TRPLSC 1423 No. of Pages 14 Review Nanotechnology: A New Opportunity in Plant Sciences Peng Wang,1,2,* Enzo Lombi,3 Fang-Jie Zhao,1 and Peter M. Kopittke2 The agronomic application of nanotechnology in plants (phytonanotechnol- Trends ogy) has the potential to alter conventional plant production systems, allow- Thefieldofnanotechnologyhasgreat ing for the controlled release of agrochemicals (e.g., fertilizers, pesticides, potential within plant sciences and and herbicides) and target-specific delivery of biomolecules (e.g., nucleo- plantproductionsystems. tides, proteins, and activators). An improved understanding of the interac- The agronomic application of nano- tions between nanoparticles (NPs) and plant responses, including their technologyhasthusfarreceivedcom- uptake,localization,andactivity,couldrevolutionizecropproductionthrough paratively little interest relative to the applicationwithinhumansystems. increased disease resistance, nutrient utilization, and crop yield. Herewith, we review potential applications of phytonanotechnology and the key pro- Wereviewthepotentialapplicationsand cesses involved in the delivery of NPs to plants. To ensure both the safe use futureopportunitiesofnanotechnology inplant sciences, thereby assisting in and social acceptance of phytonanotechnology, the adverse effects, includ- bridging the divide between human ing the risks associated with the transfer of NPs through the food chain, are andagriculturalnanotechnology. discussed. The application of nanotechnology in plant sciences will benefit from the Nanotechnology and Plants development of improved analytical Engineered NPs (ENPs, see Glossary) have unique physicochemical properties (e.g., small techniquesthatenabletheinsituana- lysisofNPsinplantawithalowdetec- surface area, atypical surface structure, enhanced reactivity, etc.) that differ distinctively from tionlimitandhighlateralresolution. thoseoftheirmolecularandbulkcounterparts.Thesepropertiestypicallyresultfromthesmall size, chemical composition, surface structure, stability, shape, and agglomeration of the Regardlessofthebenefitsofnanotech- nanoparticles(NPs)[1].Giventheseuniqueproperties,ENPsareusedincreasinglyinarange nologyforplantsciences,theprinciple of‘safety-by-design’mustbeheeded ofconsumerandcommercialproducts,includingsemiconductors,microelectronics,catalysts, toaddresscommunityconcernsabout everyday domestic products (e.g., cosmetics andsunscreens), andfordrugdelivery. the potential adverse effects of novel engineered nanoparticles (ENPs) on Numerous applications in nanomedicine and nanopharmacology have developed ENPs ecologicalsystems. as smart delivery systems. Specifically, ENPs can be loaded with a drug or other active substance (Figure 1A,B) for delivery to target-specific sites within a living organism. Con- siderable research efforts have been made to investigate the potential applications of ENPs within human systems, including for targeted drug delivery, cancer therapy, and 1StateKeyLaboratoryofCrop treatment for loss-of-function genetic diseases [2]. Although the same principles can be GeneticsandGermplasm applied to plant systems, the application of nanotechnology in plant sciences and Enhancement,CollegeofResources plantproductionsystems(phytonanotechnology)hasreceivedcomparativelylittleinterest andEnvironmentalSciences,Nanjing AgriculturalUniversity,Nanjing, thus far. 210095,China 2TheUniversityofQueensland,School Phytonanotechnologycouldassistthedevelopmentof‘smart’crops.Nanoscalematerialscan ofAgricultureandFoodSciences,St provide time-controlled, target-specific, programmed, self-regulated, and multifunctional Lucia,QLD4072,Australia 3FutureIndustriesInstitute,University capabilities [3]. For example, ENPs can deliver agrochemicals (e.g., fertilizers, pesticides, ofSouthAustralia,MawsonLakes, andherbicides)inan‘on-demand’manner,eitherfornutritionaldemandorprotectionagainst SA,5095,Australia pestsandpathogens.Thisprovidesanefficient way to avoidrepeated applicationsofcon- ventionalagrochemicalsandreducesadverseeffects onplantsandtheenvironment.Addi- *Correspondence:[email protected] tionally, the NP-mediated targeted delivery of nucleotides, proteins, and other phytoactive (P.Wang). TrendsinPlantScience,MonthYear,Vol.xx,No.yy http://dx.doi.org/10.1016/j.tplants.2016.04.005 1 ©2016ElsevierLtd.Allrightsreserved. TRPLSC 1423 No. of Pages 14 (A) Glossary Nanocarriers Engineered nanopar(cid:2)cle Carbonnanotubes(CNTs): allotropesofcarbonthathavea cylindricalnanostructurewith diametersrangingfrom<1nmto 50nm.Theyarecategorizedaseither Mesoporous silica Carbon Gold Magne(cid:2)c nanopar(cid:2)cle nanotube nanopar(cid:2)cle Quantum dot nanopar(cid:2)cle single-wallednanotubes(SWNTs)or multi-wallednanotubes(MWNTs). EngineeredNPs(ENPs): nanomaterialsthatareintentionally (C) Release ‘on demand’ producedanddesignedwithspecific propertiesrelatedtotheirshape,size, surfaceproperties,andchemistry. MagneticNPs:NPsthatcontain (B) Cargo magneticmaterialsofelementssuch asFe,Ni,Co,andtheirchemical compounds.ThistypeofNPcanbe manipulatedfortargeteddelivery usingmagneticfieldgradients. MesoporoussilicaNPs(MSNs): NPsthatcompriseahoneycomb-like Pes(cid:2)cide/herbicide (D) Target-specific delivery porousstructurewithtunablepore ne sizeandtunableouterparticle wall mbra diameterinthenanometerrange. ell me ThistypeofNPhashundredsof Fer(cid:2)lizer C Cell emptychannelsthatarecapableof encapsulatingorabsorbinglarge amountsofagrochemicalsor bioactivemolecules. Nanoquantitativestructure- activityrelation(nano-QSAR):a DNA modelusedtopredictbiological (E) In vivo labeling and imaging responsesbaseduponthe physicochemicalpropertiesofNPs. Nanofertilizers:fertilizerscontained Protein withinnanostructuredformulations thatcanbedeliveredtotargeted sitestoallowreleaseofactive Quantum dot ingredients.Thisreleasecanbein Fluorescent responsetoenvironmentaltriggersor Ac(cid:2)vator molecule plantdemands. Nanoparticles(NPs):materialsthat haveexternaldimensionsorinternal surfacestructureswithtwoorthree Figure1.SchematicRepresentationoftheApplicationsofNanotechnologyinPlantSciences.(A)Engineering dimensionsbetween1and100nm. nanoparticlesusedasnanocarriersfordeliveryofvariousexogenouscargos(B),includingagrochemicalsandbioactive Nanotechnology:referstothe molecules.(C)Nanocarrier-mediatedreleaseofagrochemicalsinacontrolledmanner.(D)Nanocarrier-mediateddeliveryof science,engineering,andtechnology bioactive molecules into plant cells. (E) Nanocarrier-mediated intracellular fluorescent agents (e.g., quantum dots or ofcontrolling,building,andrestricting fluorescentprotein)deliveryforintracellularlabelingandimaging. materialsanddevicesatthe nanoscale. Phytonanotechnology:the applicationofnanotechnologyinthe molecules has the potential for genetic modification and regulation of plant metabolism. plantsciencesandplantproduction systems. However,despiteallthebenefits,theprincipleofsafety-by-designmustbeheededtoaddress Quantumdots(QDs):tinyparticles communityconcerns(e.g.,useofENPsinconsumerproducts)aboutthepotentialadverse ornanocrystalsofasemiconductor effectsofnovelENPsonecologicalsystems[4]. materialwithdiametersrangingfrom 2to10nm.ThistypeofNPcan produceadistinctivefluorescence Here,wereviewtheapplicationsofphytonanotechnology,anddiscusstheuptake,transloca- thatcanbeusedforsubcellular tion, activity, and risks associated with the use of ENPs in this field. Given that the physi- labelingandimaging. ochemicalpropertiesofENPsarekeyinunderstandingtheirinteractionswithplants,wealso Singleparticleinductivelycoupled briefly review advanced analytical techniques used for their detection, quantification, and plasmamassspectrometry(SP- ICP-MS):atypeoftime-resolved characterization both in vivoandinvitro. 2 TrendsinPlantScience,MonthYear,Vol.xx,No.yy TRPLSC 1423 No. of Pages 14 Applications of Phytonanotechnology ICP-MStechniquethatenables Nanoparticles forthe ControlledandTargeted Release ofAgrochemicals analysesofasingleparticle,particle Nanotechnologyenablestarget-specificdeliveryinacontrolledmanner,whichcan:(i)reduce sizedistribution,particlenumber,and compositionsinboththeexternal applications of plant-protection products; (ii) decrease nutrient losses from fertilizers; and (iii) mediaandbiologicalextracts. increaseyieldsthroughoptimizednutrientmanagement.TheENPscanbedesignedas‘magic Sizeexclusionlimit(SEL):thesize bullets’loadedwithagrochemicalstodelivertospecifictissuestoreleasetheagrochemicalsin ofthelargestparticlethatcanpass controlled manner (Figure 1A–D). It is possible to design this system to allow: (i) controlled throughapore. Synchrotron-basedscanning release‘ondemand’or‘oncommand’;(ii)target-specificdelivery;(iii)reducedphytotoxicity;and transmissionX-raymicroscopy (iv) use of optimized concentrations. For instance, it is possible to design NPs to protect (STXM):atypeofX-raymicroscopy agrochemicalsfromdamagebyexternalagents.MesoporoussilicaNPs(MSNs)aredesigned thatallowsmappingofelementsat highlateralresolutionwithina toloadpesticide(e.g.,avermectin)intotheinnercore;thisprotectsthepesticidefromphoto- specimen. degradation,whilealsoallowingforsustainedrelease[5].Similarly,MSNshavebeenfunction- Synchrotron-basedX-ray alized to provide protection for plants against insects via physioabsorption into the cuticular fluorescencemicroscopy(XFM):a lipidsofinsects,resultingindamagetotheprotectivewaxandsubsequentdeathbydehydration mappingtechniquebaseduponthe detectionofthefluorescenceemitted [6]. NP-based herbicides have been used tocontrol parasitic weedsat lowerdoses, thereby byrelaxingatomsfromanX-ray potentiallyavoidingadverseeffectsonthecrops[7].Furthermore,thereleaseofactiveingre- beam. dients can be preprogramed or trigged by certain conditions within the parasitic weed or changes in externalconditions. TheuseofNP-basedfertilizers(nanofertilizers)hasbeenproposedtoenhancenutrient-use efficiency (Figure 1C). Ideally, nutrients from nanofertilizers should be released in accordance withplantdemands.Thistimelyreleasealsopreventstheprematureconversionofnutrientsto chemical and/or gaseous forms that are unavailable to plants (e.g., volatilization of NH from 3 urea)[8].TheloadingofureaseenzymesorureaseinhibitorsintoMSNsresultsinanabilityto controlthereleaseofnitrogenfromureaviahydrolysis[9].Morerecently,apatiteNPshavebeen usedasanoveltypeofphosphorus(P)fertilizerwiththesustainedlowreleaseofP,asrequired byplants,whichalsodecreasestheriskofwatereutrophication,agoodcompromisebetween agricultural benefitsandenvironmental risks[10]. Nanoparticles as DeliveryVehicles of Bioactive Molecules ENPsofferanewvectorforthedeliveryofbioactivemolecules(includingnucleotides,proteins, andactivators;Figure1D).TheuseofMSNstodeliverDNAanditsactivatorintoisolatedplant cellsandintactleavesoftobaccoisofparticularinterest[11].Ahoneycomb-likeMSNsystem with3-nmporeswasloadedwithagene(i.e.,aplasmidcontainingaGFPgene)anditschemical inducer,withtheendsoftheMSNscappedwithgold(Au)NPs.Onceinsidecells,anuncapping triggerwasusedtocleavethebondsattachingtheAuNPstotheMSN,resultinginthereleaseof the biomolecules, triggering gene expression. Proteins or enzymes can also be delivered by MSNsinplants,enablingatransientpresenceoftheproteinorenzymethatcanbeusefulfor biochemical analysis and genome modifications [12]. This method avoids DNA (transgene) integrationintothegenomeand,thus,thetransferofthemodifiedtraitstofuturegenerations. Further to MSNs [12,13], single- or multi-walled carbon nanotubes (SWNTs or MWNTs) [14,15], AuNPs [16,17], magneticvirus-like NPs (VNPs) [18], carbon-coated magnetic NPs [19,20],quantumdots(QDs)[21],andstarchNPs[22]havebeenwithplantsforthispurpose. Indeed,NP-mediatedgenomeeditinghasbeenusedsuccessfullytodeliverplasmidcontaining aGFPgene[11]andthefunctionalrecombinase[12]intoplanttissues,leadingtosuccessful genome editing. Compared with conventional delivery methodologies, this NP-mediated approachprovidesseveralbenefits.First,itiseasilyoperatedandhighlyefficient.Forexample, theminimumamountofDNArequiredfordetectionofexpressionwas1000timeslowerthan that required for the conventional methods [11]. Second, it enables the transient DNA-free genomeeditingofplantsinacontrolledfashion(includinggenesilencing)andthegenerationof preciselymodified‘nontransgenic’plants,whichdiffersfromconventionalgeneticengineering methods.Third,itisabletoco-delivermorethanonebiomoleculesimultaneouslytothetarget, TrendsinPlantScience,MonthYear,Vol.xx,No.yy 3 TRPLSC 1423 No. of Pages 14 forexampleDNAanditsactivator[11],DNAandproteins[23],anddifferentgenes.Fourth,these ENPs can be easily tailored through surface functionalization with biological recognition mol- ecules for specific, targeted delivery. Finally, unlike conventional methods, ENPs enable local translocation toindividual cells, organs, or tissues. ENPsalsoofferanewapproachforintracellularlabelingandimaging,bothinvitroandinvivo (Figure1E).NP-carriedimagingagents(e.g.,fluoresceinisothiocyanate[14,15,24]andGFP[23]) are capable of circumventing biological barriers (e.g., cell walls and plasma membranes), resulting in the simultaneous and efficient localization of these agents at target sites. Using NP-carried imaging agents, we can also observe the movement of exterior genes along the expressionoftransferredgenesbyintegratingtheseexteriorgenesoncontrastorfluorescent ENPs. Significant progress has been made in biology with the application of fluorescent QD bioconjugates[25,26].Notably,QDscanbeexcitedbyasinglelightsource,providingdistinct advantagesovercurrentfluorescentmarkers(e.g.,organicdyesandfluorescentproteins),the latterhavingbroadabsorptionandemissionprofilesandlowphotobleachingthresholds[25]. Different coating properties have been used for QDs to enable the in vitro imaging of solute uptakethroughfluidphaseendocytosisbysycamore-culturedcells[21]andforinvivoimaging totracetheuptakeandtranslocationofNPsbyintactarabidopsis(Arabidopsisthaliana)[27,28] andthe subsequent transferin the foodchain[28]. Uptake and Translocation of Nanoparticles in Plants Evidence ofUptake andTranslocation ItisimportanttounderstandwhetherintactNPscanbetakenupbyplantsandtransportedto other plant tissues. Only a few studies have reported ‘direct’ uptake, translocation, and localizationofENPsinplants(Table1).ThesestudiesutilizedvariousinsolubleENPs,including MSNs,silicaNPs(SNPs),CNTs,fullerene(C ),QDs,Au-NPs,titaniumdioxideNPs(TiO NPs), 70 2 iron(II,III)oxide(Fe O )NPs,andVNPs.TheseENPsweredeliveredtointactplants,dissected 3 4 plantorgans,orprotoplasts.SolubleENPs,suchassilver(Ag)NPs,copperoxide(CuO)NPs, zincoxide(ZnO)NPs,and,toalesserextent,cerium(IV)oxide(CeO )NPsandytterbium(III)) 2 oxide(YbO )NPs,havealsobeeninvestigated,butinmostcasesitisunclearwhethertheNPs 3 or their dissolutionproducts (withsubsequent reformation ofNPs inplanta)were takenup. Researchers have shown thatmagnetic Fe O NPs are directly takenup andtranslocated in 3 4 pumpkin (Cucurbita maxima) with no toxic effects even at a NP concentration of 0.5g/l [29]. Appling a magneticfieldgradient,the magneticNPs (<50nm) couldbepositioned within the desiredplanttissues[19],therebysuggestingthatmagneticNPscouldbeusedasacapping agent(e.g.,gatekeeper)forporousNPs(e.g.,MSNs)withuncappingbyanexternalmagnetic field at the target. Fullerene C has been reported to be translocated both upwards and 70 downwardsthroughthevascularsystemofrice(Oryzasativa)andcanbetransferredtothenext generationthroughseeds[30].TheuptakeandtranslocationofNPshasalsobeenshownfor MSNs [11–13,17,23] andCNTs[14,15,24]. Entry andBarriers forNanoparticle Uptake andTransport inPlants ENPs can enter planttissues through either the root tissues or theaboveground organsand tissues(e.g.,cuticles,trichomes,stomata,stigma,andhydathodes),includingthroughwounds and root junctions (Figure 2A). For uptake and translocation, ENPs must traverse a series of chemicalandphysiologicalbarriers,whichcontrolthesizeexclusionlimits(SELs,Figure2B). Fortheapoplastictransportpathway,movementisrestrictedbytheSELofcellwalls(5–20nm) [31–33].TheCasparianstrip,withaSELof<1nm[34],providesabarriertomovementintothe vascularsystem.Fromthecellwall,ENPscanbeinternalizedintothecellsthroughendocytosis [21,35].SubsequentsymplastictransportthendependsupontheSELoftheplasmodesmata, typically3–50nmindiameter[32,36],withparticlesuptothissizeabletoenter[33,37].Although 4 TrendsinPlantScience,MonthYear,Vol.xx,No.yy TRPLSC 1423 No. of Pages 14 Table1.StudiesthatDemonstratedtheDirectUptakeofNPsbyPlantsa NP Size Coating Plant Remarks Refs MSNs Sphere Fluorescein Arabidopsis MSNtranslocationthrough [13] 20nm isothiocyanate, thaliana entireleaf aminopropyl triethoxysilane SilicaNPs Sphere Bare A.thaliana Size-dependentuptakeby [64] 14–200nm roots;notoxicityevenat dosesupto1000mgl(cid:1)1 CNTs TubeD(cid:3) Fluorescein Catharanthus ShortCNTspenetrated [15,24] L:(cid:4)4nm(cid:3) isothiocyanate roseus varioussubcellular (cid:4)1mm membranesandtargeted specificcellularsubstructures TubeL: Fluorescein Bright SWCNTstraversedcellwalls [14] <500nm isothiocyanate Yellowcells anddeliveredfluoresceinand DNAintocellorganelles Fullerene Sphere Naturalorganicmatter Oryzasativa C takenupbyplantsand [30] 70 (C ) 1.2nm accumulatedC transferred 70 70 toprogenythroughseeds QDs Sphere Poly(acrylicacid- A.thaliana QDswithdifferentcoatings [28] 18–53nm ethyleneglycol), takenupbyplants,with polyethylenimine,poly amountoftranslocationbeing (maleicanhydride-alt-1- coatingdependent octadecene)-poly (ethyleneglycol) Au-NPs Sphere Thiolatedpoly-(ethylene O.sativa Surfacecharge-dependent [71] 6–10nm glycol),thioalkylated accumulationofAuNPs oligo(ethyleneglycol) detectedinshoots Sphere Citrate Solanum TranslocationofAuNPsfrom [93] 40nm lycopersicum rootsintoshootsdetected, withmajorsizeofintercellular AuNPsbeing40nm Sphere Bare Populus AuNPsobservedin [37] 15–50nm deltoidsx cytoplasmandvarious nigra organellesofrootandleaf cells TiO2NPs Sphere AlizarinredS A.thaliana UltrasmallTiO2easily [39] 2.8nm penetratedcellwallsand accumulatedinspecific subcellularsites Sphere Bare Triticum Size-dependenttranslocation [44] 14–655nm aestivum observed,withonlyNPs <36nmtranslocatedinto leaves Fe3O4NPs Sphere Bare Cucurbita Uptakeandtranslocationof [29] 20nm maxima magneticNPsdetected throughoutwholeplant Sphere Carbon Cucurbita Penetrationandtranslocation [19,20] 5–200nm pepo ofmagneticNPsinwhole livingplants,withamaximum sizeof50nmobservedinside VNPs 18.6nm Carboxyl-terminated Nicotiana VNPspenetratedplant [18] PEGylated benthamiana tissues,withlong-distance phospholipids transferthroughvasculature aUptakewastermed‘direct’ifinsolubleENPsweredirectlydeterminedorvisualizedwithinthecytoplasm,vasculature,or afterlongdistancetranslocation. TrendsinPlantScience,MonthYear,Vol.xx,No.yy 5 TRPLSC 1423 No. of Pages 14 (A) (B) Foliar entry Size exclusion limits of barriers of ENP uptake Cu(cid:2)cle size (nm) Stomata Hydathodes 0.1 1 10 100 1000 Len(cid:2)cels Wounds Cell walls Extracellular spaces of cell walls Xylem Phloem CPelalsl mmoedmebsrmanateas Root entry Casparian strip Root (cid:2)ps Vasculature Lateral roots Pit membranes Root hairs Cu(cid:2)cles Rhizodermis Stomata Ruptures Hydathodes/len(cid:2)cels Cell wall junc(cid:2)on Figure 2. Entry Mode and Size Exclusion Limits of a Seriesof Barriers for theUptake and Transport of NanoparticlesinPlants.Abbreviation:ENP,engineerednanoparticle. ENPshavebeendetectedbothintheapoplastandsymplast,itremainsunclearwhichpathway is moreimportant. AlthoughtheuptakeandtranslocationofENPsdependsupontheSELs,ithasbeenreported thatENPsupto36–50nmhavebeeninternalizedandtranslocated(Table1),thisbeinglarger thantheSELsofcellwalls,plasmodesmata,andtheCasparianstrip(Figure2B).Onepossible explanationisthatSELsappeartobedynamicandinfluencedbycalcium,silicon,proteins,virus, environmentalstresses,aswellasbyENPsthemselves[33,38].Indeed,ENPssuchasAgNPs, TiO NPs,andZnONPs,havebeenreportedtoinducetheformationofnewandlargerporesin 2 cellwalls[39–42]andcuticles[43],andcausestructuralchanges(e.g.,rupturesanddisruption ofmicrofilaments)[44,45],whichinturnfacilitatetheinternalizationoflargerNPs.ENPscanalso enterthevascularsystemattheroottipmeristem,wheretheCasparianstriphasnotyetfully formed, orthe sitesoflateral rootformation, where theCasparian strip is broken[46]. Nanotoxicology in Plants Beneficial andToxicEffects The increasing use of ENPs led to a public debate about their potential adverse effects in ecosystems. Over the past decade, studies have shown contradictory results regarding the effectsofENPsinplants[32,33,47,48](Figure3A).Onecauseoftheseapparentdiscrepancies isthatdifferenttoxicityendpointshavebeenused,rangingfromeasilyscoredparameters(e.g., seedgerminationandseedlinggrowth),tocytotoxicity[e.g.,enzymeactivities,pollendevelop- ment,photosyntheticsystem,reactiveoxygenspecies(ROS),etc.]andgenotoxicity(e.g.,nucleic acidintegrityandexpression).Furthermore,itisapparentthatplantspeciesdifferintheirresponse toENPs.Forexample,whileithasbeenshownthatCNTsfacilitatedgerminationbypenetratingthe seedcoat,whichthenincreasedwateruptakeinseedsoftomato(Solanumlycopersicum)[8]and rice[3],theyhaddeleteriouseffectsonrootelongationintomatoandlettuce(Lactucasativa)[49]. Similarly, TiO NPs havebeen reportedtoenhance photosynthesiscapacity[50]andnitrogen 2 metabolism[51],buttheyalsocausedantioxidantstress[52]. Several methodological problems commonly encountered in plant nanotoxicology studies should also be recognized [53]. First, some studies use unrealistically high concentrations of ENPs (e.g., up to 10g/l). Second, many studies use ENPs in their pristine form rather than 6 TrendsinPlantScience,MonthYear,Vol.xx,No.yy TRPLSC 1423 No. of Pages 14 (A) MSNs CNTs Tio2NPs Au NPs Fe3O4NPs QDs Ag NPs Observa(cid:2)on Posi(cid:2)ve frequency 1–2 Nontoxic 3–10 Nega(cid:2)ve >_10 (B) Toxic mechanisms Mechanism II: Size- or shape- dependent damage and clogging Size or HO shape 2 2 Mechanism I: Dissolu(cid:2)on and release of toxic ions Instability transfEelrectronFe2+ MOeHc(cid:129)hanism III: Redox ENPs cycling and fenton reac(cid:2)on O2 O2(cid:129)- eCaNH-talystO Oxida(cid:2)on BiinntdeirnagcS(cid:2)HonsOOO-H- H O Mechanism IV: Binding Mechanism V: Oxida(cid:2)on and S N interac(cid:2)ons with biomolecules surface cataly(cid:2)c reac(cid:2)ons S (protein or DNA) (C)Nano-QSAR Size Biological Shape ac(cid:2)vity Nano-QSAR Composi(cid:2)on Crystallinity Charge Func(cid:2)onality Design of safe ENPs with improved biological ac(cid:2)vity Figure3.NanotoxicologyinPlants.(A)Observedeffectsofengineerednanoparticles(ENPs)onplants.(B)Several proposedmechanismsbywhichENPscausephytotoxicity.(C)Conceptualframeworkofananoquantitativestructure– activityrelation(nano-QSAR),includingkeyparametersofENPsthathaveimportantimpactsonplant–NPinteractions.For definitionsofabbreviations,pleaseseethemaintext. realisticformsofNPstowhichplantswouldinfactbeexposed.Finally,somestudieshavelargely ignored the requirement for appropriate control treatments (e.g., the use of an ionic Zn2+ treatment tocompareagainst theeffects of ZnONPs). Trophic Transfer ofNanoparticles inthe Food Chain Given that plants are the basis of terrestrial food chains, some studies have investigated the terrestrialtrophictransferofAuNPs[54,55],CeO NPs[56],andlanthanumoxide(La O )NPs 2 2 3 [57].Forexample,inasimulatedterrestrialfoodchain,AuNPsweretransferredfromtobacco TrendsinPlantScience,MonthYear,Vol.xx,No.yy 7 TRPLSC 1423 No. of Pages 14 (Nicotiana tabacum) and tomato (Lycopersicon esulentum) to a primary consumer, tobacco hornworm(Manducasexta)[54].Similarly,thetrophictransferofCeO NPsandLa O NPswas 2 2 3 alsonotedathigher-leveltrophicorganismsfedwithleavesofplantsgrowninNP-amendedsoils [56,57].AlthoughthesestudiesdidnotfindbiomagnificationofENPs,theyclearlydemonstrated thetrophictransferofENPs.Therefore,humanexposuretoENPsviafooddietaryuptakeorfood chaincontamination needs tobeconsideredwhen phytonanotechnologies are developed. Phytotoxicity andInfluencing Factors ENPscancausetoxicityvia:(i)thedissolutionandreleaseoftoxicions,suchasAg+,Zn2+,and Cu2+;(ii)size-orshape-dependentmechanicaldamageandclogging[58];(iii)theproduction ofexcessROSthroughredoxcycling(e.g.,redoxinstabilityoftheCeO NPsurface)andthe 2 Fe2+-mediatedFentonreaction[59,60];(iv)bindinginteractionsthatreleasesurfacefreeenergy, leading to surface reconstruction of biomolecular structures [59,61,62]; and (v) oxidation of biomolecules through catalyticreactions [60](Figure3B). ThenatureoftheinteractionsbetweenplantsandNPsdependsupontheintrinsicpropertiesof ENPs,includingtheirsize,chemicalcomposition,shapeandangleofcurvature,crystalstruc- ture, surface roughness, and hydrophobicity or hydrophilicity [1,61,63]. From a toxicological perspective,particlesizeandsurfaceareaarecritical:adecreaseinparticlesizeincreasesthe surfaceareaandtheproportionoftheatomsormoleculesoftheparticleonthesurfacelayer[1]. These size-dependent features influence the interfacial reactivity and the ability to traverse physiological barriers.SeveralstudieshaveshownthattheuptakeandphytotoxicityofENPs isdependentuponparticlesize,withsmallerparticlesgenerallyaccumulatingtohigherlevelsand being more toxic compared with their bulk particles [44,64,65]. However, it is not yet clear whether this variation in toxicity results from changes in the size-dependent specific surface area.Forinstance,foragivenmass,12.5-nmSiO NPsweremoretoxictoPseudokirchneriella 2 subcapitatathan27.0nmNPs,butoncenormalizedbythesurfacearea,nosignificantdiffer- enceexisted[66].IthasalsobeenreportedthatcrystalstructureandshapeinfluenceNPtoxicity anduptake.AnataseTiO NPsaremorebiologicallyactivethanrutileTiO ;anataseNPsinduce 2 2 cellnecrosisandmembraneleakage,whilerutileNPsinitiateapoptosisthroughtheformationof ROS[67].ZnOnanopyramidsshowedthestrongestinhibitionofatypicalenzymeb-galactosi- dase compared withZnO nanoplatesandspheres [68]. NotonlydotheintrinsicpropertiesofENPsinfluencetheirinteractionswithplants,buttheirextrinsic propertiesarealsoofimportance,includingsurfacecharge(zetapotential)andcoating,stability characteristics (e.g., dissolution), particle aggregation, and valence of the surface layer. For instance, the uptake by, and toxicity of, soluble NPs can result either directly from the NPs themselves or from their dissolution and release of soluble ions. Indeed, some studies have demonstrateddirectnano-specificeffectsforAgNPsandCuONPs[40],whilenonano-specific effectsonplantswereobservedwhenZnONPswereappliedtosoils[69].Ithasbeenshownthat positivelychargedsurfacesaremorelikelytoinduceendocytosisacrosscellmembranes[38,70], whereas particles with negatively charged surfaces are more likely to be translocated through vasculartissues[71,72].Therefore,thebehaviorofENPscanbealteredbymodifyingthesurface coating,suchascoatingMSNswithtriethyleneglycoltofacilitatepenetrationintoplantcells[11]. Moreover,ENPcoatingsareaneffectivemeansofreducingthedissolutionandreleaseoftoxicions [73].TheseextrinsicpropertiesofENPsarealsoinfluencedbythecharacteristicsofthesuspending media[63],includingtheionicstrength,pH,andthepresenceoforganicmoleculesorsurfactants. Theuseofnanomaterialsinagricultureshouldbedictatedbyasafety-by-designprincipleand shouldbeguidedbyplantphysiology,NPfunctionalization,andnanomedicine-inspirednano- deliverysystemstoefficientlysupplynutrients,pesticides,andbioactivemoleculestocropswith minimizing adverse effects onplants andenvironment. 8 TrendsinPlantScience,MonthYear,Vol.xx,No.yy TRPLSC 1423 No. of Pages 14 Nanoquantitative Structure–Activity Relations Probing the various interactions between NP properties and biological systems enables the development of nano quantitative structure-activity relations (nano-QSARs) (Figure 3C). Thismethodhasbeenappliedtopredictthecytotoxicityofvariousmetaloxidesusinginvitro cell-basedassays[74–76]andtheadsorptionofvariousmoleculesontoNPs[77].Aenthalpy descriptor(DH +)[74]orabiologicalsurfaceadsorptionindex(logk)[77]wasproposedasa Me i comprehensivenanodescriptor(whichquantifiesthechemicalstability,surfaceactivity,molec- ularinteractionsoftheNPsatthenanobiologicalinterface,etc.)topredictcytotoxicity.Moreover, some studies used computational chemistry to simulate the translocation of NPs, including nanotubes with differentshapes acrossa phospholipid biolayer [78,79].These studies are of particularimportanceinprovidingguidanceforthedesignoffunctionallydesirableandsafeNPs that are environmentallybenign. Detection and Characterization of Nanoparticles Research into phytonanotechnology will benefit from the development of improved analytical methodologies.Currenttechniques(Table2)canbedividedintothosethat:(i)detectintrinsicor extrinsic NP properties in suspending media or following acid/enzyme-mediated digestion media of plant tissues; and (ii) permit the in situ analysis of NPs in planta. The advantages andlimitations of these fit-for-purpose techniqueshave beenreviewed previously[80–82]. The recent development of transmission electron microscopy (TEM) coupled with electron transparent windows enables imaging, with high lateral resolution (e.g., 4nm), of a single particleinlivingcellsinliquid[83].ThiscouldbeusedtotracethedynamicsofindividualNPsina livingcellorplanttissues.Forexample,totalinternalreflectionfluorescencemicroscopywith highspatialresolutionhasbeenusedtoobservetheendocytosisprocessofLa(III)particlesin plantcells[84](Figure4A).Dynamiclightscattering(DLS)andultraviolet-visiblespectroscopy (UV-Vis) are not able to characterize NPs in a biological media due to interference from nontargetedparticles,buttheyprovideaneasywaytocharacterizeparticlesizedistribution (associated with the agglomeration behavior) [85] and band gap energy (associated with electrontransfer)[76],bothofwhichhavealargeimpactonoxidativestressandsubsequent cytotoxicity. Synchrotron-basedX-rayfluorescencemicroscopy(XFM)providesauniquecapabilityfor examiningtheinsitulocalization(e.g.,2Dand3Ddistribution)ofelementsinbiologicalspeci- mens (reviewed in [80,82,86]). Currently, this technique has limited resolving power (sub- micrometer), which makes analysis of individual NPs challenging. With the development of improvedX-rayoptics,nanometer-scaleresolutionwillsoonbeavailable,enablingthedetection of single NPs. Synchrotron-based scanning transmission X-ray microscopy (STXM) at a lateralresolutionof60nmwasusedtoexaminethe3DdistributionofAgNPsinsideahuman monocyte[87](Figure4B).Synchrotron-basedX-rayabsorptionspectroscopy(XAS)(including m-XANES)canbeusedfortheinsituassessmentofchemicalspeciation(i.e.,transformation) within cells andplanttissues [45,87] (Figure 4C). Nanosecondaryionmassspectrometry(Nano-SIMS)usesanenergeticprimaryionbeamto remove particles from the top few atomic layers of a sample surface to achieve elemental distributionwithalowdetectionlimit(mg/kgrange)andhighlateralresolution(downto50nm).It iscapableofmeasuringmostelementsintheperiodictable.Nano-SIMShasbeenusedforthe analysesofNPsinanimalcellsoraquaticorganisms[88–90]andshouldalsobeapplicableto plantstudies. Although inductively coupled plasma mass spectrometry (ICP-MS) is not laterally resolved, it offersanexceptionaldetectionlimit(ng/lrange)forarangeofelements.Hyphenationoffieldflow TrendsinPlantScience,MonthYear,Vol.xx,No.yy 9 1 0 T R T re P nd L sin S P C la Table2.AnalyticalTechniquesandtheNPParametersthatTheyAreCapableofDetecting nt 1 Scie Technique Concentration Composition/ Sizeor Shape Surface Distribution In In Detection Lateral 42 nc Speciation Distribution Chemistry vitro vivo Limit Resolutiona 3 e , Mo Scanning/transmissionelectronmicroscopy (cid:3) (cid:3) U U U U U U mg/kg nm N nth (SEM/TEM) o. Year, Atomicforcemicroscopy(AFM) (cid:3) (cid:3) U U U U U U mg/kg nm of V P ol. Dynamiclightscattering(DLS) (cid:3) (cid:3) U U (cid:3) (cid:3) U (cid:3) mg/l n.r. a xx g ,No Ultraviolet-visiblespectroscopy(UV-Vis) U U (cid:3) (cid:3) (cid:3) (cid:3) U (cid:3) mg/l n.r. es .yy Inductivelycoupledplasmamass U U (cid:3) (cid:3) (cid:3) (cid:3) U (cid:3) ng/l n.r. 14 spectrometry(ICP-MS) Single-particleICP-MS(SP-ICP-MS) U (cid:3) U (cid:3) (cid:3) (cid:3) U (cid:3) ng/l n.r. Flowfieldflowfractionation(FFF)-ICP-MS U U (cid:3) U (cid:3) (cid:3) U (cid:3) ng/l n.r. LaserablationICP-MS(LA-ICP-MS) U U (cid:3) (cid:3) (cid:3) U U (cid:3) ng/l mm X-rayfluorescencemicroscopy(m-XRF) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) U U U mg/kg nm–mmdepth X-rayabsorptionspectroscopy(XAS) (cid:3) U (cid:3) (cid:3) (cid:3) (cid:3) U U mg/kg mmdepth. TransmissionX-raymicroscopy(TXM) (cid:3) U (cid:3) (cid:3) (cid:3) U U U mg/kg 10nm Nanosecondaryionmassspectrometry (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) U U U mg/kg 50nm (nano-SIMS) Hyperspectralmicroscopy (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) U U U mg/kg nm an.r.,nolateralresolutionability.
Description: