ebook img

Nanostructured Materials PDF

215 Pages·2020·7.533 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nanostructured Materials

Engineering Materials T. Daniel Thangadurai N. Manjubaashini Sabu Thomas Hanna J. Maria Nanostructured Materials Engineering Materials This series provides topical information on innovative, structural and functional materials and composites with applications in optical, electrical, mechanical, civil, aeronautical, medical, bio- and nano-engineering. The individual volumes are complete, comprehensive monographs covering the structure, properties, manufac- turing process and applications of these materials. This multidisciplinary series is devotedtoprofessionals,studentsandallthoseinterestedinthelatestdevelopments in the Materials Science field. More information about this series at http://www.springer.com/series/4288 T. Daniel Thangadurai N. Manjubaashini (cid:129) (cid:129) Sabu Thomas Hanna J. Maria (cid:129) Nanostructured Materials 123 T. DanielThangadurai N.Manjubaashini Department ofNanoscience Department ofNanoscience andTechnology andTechnology Sri RamakrishnaEngineering College Sri RamakrishnaEngineering College Coimbatore, Tamil Nadu,India Coimbatore, Tamil Nadu,India SabuThomas Hanna J.Maria IIUCNN IIUCNN Mahatma Gandhi University Mahatma Gandhi University Kottayam, Kerala, India Kottayam, Kerala, India ISSN 1612-1317 ISSN 1868-1212 (electronic) Engineering Materials ISBN978-3-030-26144-3 ISBN978-3-030-26145-0 (eBook) https://doi.org/10.1007/978-3-030-26145-0 ©SpringerNatureSwitzerlandAG2020 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Contents 1 Nanotechnology and Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Fundamentals of Nanomaterials . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Dimensions of Nanomaterials . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 2D Confinement. . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 1D Confinement. . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.3 Zero Dimensional Confinement . . . . . . . . . . . . . . . . 3 1.3 Features of Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.1 Activation of Particle Surface . . . . . . . . . . . . . . . . . 4 1.3.2 Particle Size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.3 Particle Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.4 Two-Dimensional Particle Projection Image. . . . . . . 5 1.3.5 Three-Dimensional Particle Image . . . . . . . . . . . . . . 5 1.4 Significances of Nanotechnology . . . . . . . . . . . . . . . . . . . . . . 7 1.5 Basic Concept of Nanotechnology . . . . . . . . . . . . . . . . . . . . . 8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Nanomaterials, Properties and Applications . . . . . . . . . . . . . . . . . . 11 2.1 Brief Notes on Nanomaterials . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Nanomaterial Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.1 Structural Properties . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.3 Chemical Properties . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.4 Mechanical Properties. . . . . . . . . . . . . . . . . . . . . . . 16 2.2.5 Magnetic Properties . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.6 Optical Properties. . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.7 Electronic Properties. . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.8 Physiochemical Properties of Nanomaterials. . . . . . . 18 2.2.9 Specific Surface Area and Pore . . . . . . . . . . . . . . . . 23 2.3 Nanomaterial Synthesis Process. . . . . . . . . . . . . . . . . . . . . . . 23 2.3.1 Top-Down Approach . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.2 Bottom-Up Approach . . . . . . . . . . . . . . . . . . . . . . . 24 v vi Contents 2.4 Applications of Nanomaterials. . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.1 Environmental Sector . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.2 Health Sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.3 Energy Sector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 Fundamentals of Nanostructures . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1 Nanostructures Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Nanostructured Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2.1 1D Nanostructures . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.2 2D Nanostructures . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.3 3D Nanostructures . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3 Features of Nanostructures . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.4 Theoretical Substantiation of the Approaches Proposed. . . . . . 34 3.5 Types of Nanostructured Material . . . . . . . . . . . . . . . . . . . . . 36 3.5.1 Nanostructures in Plants . . . . . . . . . . . . . . . . . . . . . 37 3.5.2 Nanostructures in Insects. . . . . . . . . . . . . . . . . . . . . 39 3.5.3 Nanostructures in the Human Body . . . . . . . . . . . . . 40 3.5.4 Ceramic Nanostructures . . . . . . . . . . . . . . . . . . . . . 42 3.5.5 Polymer Nanostructures . . . . . . . . . . . . . . . . . . . . . 42 3.5.6 Nanocomposites . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.5.7 Thin Films. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.5.8 Nanostructure Computation. . . . . . . . . . . . . . . . . . . 43 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4 Physics and Chemistry of Nanostructures. . . . . . . . . . . . . . . . . . . . 47 4.1 Nanostructured Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5 Quantum Effects, CNTs, Fullerenes and Dendritic Structures . . . . 55 5.1 Fullerenes Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2 Nanostructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.3 Laser-Assisted Metal-Catalyzed Nanowire Growth . . . . . . . . . 59 5.4 Hierarchal Complexity in 1-D Nanostructures. . . . . . . . . . . . . 60 5.5 Mechanical and Thermal Properties . . . . . . . . . . . . . . . . . . . . 63 5.6 Electronic Properties of Nanowires . . . . . . . . . . . . . . . . . . . . 64 5.7 Optical Properties of Nanowires. . . . . . . . . . . . . . . . . . . . . . . 66 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6 Semiconductors, Organic and Hybrid Nanostructures . . . . . . . . . . 69 6.1 Semiconductor Nanostructures. . . . . . . . . . . . . . . . . . . . . . . . 69 6.1.1 Quasi-One-Dimensional Systems. . . . . . . . . . . . . . . 69 6.1.2 Double Quantum Well . . . . . . . . . . . . . . . . . . . . . . 70 6.1.3 The Size of Semiconductor Nanostructures . . . . . . . 70 6.1.4 Electrostatics of a GaAs/AlGaAs Heterostructure . . . 71 6.1.5 Applications of Semiconductor Nanostructures. . . . . 71 Contents vii 6.2 Organic Nanostructures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.2.1 Structures and Applications of Organic Nanostructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.2.2 Miscellaneous Application of Organic Nanostructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.3 Hybrid Nanostructures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.3.1 Physical Deposition to Synthesize the Hybrid Nanostructures of Metal NPs/2D Materials. . . . . . . . 74 6.3.2 Chemical Reduction to Synthesize the Hybrid Nanostructures of Metal NPs/2D Materials. . . . . . . . 75 6.3.3 Applications of Hybrid Nanostructures. . . . . . . . . . . 75 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7 Properties of Nanostructured Materials . . . . . . . . . . . . . . . . . . . . . 77 7.1 Unique Properties of Nanostructures . . . . . . . . . . . . . . . . . . . 77 7.2 Physical Properties of Nanowires. . . . . . . . . . . . . . . . . . . . . . 78 7.2.1 Thermal Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7.2.2 Optical Properties. . . . . . . . . . . . . . . . . . . . . . . . . . 78 7.2.3 Electronic Properties. . . . . . . . . . . . . . . . . . . . . . . . 79 7.2.4 Mechanical Properties. . . . . . . . . . . . . . . . . . . . . . . 79 7.2.5 Field Emission Properties . . . . . . . . . . . . . . . . . . . . 80 7.3 Grain Boundaries in Nanostructured Materials . . . . . . . . . . . . 80 7.4 Multifunctional Properties of Nanostructured Metallic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.4.1 Mechanical Properties. . . . . . . . . . . . . . . . . . . . . . . 81 7.4.2 Strength Measurement. . . . . . . . . . . . . . . . . . . . . . . 83 7.4.3 Superstrength and Ductility. . . . . . . . . . . . . . . . . . . 87 7.4.4 Electrical Conductivity . . . . . . . . . . . . . . . . . . . . . . 88 7.4.5 Magnetic Properties . . . . . . . . . . . . . . . . . . . . . . . . 89 7.4.6 Corrosion Resistance . . . . . . . . . . . . . . . . . . . . . . . 90 7.4.7 Reliability of Nanostructured Materials . . . . . . . . . . 91 7.4.8 Thermal Properties of Nanostructures. . . . . . . . . . . . 92 7.4.9 Thermal Conductance . . . . . . . . . . . . . . . . . . . . . . . 93 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 8 Nanostructured Materials—Design and Approach . . . . . . . . . . . . . 97 8.1 Synthesis of Nanostructured Materials . . . . . . . . . . . . . . . . . . 97 8.2 Nanostructure Synthesis and Fabrication Methods. . . . . . . . . . 98 8.2.1 Physical Vapor Deposition . . . . . . . . . . . . . . . . . . . 99 8.3 Chemical Vapor Deposition. . . . . . . . . . . . . . . . . . . . . . . . . . 102 8.3.1 Thermal Chemical Vapor Deposition . . . . . . . . . . . . 103 8.3.2 Metal–Organic Chemical Vapor Deposition (MOCVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 8.4 Solution-Based Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 8.4.1 Hydrothermal Synthesis . . . . . . . . . . . . . . . . . . . . . 106 viii Contents 8.4.2 Hydrolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 8.4.3 Aqueous Chemical Growth . . . . . . . . . . . . . . . . . . . 107 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 9 Functionalization of Nanostructures . . . . . . . . . . . . . . . . . . . . . . . . 109 9.1 Aspects of Nanostructure System. . . . . . . . . . . . . . . . . . . . . . 109 9.2 Chemistry of Nanostructure Functionalization. . . . . . . . . . . . . 110 9.3 Need for Functionalization . . . . . . . . . . . . . . . . . . . . . . . . . . 110 9.4 Methods of Functionalization. . . . . . . . . . . . . . . . . . . . . . . . . 111 9.5 Class of Functionalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 9.5.1 Thiol/Aminothiol . . . . . . . . . . . . . . . . . . . . . . . . . . 112 9.5.2 Bio-functionalization. . . . . . . . . . . . . . . . . . . . . . . . 112 9.5.3 Asymmetric Group . . . . . . . . . . . . . . . . . . . . . . . . . 113 9.5.4 Polymers in Functionalization . . . . . . . . . . . . . . . . . 114 9.5.5 Functionalization of Metals. . . . . . . . . . . . . . . . . . . 114 9.5.6 Rare-Earth in Functionalization . . . . . . . . . . . . . . . . 114 9.6 Miscellaneous Functionalized Nanostructures . . . . . . . . . . . . . 117 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 10 Characterization and Technical Analysis of Nanostructured Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 10.1 Atomic Force Microscopy (AFM) . . . . . . . . . . . . . . . . . . . . . 120 10.2 X-Ray Diffraction (XRD) . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 10.3 Scanning Probe Microscopies (SPM) . . . . . . . . . . . . . . . . . . . 121 10.4 Field Ion Microscopy (FIM) . . . . . . . . . . . . . . . . . . . . . . . . . 121 10.5 Raman Spectroscopy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 10.6 Absorption Spectroscopy (UV-Vis) . . . . . . . . . . . . . . . . . . . . 123 10.7 Photoluminescence Spectroscopy (PL) . . . . . . . . . . . . . . . . . . 123 10.8 Field Emission Scanning Electron Microscopy (FESEM) . . . . 124 10.9 Confocal Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 10.10 Transmission Electron Microscope (TEM) . . . . . . . . . . . . . . . 125 10.11 X-Ray Photoelectron Spectroscopy (XPS) . . . . . . . . . . . . . . . 126 10.12 Auger Electron Spectroscopy (AES) . . . . . . . . . . . . . . . . . . . 127 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 11 Fabrication of Nanostructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 11.1 Lithography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 11.1.1 Photolithography . . . . . . . . . . . . . . . . . . . . . . . . . . 129 11.1.2 Contact-Mode Photolithography (CMP) . . . . . . . . . . 131 11.1.3 Deep Ultra-Violet Lithography (DUV). . . . . . . . . . . 132 11.1.4 Phase-Shifting Photolithography . . . . . . . . . . . . . . . 132 11.1.5 Electron Beam Lithography. . . . . . . . . . . . . . . . . . . 133 11.1.6 X-Ray Lithography. . . . . . . . . . . . . . . . . . . . . . . . . 135 11.1.7 Focused Ion Beam (FIB) Lithography . . . . . . . . . . . 136 11.1.8 Neutral Atomic Beam Lithography . . . . . . . . . . . . . 136 Contents ix 11.2 Nanolithography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 11.2.1 AFM Based Nanolithography . . . . . . . . . . . . . . . . . 139 11.2.2 Soft Lithography . . . . . . . . . . . . . . . . . . . . . . . . . . 139 11.2.3 Microcontact Printing . . . . . . . . . . . . . . . . . . . . . . . 139 11.2.4 Molding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 11.2.5 Nanoimprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 11.2.6 Dip-Pen Nanolithography . . . . . . . . . . . . . . . . . . . . 144 11.3 Etching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 12 Nanostructured Materials for Optical and Electronic Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 12.1 Applications of Nanostructured Materials in Solar Cells . . . . . 149 12.1.1 Dye-Sensitized Nanostructured ZnO Electrodes for Solar Cell Applications . . . . . . . . . . . . . . . . . . . 150 12.2 Photoconductive Oxide Nanowires as Nanoscale Optoelectronic Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 12.3 Energy Storage, Batteries, Fuel Cells . . . . . . . . . . . . . . . . . . . 152 12.4 Nanostructured Semiconductor Materials for Optoelectronic Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 12.5 Carbon-Based Sensors and Electronics. . . . . . . . . . . . . . . . . . 155 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 13 Nanostructured Materials for Bioapplications. . . . . . . . . . . . . . . . . 161 13.1 Nanostructured Ti and Ti Alloys for Biomedical Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 13.2 Nanostructured Materials for Biosensors. . . . . . . . . . . . . . . . . 162 13.3 Nanobiotechnology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 13.4 Gene Therapy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 13.5 Bioimaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 13.6 Tissue Engineering and Regenerative Medicine . . . . . . . . . . . 165 13.7 Bone Implant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 13.8 Modulated Drug Delivery System . . . . . . . . . . . . . . . . . . . . . 166 13.9 DNA Biosensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 13.10 Glucose Biosensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 13.11 Therapies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 13.11.1 Photodynamic Therapy . . . . . . . . . . . . . . . . . . . . . . 168 13.11.2 Chemotherapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 13.11.3 Photothermal Therapy. . . . . . . . . . . . . . . . . . . . . . . 169 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 14 Nanostructured Materials for Photonic Applications . . . . . . . . . . . 171 14.1 Optical Waveguides Based on Small Organic Molecules. . . . . 172 14.2 Optically Pumped Organic Lasers . . . . . . . . . . . . . . . . . . . . . 173 14.3 3D Photonic Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 14.4 Photonic LEDs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.