to overcome are the sensitivity to these challenges. In the following section, we describe nanotechnology solutions such as nano-emulsions, lipid concentration (e.g., critical micelle concentration) and environmental factors (e.g., divalent liposomes, solid lipid nanoparticles, and controlled release hydrogels which offer significant potential cations). Forthesereasons,therehasbeenstrongmotivationtodevelopimprovedformulationsthat to serve as carriers that not only deliver high concentrations of antimicrobial lipids, but also improve overcotmhee ththereaspeecuhtiac lpleronpgeersti.esIn oft hanetifmolilcorowbiianlg lipseidcst.i on,wedescribenanotechnologysolutionssuchas nano-emulsions,liposomes,solidlipidnanoparticles,andcontrolledreleasehydrogelswhichoffer signific3a. Nntanpootteecnhtnioallotgoy sSetrravteegaiessc arriers that not only deliver high concentrations of antimicrobial lipids,butalsoimprovethetherapeuticpropertiesofantimicrobiallipids. 3.1. Emulsions 3. NanotecAhqnuoeolougs yemSutrlsaitoengs iceosmposed of immiscible oil droplets in water are commonly prepared with surfactants acting as emulsifiers to reduce tension between the oil and water phases and increase 3.1. Emeumlsuilosniosn stability. They can vary in size from the nanoscale to microscale. Owing to attractive properties such as high stability and low viscosity, emulsions are regarded as potential drug delivery Aqueousemulsionscomposedofimmiscibleoildropletsinwaterarecommonlypreparedwith systems and are also widely studied for cosmetic, dermatology, food, and paint coating applications. surfactNanonts-ioancitci snugrfaacstaenmtsu alrsei cfioemrsmtoonlrye cdhuosceen tbeencasuiosen thbeeyt waree elensst sheensoitiilvea ntod enwviartoenrmpenhtaasl ecosnadnitdionins,c rease emulsisounchs atsa bthieli stoyl.utTiohne pyHc aannd vioanricy sitrnensgizthe, afnrod menhthanecen tahne opsecrmaleeabtoilitmy oicf rcoelslc maleem.brOanwesin. Sghotort aantdtr active propermtieesdisuumc hchaasinh ailgcohhsotlas banildit ryelaantedd ldoewrivvatiisvceoss airtey ,aelsmo uuslesfiuoln ssurafraectraengtsa frodr epdreapsarpinogt eenmtuialsliodnrsu, gandde livery systemcsana nddisaprlaeya alsnotibwaicdteerliyal satcutdiviietyd ifno rthceo semmeutliscio,nd esrtamtea. tToalobgley ,1 fosuomdm,aanridzeps atihnet ecxoiasttiinngg satpudpileisc ations. reporting antimicrobial effects of emulsions. Al-Adham et al. first demonstrated that emulsions show Non-ionicsurfactantsarecommonlychosenbecausetheyarelesssensitivetoenvironmentalconditions, promise as antibacterial agents, with highly effective killing of several different types of bacteria, suchasthesolutionpHandionicstrength,andenhancethepermeabilityofcellmembranes. Shortand which was observed with rapid losses of bacterial cell viability upon treatment, supposed to have mediumchainalcoholsandrelatedderivativesarealsousefulsurfactantsforpreparingemulsions, arisen from membrane-active damage [50]. An example of bacterial cell membrane damage caused andcabnyd eimspullasiyonasn itsi bpraecsteenrtieadl ianc Ftiivgiutrye i3n. theemulsionstate. Table1summarizestheexistingstudies reportingantimicrobialeffectsofemulsions. Al-Adhametal. firstdemonstratedthatemulsionsshow promiseasantibacterialagents,withhighlyeffectivekillingofseveraldifferenttypesofbacteria,which wasobservedwithrapidlossesofbacterialcellviabilityupontreatment,supposedtohavearisenfrom membrane-activedamage[50]. Anexampleofbacterialcellmembranedamagecausedbyemulsions ispresentedinFigure3. Molecules2016,21,305 6of19 Table1.Paststudiesinvolvingantibacterialpropertiesofmonoglycerideemulsions. AntimicrobialLipid Organism Effects Reference E.coli Ethyloleate Ps.aeruginosa ‚BactericidalactivityagainstPs.aeruginosaandS.aureus,andinducedmembranealterationsagainstPs.Aeruginosa. [50] S.aureus C.jejuni C.coli ‚~1mMmonocaprinemulsionscausedagreaterthan6-to7-log10reductioninviablebacterialcountofC.jejuni within1min. Monocaprin C.lari [51] ‚AntimicrobialactivityofmonocaprinemulsionsagainstC.coli,C.lari,Salmonellaspp.andE.coli. Salmonellaspp. wasdemonstrated. E.coli B.subtilis Glycerolmonolaurate ‚IncreasedantibacterialactivityofGMLemulsionsversusfreeGMLagainstB.subtilisandE.coli. [52] E.coli ‚DemonstratedantibacterialeffectofemulsionsagainstB.subtilis,withimprovedactivityinthepresenceof Glycerolmonolaurate B.subtilis [53] sodiumlactatesalt. ‚CompletelossofviabilityofE.coliorS.aureuscellswithin1mincausedbyhighlyconcentratedemulsions,and E.coli Glycerolmonolaurate slowkineticsobservedwith10-timesdilutedemulsions. [54] S.aureus ‚Inducedreleaseofnucleicacidsduetobacterialmembranedamage. B.subtilis Glycerolmonolaurate ‚GMLemulsionsaremorepotentagainstB.subtiliswhereasfreeGMLisstrongeragainstE.coli. [55] E.coli S.maltophilia ‚GreaterantibacterialactivityofGMLemulsionsagainstS.maltophiliaversustheceftazidimeantibiotic,and Glycerolmonolaurate [56] E.coli enhancedactivitywithsodiumbenzoateasahydrotrope. B.subtilis ‚CompletelossofviabilityofE.coli,S.aureusandB.subtiliscellswithin1mincausedbyGMLemulsions. Glycerolmonolaurate E.coli [57] ‚Emulsionsdamagedbacterialcellwalls. S.aureus B.cereus B.subtilis E.faecalis S.aureus ‚EnhancedantimicrobialactivitiesofemulsionsagainstGram-negativestrainsversus1-MAGsandoppositetrend 1-monoacylglycerol(1-MAG)ofcapric M.luteus wasobservedwithGram-positivestains. (C10:0),undecanoic(C11:0),lauric [58] C.freundii ‚Bestantibacterialactivityagainstbothbacterialtypeswasobservedwith1-MAGC12:0emulsions. (C12:0)„myristic(C14:0)acids E.coli ‚10mg/Lconcentrationwasdeterminedtobethelimitformoderatetoxicity(40%–60%cellsurvival). P.aeruginosa S.entérica S.marcescens Molecules2016,21,305 7of19 Molecules 2016, 21, 305 7 of 18 Figure 3. Transmission electron microscopy micrographs of untreated (a) E. coli; (b) S. aureus; and (c) Figure3. Transmissionelectronmicroscopymicrographsofuntreated(a)E.coli;(b)S.aureus;and B. subtilis cells. Corresponding TEM mircrographs of microemulsion-treated (d) E. coli; (e) S. aureus; (c)B.subtiliscells.CorrespondingTEMmircrographsofmicroemulsion-treated(d)E.coli;(e)S.aureus; and (f) B. subtilis cells. Reproduced with permission from Ref. [57]. and(f)B.subtiliscells.ReproducedwithpermissionfromReference[57]. Expanding this research, there has been extensive research focused on exploring monoglycerides Easx psuarnfadcitnagnttsh fiosrr pesreeparacrhin,gt heemruelhsiaosnsb.e Cenonesxidteenrisnigv ethraets meaornchogfloyccuersieddeso anree xnponlo-iroinngic msuornfaocgtalnytcse, rides this choice is not surprising, but it is nonetheless interesting that all research on antibacterial assurfactantsforpreparingemulsions. Consideringthatmonoglyceridesarenon-ionicsurfactants, emulsions has strictly focused on monoglycerides without any reported studies on free fatty acids. thischoiceisnotsurprising,butitisnonethelessinterestingthatallresearchonantibacterialemulsions Thormar et al. demonstrated that, among different tested monoglycerides, monocaprin was the most hasstrictlyfocusedonmonoglycerideswithoutanyreportedstudiesonfreefattyacids. Thormaretal. active in killing C. jejuni, which is the leading cause of food-borne bacterial infections, and highly demonstratedthat,amongdifferenttestedmonoglycerides,monocaprinwasthemostactiveinkilling diluted monocaprin emulsions retained the ability to cause a >6- to 7-log10 reduction in the viable C.jejuni,whichistheleadingcauseoffood-bornebacterialinfections,andhighlydilutedmonocaprin bacterial count within 1 min [51]. However, other research has indicated that the diluted monocaprin emulesmiounlssiroentsa einxhedibitth seiganbifiilciatyntt cohcaanugsees ian >st6ru-ctotu7re-l aongd1 0evreendtuucatliloy nloisnt atlhl eanvtiiambilcerobbaiaclt earcitaivlictyo.u Anst awn ithin 1 minal[te5r1n]a.tiHveo wsoeluvteiro,no twhiethr rgerseeaaterrc hsthabaislitiyn,d giclyacteerdolt hmaotntohleaudrialtue te(GdMmLo) neomcuaplsrioinnse mhauvles ipornosveenx hibit signifisucapnertiochr aanndg easrein thset rmuoctsut rweidaneldy estvuedniteuda. lGlyMlLo setmaulllsainotnism wicerroeb sihaolwacnt itvo ihtya.vAe shiagnhearl taenrtnimatiicvreobsioallu tion withagcrteivaitteyr tshtaanb iflrietye, GgMlyLce argoalimnsot nBo. lsauubtrialitse a(nGdM EL. c)oelim [5u2l,s5i3o,n55s],h aanvde aplrsoo vaepnpesaurpeder tioo rhaanved satrroentgheer most antibacterial effects than the approved antibiotic ceftazidime [56]. GML emulsions can cause complete widelystudied. GMLemulsionswereshowntohavehigherantimicrobialactivitythanfreeGML loss of viability of bacterial cells in 1 min, while 10-fold diluted GML emulsions cause complete loss of againstB.subtilisandE.coli[52,53,55],andalsoappearedtohavestrongerantibacterialeffectsthan viability of bacterial cells within 10 min [54,57]. Acting as solubility enhancers, some salts, e.g., sodium the approved antibiotic ceftazidime [56]. GML emulsions can cause complete loss of viability of lactate and sodium benzoate, were found to enhance the antimicrobial effects of emulsions in optimized bacterial cells in 1 min, while 10-fold diluted GML emulsions cause complete loss of viability of preparations [53,56,57]. Further research indicated that the antimicrobial effects are related to the bacterialcellswithin10min[54,57]. Actingassolubilityenhancers,somesalts,e.g.,sodiumlactate interaction between the emulsions and bacterial membranes [54,57], after which there is a release of and snoudclieuimc acbide nmzaoteartiea,l fwroemre infsoiuden dthet obaecntehriaanl cceelltsh aes aa nretsiumlti ocrf ombeimalberaffneec dtsisroufpetimonu alsnido ndyssifnunocptiotinm. ized preparatiMonosst[ t5e3st,e5d6 ,s5p7e]c.ieFs uofr tbhoethr Grerasmea-prcohsitiinved aicnadt eGdratmh-antegthateivaen btaicmteirciar owbeirael sehfofwecnt stoa bree suresclaeptetidbleto the interatoc tGioMnLb eemtwuleseionntsh. eFue met uall.s fioounnsda tnhdat bthaec tgerroiwalthm oefm Gbrarman-peoss[i5ti4v,e5 7B]., saufbtteilrisw whaisc ihnhthibeirteedi sbya GreMleLa seof nucleeimcauclisdiomnsa mteorriae lsftrroonmgliyn sthidane tfhreee bGaMctLer, iwalhcileel ltshea sgarorwesthu lotfo Gfrmamem-nbergaantieved Eis.r cuopli twioans ainnhdibdityesdf ubny ction. GML emulsions and free GML to similar extents [55]. Petra et al. systematically evaluated the effects Most tested species of both Gram-positive and Gram-negative bacteria were shown to be of monoglyceride emulsions versus free monoglycerides on a panel of Gram- positive and Gram- susceptibletoGMLemulsions.Fuetal.foundthatthegrowthofGram-positiveB.subtiliswasinhibited negative bacteria and determined that Gram-negative strains were more strongly inhibited by by GML emulsions more strongly than free GML, while the growth of Gram-negative E. coli was monoglyceride emulsions over free monoglycerides, while the opposite trend was observed with inhibitedbyGMLemulsionsandfreeGMLtosimilarextents[55]. Petraetal. systematicallyevaluated Gram-positive bacteria [44]. They also tested different monoglyceride emulsions and found that, theeffectsofmonoglycerideemulsionsversusfreemonoglyceridesonapanelofGram-positiveand Gram-negativebacteriaanddeterminedthatGram-negativestrainsweremorestronglyinhibitedby monoglyceride emulsions over free monoglycerides, while the opposite trend was observed with Gram-positive bacteria [44]. They also tested different monoglyceride emulsions and found that, Molecules2016,21,305 8of19 amongthedifferentmonoglycerides,GMLemulsionshadthestrongestantibacterialactivityagainst bothbacterialtypes. Despitethepromisingantibacterialactivity,emulsionscanalsoexhibittoxicity tohumancells, andithasbeenreportedthat10mg/LofGMLemulsionskill40%–60%oftreated human cells [58]. For this reason, emulsions appear to be best suited to applications such as food preservativesandhighlightthechallengesofdevelopingtherapeuticallyviableformulationsforfatty acidsandmonoglycerides. 3.2. Liposomes Theoriginalmotivationbehindliposomaldrugdelivery(e.g.,liposomaldoxorubicin[59])was greatertargetingspecificityandreducedtoxicityoftherapeuticagents. Successfulliposomedelivery systemshavebeenreportedfortopicalandsystemicadministrationroutes. Inmanycases,liposomes havebeendevelopedasrigidobjectstotargetinfectionsofthemononuclearphagocytesystemand requirephagocyticuptake. However,rigidliposomeswithzwitterioniccharacterhavepoorefficacy againstextracellularbacteria. Toaddressthischallenge,fusogenicliposomepreparationswithfluid lipidbilayersandnegativemembranesurfacechargehavebeendeveloped[60]. Fusogenicliposomes thatencapsulatetraditionalantibioticsexhibitstrongantibacterialactivity,evenwithonlysub-MIC (minimum inhibitory concentration) concentrations of encapsulated antibiotic [61]. The fusogenic liposomeshavebeenshowntofusewithbacterialcellmembranes[62],offeringapathwaytorescue theantibacterialpropertiesofantibioticsagainstbacterialstrainsthathavebecomeresistanttothefree formofthesaidantibioticdueto,e.g.,decreasedmembranepermeabilityorhighlyfunctionalbacterial cellmembranetransporters[63]. Historically,Gram-positivebacteriahavebeenmoresusceptibleto antibiotics,ascomparedtoGram-negativebacteria,whichpossessanadditionaloutermembrane. Asa deliveryvehicle,fusogenicliposomeshaveacompetitiveadvantagebecausetheynotonlysupport targeteddelivery,butalsoenablehighuptakeofantibacterialagentbybacteria. Importantly, liposomal delivery vehicles can significantly reduce host cell toxicity and other deleterious side effects of free fatty acids. As presented in this section, there is strong evidence supportingthedevelopmentofliposomalfreefattyacidformulationstoreducebacterialloads,which hasbeenreportedininvitroandinvivostudies,includingbothtopicalandsystemicadministration routes. Smallliposomesloadedwithfattyacidsencapsulatedintheliposomalbilayercanfusewith bacterialcellmembranes,leadingtoreleaseofhighlocalconcentrationsoffattyacidsintothebacterial cellmembrane,whichresultsingrossmorphologicalchangesandenhancedmembranepermeability thatcausesbacterialcelldeath[64]. Table2presentsasummaryofexistingstudieswhichhaveutilized liposomalfreefattyacidstotreatbacterialinfections. Yangetal. firstdemonstratedthatlauricacid-loadedliposomes(LipoLA)cansuccessfullytarget withafusionmechanisminvolvingthebacterialcellmembraneandcompletelykillpreviouslyresistant strainsofP.acnesat51µg/mLloadedLAconcentration[49]. Bycontrast,theMICoffreeLAisaround 80µg/mL.Inaddition,theantibacterialactivityofLipoLAwasdependentontheloadedamountof LAperliposomeintheformulationwithoptimalactivityachievedat51%molefraction[49].Tofurther explorethetherapeuticefficacyofLipoLA,Pornpattananangkuletal. evaluatedboththeinvitroand invivo antibacterial activities. Invitro, the morphological changes caused by the fusion of LipoLA with bacterial cell membranes and, invivo, the complete killing against P. acnes, achieved through intradermalinjectionandtopicaladministrationat8mg/mLand2mg/mLofLipoLA,respectively, confirmed the potency of LipoLA. Additional toxicity tests of LipoLA on mouse skin showed no irritation,whichsupportsitstherapeuticpotentialagainstP.acnesinfection[65]. Meanwhile,therehas alsobeenincreasingattentiontoexploringtheantibacterialactivityoflinolenicacid-loadedliposomes (LipoLLA)againstH.pyloriinfection,whichisrelatedtoarangeofgastrointestinaldiseasesincluding gastriccancer. Obonyoetal. identifiedthatLipoLLAhaspotentantibacterialactivityagainstH.pylori inbothspiralandcoccoidforms,includingadiverserangeofantibiotic-resistantstrains. Aspresented inFigure4,distortedmorphologiesofH.pyloriareobservedwithTEMaftertreatmentwithLipoLLA, andthereisalsoasharpdecreaseintheminimumbactericidalconcentration(MBC)valuesforLipoLLA versusfreeLLA. Molecules2016,21,305 9of19 Table2.Paststudiesinvolvingantibacterialpropertiesofliposomalfattyacids. AntimicrobialLipid Organism StudyDesign Effects Reference Linolenicacid, ‚DemonstratedefficacyofLipoLLAwithMBCvalueof200µg/mL. Stearicacid, H.pylori InVitro [65] ‚SignificanteffectofLipoLLAonincreasingoutermembranepermeabilityofH.pylori. Oleicacid ‚Effectiveinkillingbothspiralandcoccoidformsofthebacteriabasedonmembranedisruption. Linolenicacid H.pylori InVitro [66] ‚LipoLLAhashigherbarriertodevelopmentofdrug-resistantstrainsthanfreeLLA. ‚MBCvalueofLipoLAat51µg/mLagainstP.acnes. Lauricacid P.acnes InVitro [50] ‚EstablishedimportanceofcriticalmolarfractionoffreefattyacidsinLipoFAs. ‚MBCvaluesforLipoLLAandLLAof65µg/mLand80µg/mL,respectively. Linolenicacid H.pylori InVivo [67] ‚SignificantefficacyofLipoLLAinvivowithexcellentbiocompatibility. ‚Effectivetherapeuticefficacyof2mg/mLLipoLAintopicalformulation. Lauricacid P.acnes InVivo [68] ‚NoirritationofnormalmouseskinbyLipoLLA. S.aureus ‚12-foldincreaseininvitroefficacyofOAinliposomalformulationversusfreeOA. Oleicacid InVivo [69] (MRSA) ‚HighinvivoefficacyofLipoOAintreatmentofMRSAskininfections. Molecules2016,21,305 10of19 Molecules 2016, 21, 305 10 of 18 Figure 4. (a) Fusion of fatty acid-loaded liposomes with bacterial cell membranes; (b) liposomal Figure4.(a)Fusionoffattyacid-loadedliposomeswithbacterialcellmembranes;(b)liposomaldelivery delivery to H. pylori-infected stomach lining; TEM micrographs of (c) control and (d) LipoLLA-treated toH.pylori-infectedstomachlining;TEMmicrographsof(c)controland(d)LipoLLA-treatedH.pylori H. pylori bacteria; (e) bacterial load of H. pylori in mouse stomach after treatment with different bacteria;(e)bacterialloadofH.pyloriinmousestomachaftertreatmentwithdifferenttherapeutic therapeutic agents. * p < 0.05, ** p < 0.001. Reproduced with permission from Refs. [64,66]. agents.*p<0.05,**p<0.001.ReproducedwithpermissionfromRefs.[64,66]. Importantly, LipoLLA has a higher barrier for inducing the mutation of drug-resistant strains even Iamftepro trrteaantmtlye,nLt iwpiothL LeAquhivaasleanht iLgLhAer cboanrcreinetrrafotironins dfourc i1n0g dtahyes,m wuhtialeti oHn. opyfldorriu egv-ernetsuisatlalyn tacsqtruaiirneds even resistance mutations to free LLA after only 3 days of treatment [68]. Thamphiwatana et al. also aftertreatmentwithequivalentLLAconcentrationsfor10days,whileH.pylorieventuallyacquired explored the therapeutic efficacy of LipoLLA against H. pylori infections in an in vivo mouse model. resistance mutations to free LLA after only 3 days of treatment [68]. Thamphiwatana et al. also It was demonstrated that LipoLLA has superior antibacterial activity against H. pylori over free LLA exploredthetherapeuticefficacyofLipoLLAagainstH.pyloriinfectionsinaninvivomousemodel. and conventional triple-therapy antibiotics based on measurements of bacterial burden in the mouse ItwasdemonstratedthatLipoLLAhassuperiorantibacterialactivityagainstH.pylorioverfreeLLA stomach after treatment [66]. Further, histopathological analysis of LipoLLA distribution in the andconventionaltriple-therapyantibioticsbasedonmeasurementsofbacterialburdeninthemouse mouse stomach showed that LipoLLA was able to penetrate the mucus layer of the mouse stomach stomaacnhd areftmeraitnreeda timn tehnet l[a6y6e]r. fForu artt hleears,th 2i4s tho. pLaipthooLlLoAg iaclasol arnedaulycseids loevfeLlisp oof LpLroAindfliasmtrmibauttoiroyn ciyntotkhienems ouse stomaarcihsinsgh ofrwomed Ht.h paytloLriip ionfLeLctAionw ians thabe lsetotmoapcehn leatyreart ewtihtheoumt uircruitsatliaoyn eorr ocfauthsiengm toouxisceitys taogmaiancsht and rematienseteddi nmothuesel asytoemrafcohr caetlllse.a Isnt o2r4dher. tLoi pacohLieLvAe aa lgsroearteedr umceecdhalenvisetilcs uonfdperrostiannfldaimngm oaf ttohrey fucsyitoonk ines arisinpgrofrcoesms, HJu.npgy loetr iailn. fpeecrtfioornminedt hdeetsatiolemda cchhalraayceterrwizaitthioonu tstiurrdiiteast ipornoobirncga uthsein igntteorxaicctiitoyn abgeatiwnesetnte sted LipoLLA and related analogues against H. pylori through in vitro experiments [64]. The antibacterial mousestomachcells. Inordertoachieveagreatermechanisticunderstandingofthefusionprocess, activity of liposomal formulations of three different fatty acids in the C18 series, liposomal stearic Jung et al. performed detailed characterization studies probing the interaction between LipoLLA acid (LSA), liposomal oleic acid (LOA) and LLA, were tested, and it was concluded that LipoLLA andrelatedanaloguesagainstH.pylorithroughinvitroexperiments[64]. Theantibacterialactivityof had the most potent anti-H. pylori activity, with complete killing within 5 min. Moreover, further liposomalformulationsofthreedifferentfattyacidsintheC18series,liposomalstearicacid(LSA), investigation showed that both LipoLLA and oleic acid-loaded liposome (LipoOA) increased the liposopmermaleoableiliictya ocfi dth(eL HO. Apy)loarni douLteLr Am,ewmebrreantee.s Itnetder,easntidngiltyw, thaes pcoernmceluabdielidty tohfa tthLe ipplaosLmLaA mheamdbrtahnee most potenotf acenltlis- Htre.apteydlo rwiiathc tLivipitoyL,LwAi tshhocwoemdp al emteuckhi lglirnegatewr iitnhcirnea5sem thiann. tMhoosree torevaetre,df uwritthh eLripinovOeAs,t iagsa tion showveidsuathlizaetdb boyt htraLnispmoisLsLioAn ealencdtroonl emicicraocsicdop-lyo (aTdEeMd) lmipicorsoogmrapeh(sL oifp Ho.O pyAlo)ri ibnaccrteeraisae (dcf. tFhigeupree 4r)m [6e4a].b ility of the H. pylori outer membrane. Interestingly, the permeability of the plasma membrane of cells treatedwithLipoLLAshowedamuchgreaterincreasethanthosetreatedwithLipoOA,asvisualized by transmission electron microscopy (TEM) micrographs of H. pylori bacteria (cf. Figure 4) [64].

Description:
Antimicrobial lipids have demonstrated effectiveness against various .. H. pylori. In Vitro. ‚ Effective in killing both spiral and coccoid forms of the bacteria . containing a topical microbicide for preventing sexually transmitted viruses,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.