ebook img

Nanotechnology for Sustainable Energy PDF

318 Pages·2014·23.842 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nanotechnology for Sustainable Energy

Nanotechnology for Sustainable 1 0 g w0 bs.acs.or3-1140.f Energy u1 p0 p://k-2 3 | htt021/b 11 ugust 9, 203 | doi: 10. A1 n 20 8.93 oust 8, 7g 18.Au 7.1b): 1e 2W ded by Date ( wnloaation Doblic u P In Nanotechnology for Sustainable Energy; Hu, Y., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2013. 1 0 g w0 bs.acs.or3-1140.f u1 p0 p://k-2 3 | htt021/b 11 ugust 9, 203 | doi: 10. A1 n 20 8.93 oust 8, 7g 18.Au 7.1b): 1e 2W ded by Date ( wnloaation Doblic u P In Nanotechnology for Sustainable Energy; Hu, Y., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2013. 1140 ACS SYMPOSIUM SERIES Nanotechnology for Sustainable Energy Yun Hang Hu, Editor 1 Michigan Technology University 0 g w0 Houghton, Michigan, United States bs.acs.or3-1140.f Uwe Burghaus, Editor u1 p0 p://k-2 North Dakota State University 3 | htt021/b Fargo, North Dakota, United States 11 ugust 9, 203 | doi: 10. SThheizUhnaivnegrsiQtyiaoof ,AEdedlaitioder n A201 Adelaide, South Australia, Australia 8.93 oust 8, 7g 18.Au 7.1b): 1e 2W ded by Date ( wnloaation Sponsored by the Doblic ACS Division of Energy and Fuels u P AmericanChemicalSociety,Washington,DC DistributedinprintbyOxfordUniversityPress In Nanotechnology for Sustainable Energy; Hu, Y., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2013. LibraryofCongressCataloging-in-PublicationData 1 Nanotechnologyforsustainableenergy/YunHangHu,UweBurghaus,ShizhangQiao, 0 g w0 editors;sponsoredbytheACSDivisionofEnergyandFuels. bs.acs.or3-1140.f IISncBpluNadg9ees7s8bc-im0b-l.8io-4-g1r(2aA-p2Ch8iS1ca3sl-y9rme(fpaeolrkesainulcimnesesapenaridpeesirn);d1e11x.4.0E)lectricbatteries--Congresses.2. u1 13 | http://p1021/bk-20 NsAoTamuKnreoc2rtei9ecs4c-a-h1nCn.NCoo3nlho6gegmr2ye0is-c-s1Cae3lso.SnogI.creiHestusye,.sYD.u3inv.iHsEiaonnnegrog.fyIIEs.tnBoeruragrggyeh-aa-nuCdso,FnUug.ere(lsUs.swese.)4I.II.RQeniaeow,aSbhliezehnaenrgg.yIV. ugust 9, 203 | doi: 10. 621.042--dc23 2013027669 A1 n 20 8.93 oust 8, ThepaperusedinthispublicationmeetstheminimumrequirementsofAmericanNational 7g 18.Au Standard for Information Sciences—Permanence of Paper for Printed Library Materials, 7.1b): ANSIZ39.48n1984. 1e 2W ded by Date ( CDoisptyrirbiguhtetd©in2p0r1i3ntAbmyeOrixcfaonrdCUhenmiviecraslitSyoPcireetsys Downloablication AofllthReiUgh.Sts.RCeospeyrrviegdh.tRAecptriosgarllaopwhiecdcfoopryinintegrnbaelyuosnedotnhlayt,pperromviidtteeddtbhyatSaepcteiro-ncsha1p0t7erofre1e0o8f u P $40.25plus$0.75perpageispaidtotheCopyrightClearanceCenter,Inc.,222Rosewood Drive,Danvers,MA01923,USA.Republicationorreproductionforsaleofpagesinthis bookispermittedonlyunderlicensefromACS.Directtheseandotherpermissionrequests toACSCopyrightOffice,PublicationsDivision,115516thStreet,N.W.,Washington,DC 20036. Thecitationoftradenamesand/ornamesofmanufacturersinthispublicationisnottobe construedasanendorsementorasapprovalbyACSofthecommercialproductsorservices referenced herein; nor should the mere reference herein to any drawing, specification, chemicalprocess, orotherdataberegardedasalicenseorasaconveyanceofanyright or permission to the holder, reader, or any other person or corporation, to manufacture, reproduce,use,orsellanypatentedinventionorcopyrightedworkthatmayinanywaybe relatedthereto. Registerednames,trademarks,etc.,usedinthispublication,evenwithout specificindicationthereof,arenottobeconsideredunprotectedbylaw. PRINTEDINTHEUNITEDSTATESOFAMERICA In Nanotechnology for Sustainable Energy; Hu, Y., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2013. Foreword The ACS Symposium Series was first published in 1974 to provide a mechanism for publishing symposia quickly in book form. The purpose of the series is to publish timely, comprehensive books developed from the ACS sponsoredsymposiabasedoncurrentscientificresearch. Occasionally,booksare 1 developed from symposia sponsored by other organizations when the topic is of 0 g w0 keeninteresttothechemistryaudience. ubs.acs.or13-1140.f forapBperfoopreriaatgereaenidncgotmoppruebhleisnhsiavebocookv,etrhaegeparonpdofsoerdintatebrleesottfoctohneteanutdsieisncreev.iSeowmede p0 p://k-2 papersmaybeexcludedtobetterfocusthebook;othersmaybeaddedtoprovide 13 | htt1021/b caodmdepdr.eDhernasftisveonfecshsa.ptWersheanreappeperro-prerviaiteew,eodvperrvioierwtoofirnainltarcocdeupcttaonrcyecohrarpetjeercstioarne, ugust 9, 203 | doi: 10. andmAasnauscrurilpet,soanrelyproerpigarinedalinrecsaemarecrha-rpeaapdeyrsfoarnmdato.riginal review papers are A1 n 20 included in the volumes. Verbatim reproductions of previous published papers 8.93 oust 8, arenotaccepted. 7g 18.Au 7.1b): 21We ACSBooksDepartment ded by Date ( wnloaation Doblic u P In Nanotechnology for Sustainable Energy; Hu, Y., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2013. Preface Increased energy prices and the growing attention on global warming are motivating the creation of economically viable alternatives to fossil fuels. Nanotechnologieshavebeenrecognizedasoneeffectiveapproachtosolveenergy problems. Therefore, to promote the improvement of research and to foster 1 professionalcollaborationamongresearchersinenergy-relatednanotechnologies, 0 bs.acs.org 3-1140.pr0 wwEcheoicnohormgtoayon”kizaepsdlaacaepaMsrytamorcfphoths2ei5u2–m4239or,dn2A0“1mN2earinnicoaStneacnChDnhoeiemlogigocy,aClfSaolorifcoiaerntySiauN,sUatatSiionAna.ballFeoMrEteyne-tefiorngugyr, pu01 contributors from 12 countries presented their research works from industrial, p://k-2 university, and national laboratories in nanotechnology areas related to energy 3 | htt021/b and fuel technologies. This ACS Symposium Series book was developed from 11 thissymposium. August 9, 20013 | doi: 10. uantidlizTraehtsiioesanr,bcoohfofpkearippnergressneeinnwtsnraeansouvtletescryhwnhouilscoehgfuiaelrseafsnoudrreernteoeardgbayeblocefonicnvotelelrresecisottinot,nosrtooefsraegarerecv,hieaewnrsds, 8.78.93 on August 8, 2 s(fCotuchduaespnetstesr,oan5n),dthedenyfgeo-ilnsleoenewsrsiintiigznetdtohpesiocfilsae:rldLcoeifllbsnaat(tnCeorhiteeascpht(enCrohl6oa)gp,iteepsrhsaon1tod–c4ea)nt,aelsryugspyie.srcT(aChpheaacbpitotoeorrkss 217.11Web): 7li–th9o),grfaupehlyce(Cllsha(pCtehrap1t2e)r.1A0l)l,1e2lecchtraopcteartaslwyseirse(rCehcraupitteerd1f1ro),manodralelpercetsreonntabtieoanms by e ( at the symposium. All contributed manuscripts were sent to referees, and only d at aden D those that passed through the peer review process became the chapters in this Downloblicatio bookW. e thank all the authors of the chapters for their contributions to this ACS Pu book as well as to the ACS symposium. We also would like to express our appreciation to the peer reviewers for their efforts. We gratefully acknowledge the ACS Division of Energy and Fuels and the ACS Books Department for the opportunities to organize the symposium and to publish this book, respectively. Finally, we wish to thank Arlene Furman, Tim Marney, and Bob Hauserman of the ACS Books Department for their great effort and support through the entire peer-reviewandproductionprocessofthisbook. YunHangHu DepartmentofMaterialsScienceandEngineering MichiganTechnologicalUniversity Houghton,Michigan49931-1295,USA ix In Nanotechnology for Sustainable Energy; Hu, Y., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2013. UweBurghaus DepartmentofChemistryandBiochemistry NorthDakotaStateUniversity Fargo,NorthDakota58108-6050,USA ShizhangQiao SchoolofChemicalEngineering TheUniversityofAdelaide Adelaide,SA5005,Australia 1 0 bs.acs.org 3-1140.pr0 u1 p0 p://k-2 3 | htt021/b 11 8.78.93 on August 9, 20August 8, 2013 | doi: 10. 217.11Web): by e ( d at eD adn oo wnlcati Dobli u P x In Nanotechnology for Sustainable Energy; Hu, Y., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2013. Chapter 1 Nanoscale Tin Heterostructures for Improved Energy Storage in Lithium Batteries GregorioOrtiz,RicardoAlcántara,PedroLavela,andJoséL.Tirado* 1 0 LaboratoriodeQuímicaInorgánica,UniversidaddeCórdoba,Edificio g h0 bs.acs.or3-1140.c MarieCEu-mriae,ilC: [email protected].,:1+43047915C72ó1rd86o3b7a,Spain u1 p0 p://k-2 3 | htt021/b Heterostructure composites including nanoscale tin species 11 ugust 9, 203 | doi: 10. tnnoaagnneoottthuuebbreess,wcfiautnhllebrepenoeleysnmvainesrdasg,gerdacpaahsrebnoeenf)ficoinreansnteolfmm-aaasttseeerriimaallbssletdo(ctaiatrvabonoiinda A1 n 20 the undesirable lack of cycling stability commonly found in 17.118.78.93 oeb): August 8, etaihnlgeetgecrsgtetrrrogietaaysctsitoeoisvfneitnhotefitnhetehlfeeolcirttnhrLaoinuid-omieopdnainurcttrieeicnrllmlgess.ee,tlaTemliclnaitcrionhccteoahtmieenrmpionosigtcuranutlhdccetsuyarmcenlsiednccgphurawsenhvhiiecoinalnetl 2W d by ate ( aimllopwroivnignga tbheetteerleucstreicoafl tchoenirtaccatpbaceittwy.eenPatrhtiecuplaarrtliyc,leths,eaunsde eD Downloadblication oaeclfehcTiterivoOec2hlaenrmagneicoaatlurebfaealbclraaicpyaaetcrisiotniewsoaasfnadpdroovpvaenenncsedpaanhrteeiwtceursloatsrrtalrytuecgutyuserfefousrltfhotoer u P theelectrodesoffuturelithiumbatteries. 1. Introduction Around ten years ago it was realized that nanomaterials would contribute significantly to the replacement of graphitic materials from the anode of future Li-ionbatteries. Ascomparedwithsyntheticgraphite,themilestonesofthenew materialsdevelopedsofarincludehigheravailableenergydensity,ratecapability, coulombic efficiency and cycle life. The combined achievement of all of these milestonesisadifficulttask. Afruitfulapproachistheuseofcompositesinwhich thesynergisticactionoftwoormorecomponentsatthenanoscalemaymitigate the particular drawbacks of each one individually. Not all the components need ©2013AmericanChemicalSociety In Nanotechnology for Sustainable Energy; Hu, Y., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2013. tobeelectroactive,butmayincludeelectronicorionicconductors,ormayforma matrixtomaintainelectricalconnectivityandmechanicalstability. On the other hand, the use of alloys or intermetallic compounds allows for greater storage density of lithium and therefore higher energy storage than graphiteisachieved(1). Thedifficultyinusingtheelectrodesbasedonelements whichformreversiblyalloyswithlithium,suchastin,siliconorantimony,liesin the abrupt volume change experienced during the electrochemical reaction with lithium. These volume changes in the crystals generate stresses that lead to a significantfragmentationafterseveralcharge-dischargecycles,finallyleadingto steep losses of battery capacity. The volume changes can be neutralized using electrodes“nano-structured”containingmetallicelementsthatdonotformalloys with lithium (inactive), such as cobalt and iron. These transition elements can cushion the stresses in the intermetallic compounds and prevent aggregation of 1 0 the nanoparticles, maintaining the mechanical integrity of the electrode during g h0 bs.acs.or3-1140.c eelleeccttArroicmcaholencmgonitchtaaelcdtcibfyfecetlwrienenget.naltlhoFeyuirpntahgretericlmelemosre,ena,tlslto,hwteininphgraesaselbeneactdeteerdoufthsceeadorefbvoitenslocipammppaercnoittvyse.isntthhee u1 p0 p://k-2 fieldoflithium-ionbatteriesformanyyears. Thus,theuseoftin-basedelectrodes 3 | htt021/b hmaosregipvreonministienrgesotipntgiorneisnulttesrmansdoaftchoemormeteirccailaglrparvoidmuecttr.icEcvaepnatchitoyu(g3h5s7i6licmoAnhisg-a1 11 ugust 9, 203 | doi: 10. tpfaorkorilLnogin1g5pSeliad4ccveysa.ctl9ian9gs3igmisnAicfiohcmga-nm1tflooynrlloLywiw2e2Serlnrla5b)teea.lnoTdwhnetaheteuxrptaheleraoimbrueetnnidctaaallnccveaa,pluiatecs,idtdyeuvoeefltsooipltimhcoeennftaocinst A1 n 20 ofhavingthehighestchangeinvolumeduringtheelectrochemicalreactionwith 217.118.78.93 oWeb): August 8, blmoieftAhlpoihuuwcmrmeti(-nsΔ3iaflVionc/rdoVLnsi=i1li5is3cS1olio04nwv%isn.aftn7oed3rrm1Si0tsisamonvfAdothlh2uec6mom0ree-%3ttrificocfaorlcrLcaSiap2npa2)Sac.cinAtiy5t)yl.sios(A6tcn6hlt0eoimsemeloeAntcohytrgoft-han1lailfctsorcosiofLgnintd3iinSufibcc()ta8i.nv3ti3ltyy0 d by ate ( whenAthfierstphexoatomgpralephoyf tchoemipnadnuystrFiauljiiPnhteorteostCoefltteicnhfoCrol.ith(iJuampabna)ttaenrnieosuanrcoeudseidn eD Downloadblication ms1o9el9imd7baweragsolafbstsahsemedgartoeorunipatlionffogorlxatihsdsee-,faonwromidtihengothfeelreesmctoheiancrthgsieosamubclehetralyisthSBinu(MImIIx-)iO,oPyn,(Vcwe)hllaesnred(2AM).l(ITisIhI)ae. u P The amorphous solid contains Sn(II) as active center for lithium insertion and network-MO-built by the other elements of glass, which expands the network, allowingrapiddiffusionoflithium. Electrodesformedbythesematerialsshowed capacitiesgreaterthan600mAhg-1forthereversibleinsertionoflithium. These values are considerably larger than the theoretical capacity of graphite (372 mAhg-1). The volumetric capacity - 2200 mAhcm-3 - is twice the value in the carbonaceousmaterialsofhighestyield(ca. 1200mAhcm-3). Later the electrochemical behavior of various tin oxides that can act as electrodes for lithium insertion was reviewed (3, 4). These include crystalline SnO,SnO ,Li SnO ,SnSiO andSn BPO glasses. Theresultingcellsshoweda 2 2 3 3 2 6 dischargecapacityofabout1000mAhg-1,whereasthereversiblecapacityranged from 200 to 700 mAhg-1. These results showed a first process that produces lithiumoxideandtinmetalirreversibly,followedbyformationofalloyLi/Snfor lowervoltages,withalimitofcomposition4.4Li/Sn. 2 In Nanotechnology for Sustainable Energy; Hu, Y., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2013.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.