ebook img

Nanoscale liquid interfaces: wetting, patterning, and force microscopy at the molecular scale PDF

769 Pages·2013·22.188 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nanoscale liquid interfaces: wetting, patterning, and force microscopy at the molecular scale

“This books offers a broad survey of single- and multiphase flows at the nanoscale. “This books offers a broad survey of single- and multiphase flows at the nanoscale. “Thi“MsT bahoniosy kb sot ooopfkfisec ross f faoe frb src aoua brdrre osnautdr v sienuytr eovrfee yssi ton fg asleirne- g alsneud-r amvneudyle tmdip,u hlitanispcelhu fadlosiewn fgsl oacwth stah areta ntchateenr onizsacanatoiloesc.n a loef. Many topics of current interest are surveyed, including characterization of ManMiyn atetnorypf aitccosep s oiacfss wcouefr llrc eaunsr tvr eainnritto eurines tswet reeatstrtien gas rpuehr vesenuyoremvde,ey neinadc., lAui nrdecinlaugdd eircn hgwa irlclah fcaitnredar cimztaeartniiozyan st uioobfnj e cotsf interfaces as well as various wetting phenomena. A reader will find many subjects interidnfiatseccreufssa sacesed sw waesel llw la, eswl vli aathrsi vaoa ugrsoi owoudes ti twninteegtrt ppinlhagey np oohfme enexonpmaer.e Ainm aree. nAatd rsee aran wddei lrml wfoinidldle f lmiinnagdn. ”my asunby jseucbtsje cts discussed well, with a good interplay of experiments and modeling.” discudisssceuds wseedl lw, welilt,h w ait gho ao dg oinotde rinptlearyp olaf ye xopf eerxipmeernimtse anntsd amnodd meloPindrogef.l”.i nHgo.”ward A. Stone Prof. Howard A. Stone Princeton University, USA ProfP. rHPoorfi.wn Hcaeortodwn Aa Ur.dn Si vtAoe.rn sSiettyo, nUeSA PrincPertionnce Utonniv eUrnsiivtye,r UsiStyA, USA This book addresses the most recent developments in the investigation and This book addresses the most recent developments in the investigation and manipulation of liquids at the nanometer scale. This new field has shown important ThisT hbmiosao nkbi poauodlkad triaoednsds oreefs s listqehusei d tsmh aeot stmth eor esntca enrneotcm edenettve erd lseocvpaemlleoe.p nTmhtsie sn inntes w thi nfei e tlihdne vh eaisnst visgehasottwiiognna t iimaonnpd o artnadn t breakthroughs in the basic understanding of physical mechanisms involving liquid manmipbaurnelaiaptkiuotlhnart ooiofu nlgi qhousf ildiinqs u taihtd ets h baeta nsthiacen u onnmadneeotrmestrea sntcedarli ensc.g aT olhefi. s pT nhheyiwss inc feaielw lmd f iheecaldhs ashnhaioss wmshnso iiwmnvnpo oilmvrtipnaongr tlt iaqnuti d interfaces, which led to applications in nanopatterning. It also has consequences breabkritnehtarekortufhagrchoesus g,i nhw sth hiinec htb haleesd ibc atuosni cad peuprnslditcaeanrtsditoiannngsd oiinnf gpn ohanfy sopipchaaylts timcearenlc imhnagen.c ihIstam anslis siomn vhso ailnsv vicnooglnv lisinqeguq iuldiqe unicde s in force microscopy imaging in liquid environment. Co-authored by more than 20 interinfiatnec erfofsa,r ccweesh m,i cwihch rloiecsdhc otleopd ya tipmop alaigcpaipntlgiioc inants i loiinqn usn idain ne onnpavanirtootpenarmnttienenrgnt.. i InCtg oa.- lasItou a thhlsaoosr ehcdoa snb syce omqnusoeerneqc uteehsna cne 2s 0 of the most prominent scientists in the field, the book proposes a timely review of in foinroc effo tmrhceiec mrmoosiccsroto ppsyrco oimmpyian gieminnagt g siincni geli nqintui sildtiqs euinnid vt iheroenn vfimireolednn,m tt.h eCeno tb-. aoCuootk-h apourrtoehdpo orbseyed sm baoy t rimem otehrleay nrt eh2va0ine w20 o f various aspects pertaining to nanoscale liquid interfaces. of thoefv amthrioeos umt spo arsostp mpericnotems npitne serctniatei nnsctiniisegtn stt oiins nt stah inneo ftsihceeald lef,i etlihlqdeu, ibtdho eion kbte oprorfoakc ppeorsso.epso as etsim ae tliym reelvyi erewv ioefw of variovuarsi oausps eacstpse pcetsrt paeinritnagin tion gn aton onsacnaolesc laiqleu ildiq iunitde rinfatecerfsa.ces. Starting from a description of static and dynamic properties of liquids at Starting from a description of static and dynamic properties of liquids at interfaces, the recent works on nanowetting (droplets, menisci, and bubbles) are StarStitinangrt teirfnrfgao cmefr so,a mt h deea rs ecdcreeipsntctiro wipnot irooknfs osotnaf tnisact naoatinwcd e attndidnyn ga d(mdynrioca pmlpeircto sp,p emrroetpineeissr tcioie, fsa nloidqf u biludiqbsub iladetss ) aatr e thoroughly described, followed by some applications that emerge in the field of interinftathecoerfrsao, cutehgseh, ltryhe dceee rnsectc rweibnoetr dwk,s o foorknlls on owanne don wabneyot stwionemgt te(idn argpo (ppdllriecotapst,li eomtnses,n mtihsecaint, iaescnmid,e abrngudeb bbinlue btshb)e lae rfsei)e aldr eo f nanopatterning due to the development of new tools to manipulate ultrasmall thortohnuoagrnhooluypg adhteltyse cdrrneibisnecgrd i,bd feuodell, o tfowo letlohdwe b edyd es vboeyml osepo mampeepn laitcp aoptfli iocnnaetswi ot hntoas tot lhesma ttoe e rmmgeae nirngip etu hilnea ttfehie euld lft ioreafld sm oaf ll liquid quantities. Atomic force microscopy (AFM) imaging in liquids raises new nanonpalianqtoutpiedar ntqtiuenragnn ditniutgei e dstuo. e At thtooem tdhicee v feodlreocvpeem lmoepincmtr oeosnfc ton opefyw n (tAeowFoM ltso) toioml sma tgoai nnmgip auinnla ipltieuq luauitdletsr a ursalmtirsaaeslslm naellw questions on hydrodynamic interaction in the confined space between an liquildiqq uquiuedas tnqiotuintaisne tsio.t inAe tsoh. myAdtircoo mfdoiycrnc efaom rmciceic rmionsitcceroroapscyct oi(opAnyF M(iAn) F iMtmh)ea g imicnoagng fiinnin gel idqin u isldipqsau cridaei ss beraes itsnweeesw en ne wa n oscillating tip and a surface, especially for high-speed atomic force microscopes. quesqtuoioesncsitsli loaontinsn goh tnyipd rhaoyndddyr noaad smyunircaf amciniect, e erinsaptceetircoainact lliyoin nf o trih nhe i gtchhoe-sn pfcieoneneddf i antseopdma csiecp afobcreect ewb meeetiwcnr eoaesnnco paens . The understanding of these interactions is important for developing imaging oscilolasTcthiinellga u ttinnipdg e atrnispdt a aann dsdui nargf as ucoerff, a techseep, seeecs ipainelltcyei afroallrcy t hfiooignrh sh- siigpsh ei-emsdpp eaoetrodt maantitco mffooirrcc efdo emrvcieecl romopsiiccnrogop seicmso.pa egisn. g of biological samples, which is one of the open challenges of high-speed AFM The Tuhonef d beuirnosdltoaegnrisdctaianln gsd aionmfg p tlohefes ,st ehw ehinsiecteh ri naistc etoiroanncets i ooifns stih miesp ooimprtepanon rtct hafaonltrl efdnoegrve edsl eoovpfe inhlogigp hiinm-sgap giemiendagg AinFgM techniques. of boioft elobcgihoincloaiqgl uisceaasml. spalemsp, lwesh,i cwhh iisc ho nise oonfe t hoef tohpee no pcehna lclehnaglleesn goef sh oigfh h-sigphe-esdp eAeFdM A FM techtneicqhuneisq.ues. Thierry Ondarçuhu is research director in the Nanosciences group of Thierry Ondarçuhu is research director in the Nanosciences group of CEMES (Toulouse, France). He graduated from the Ecole Supérieure ThieTrhrCyiEe OMrrnEydS Oa (rnTçoduuahlrouçu uissh eru,e isFser raaenrsccehea )dr.c iHrhee cd tigorrerac ditnou trah tieend Nt hfaerno Nomsa cntiheoensc cEieecsno gclereo sSu guprp ooéufr pie oufr e de Physique et Chimie Industrielle (ESPCI, Paris). After obtaining CEMCEEdSMe ( TEPoShu y(lTosoiuqusuleoe,u Fsereta ,n CFchreai)mn. ciHeee ). I gnHrdaeud sgutrraaitdeeludlea tfer(oEdSm fPr CtohIm,e PtEahcreois lEe).c SoAulefpt eéSrru iepouébrrteiae iunrien g a PhD, he joined the CNRS in 1993 in Professor de Gennes’ lab in de Pdheay sPPihqhDuyse, i qheuete j Coeihnti emCdih eti mhIenie dC uINsntRdrSiue siltnler i 1e(l9Ele9S 3P( CEiInS, PPPCraIo,r fiseP)sa.s roiAsrf) t.d eAer ftGoebertn aoninbeitsna’ giln aibn gi n Collège de France (Paris), where he studied wetting and adhesion. a PhaD CP,o hhllDeè, g jeho eind eejod iF nrteahdne c tCeh Ne(PR CaSrN iisnR) S,1 wi9n9h 3e1 r9ien9 3 hP eirn os ftPeursdosiofeerds s dwoer e Gtdteeinn gGn eeasnn’n dle aasb’d hilnaeb s iionn . In 1996, he moved to CEMES, where his activities focus on capillarity CollèCgoInell è1dg9ee9 F6dr,e ahn eFc rema no(Pcveae rd(isP t)ao, r wiCsEh),Me wrEehS eh, rwee h shetuered s ihteuidsd awiecedtit vtwiinteiget tsai nfnogdc uaansd doh nea sdciahopenis.l iloarni.t y and wetting processes at the nanometer scale, liquid nanodispensing, In 19In9a 61n,9d h9 we6 e,m thtoeinv mge dpo rvtooec dCe tEsosMe CsEE SaM,t wtEhShe,e wnreah nheoirsem a hecittsei vari cstitceiavsli etfio,e lcisqu fuso iocdun ns ca oannpo idcllaiasprpiitellyan rsiitnyg , atomic force microscopy, and carbon nanotube devices. atomic foarncde awmneidct trwionesgtc topinprogyc, p earsnosdcee scs aasrteb tsoh anet nnthaaenn oonmtauneboteem rde setcveaircl esec,s al.i lqeu, ildiq nuaidn ondainsopdeinsspienngs, ing, atomatico mfoircc efo mrciec rmosiccroopsyc,o apnyd, acnadrb coanr bnoann ontaunboet udbeev idceesv.i ces. Jean-Pierre Aimé is a research director in CBMN (Bordeaux, France). Jean-Pierre Aimé is a research director in CBMN (Bordeaux, France). He graduated from the University of Paris–Sud 11, Orsay. He obtained JeanJ-ePHaieen r-grPreiae dAruriema tAée diims f érao irmse sate hraeer scUehna dirvcierher scdittioryer o citfno P rCa BirniMs –CNSB uM(dBN o1 r1(dB,e oOarrudsxea,ya F.u rHxa,en Fcoreba)nt.a cien)e. d his first PhD in 1976 and his second in 1983. In 1989, he spent one year He gHrahedi sgu rfaairtdseutd aP fthreDodm ifnr to1hm9e7 Ut6h naeinv Udenr hsiviitsey sr esoicft oyPn aodrfi siPn–a S1rui9sd8– 3S1u.1 Id,n O 111r9s,8a O9y.,r sHhaeey .so pHbeetna otin boetnadei n yeeda r in Exxon Annandale working on polymer physics. Then, in 1992, he his fhirisisnt fPiErhxsDtx oP innh D1A 9inn7n 61a 9an7nd6da laheni sdw s hoeircsko isnnedgc oionnn d1 9pin8o 31ly.9 mI8ne3 1r. 9 Ipn8h 91y,9 sh8iec9s ,s. p hTeehn setp noe,n nietn o y1ne9ae9r y 2e,a hr e moved to Bordeaux to set up a team dedicated to the development of in Exinxm oEnox vxAeondnn taAon nBdnoaarlnded ewaaluoexr k wtiono grsk eoitn nug p po oan lt yepmaoemlyr mdpeehdry iscpiachtsye.s diTc htsoe. ntTh,h eien nd ,e1 v9ine9 l2o1,9p h9m2ee , nhte o f atomic force microscopy to study the properties of soft and biological movmeadot vtooem dBi coto rfd oBerocareud xme atiocur xso etstoc o usppey ta ut tope asatm uted dayem tdh idceea ptdericodap tteoer dtth iteeos dtohefe vs eodlfeotvp aemnlodepn bmti ooelfno tg oicfa l materials. He is chair of the interregional network CnanoGSO (http:// atomatimco mfaotierccr eifao mlrsc.ie cH rmoe siiccsro ocphsyca otirop oysf tt utohd seyt utinhdteye rptrhreoegp ipoernrotapiele snr teoitefw ss ooofrftk s aConnfdta anbnoiodGl obSgOioic l(aohlg titcpa:l/ / www.cnanogso.org/) and the European network BioInspired Nanotechnologies www.cnamnoagtemsroia.aotlesrrg. i/Ha)le s .a isHn dech iast hicre ho afEi rtu horeof pitnheteae nrinr etnegeriotrwengaoilor knn eaBtlw inooeInrtkws pCoinrreka dnC onNGaanSnOooG (tSheOtcth p(nh:/ot/tlpo:g/i/es (http://www.bioinspired-nano.eu/en/). wwww.(cwhntwatp.nc:on/g/awsnoow.ogwsrgo.b/.oi)o rigan/ns)pd i aretnhdde- n taEhnueor .oeEpuue/raeonnp /e)na. ent wnoertkw oBriko InBsiopIinresdp irNeda nNotaencohtneoclhongoielos gies (http(h:/t/twp:w//ww.bwiwoi.nbsiopiinresdp-irneadn-on.aenuo/e.enu//)e. n/). V251 ISBN 978-981-4316-4V52-351 ISBN 978-98V1-245311V62-4551-3 ISBNI S9B78N- 998718-4-938116--44351-63-45-3 © 2013 by Taylor & Francis Group, LLC © 2013 by Taylor & Francis Group, LLC © 2013 by Taylor & Francis Group, LLC CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2013 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20130410 International Standard Book Number-13: 978-981-4364-48-5 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reason- able efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www. copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organiza- tion that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com © 2013 by Taylor & Francis Group, LLC February5,2013 11:9 PSPBook-9inx6in 00-Jean-Pierre–prelims Contents Preface xix 1 LiquidStructureattheSolid–LiquidInterface 1 SuzanneP.Jarvis,GillianKaggwa,andKhizarSheikh 1.1 Introduction 1 1.2 Liquids 2 1.3 BasisofLiquidOrderingatInterfaces 3 1.3.1 Ion–DipoleInteractions 4 1.3.2 HydrogenBonding 4 1.3.3 SolvationForces 5 1.4 SurfaceStructure 8 1.4.1 SurfaceChemistry 8 1.4.2 SurfaceRoughness 9 1.4.3 DiffuseSurfaces 10 1.4.4 ConstrictedSurfaceGeometries 11 1.5 ExperimentalStudiesoftheLiquidStructureat Solid–LiquidInterfaces 12 1.5.1 SurfaceForceApparatus 12 1.5.2 AtomicForceMicroscopeForceMeasurements 17 1.6 Conclusions 24 2 Wetting,Roughness,andHydrodynamicSlip 29 OlgaI.VinogradovaandAlekseyV.Belyaev 2.1 Introduction 30 2.2 OriginsandHistory 32 2.3 TerminologyandModels 33 2.4 ExperimentalMethods 38 2.5 SmoothSurfaces:Slippagevs.Wetting 41 2.6 RoughSurfaces 43 © 2013 by Taylor & Francis Group, LLC February5,2013 11:9 PSPBook-9inx6in 00-Jean-Pierre–prelims vi Contents 2.7 SuperhydrophobicityandEffectiveHydrodynamic Slippage 47 2.7.1 AnisotropicSurfaces 48 2.7.1.1 Thinchannel 51 2.7.1.2 Thickchannel 54 2.7.2 IsotropicSurfaces 56 2.7.2.1 Thinchannel 56 2.7.2.2 Thickchannel 58 2.8 OtherSpecialPropertiesofSuperhydrophobic Surfaces 59 2.8.1 TransverseFlow 59 2.8.2 HydrodynamicInteractions 62 2.9 InterfacialTransportPhenomena 66 2.9.1 HydrophobicSurfaces 66 2.9.2 SuperhydrophobicSurfaces 68 2.10ConclusionandFutureDirections 71 3 WettingPhenomenaontheNanometerScale 83 S.Dietrich,M.Rauscher,andM.Napio´rkowski 3.1 Introduction 84 3.2 Equilibrium 87 3.2.1 WettingofHomogeneousSubstrates 87 3.2.1.1 Flatfilms 87 3.2.1.2 Droplets 98 3.2.2 StructuredSubstrates 102 3.2.2.1 Chemicallystructuredsubstrates 104 3.2.2.2 Topographicallystructuredsubstrates 110 3.3 Nonequilibrium 115 3.3.1 TheoreticalDescription 115 3.3.1.1 Mesoscopichydrodynamics 115 3.3.1.2 Moleculardynamics 119 3.3.2 HomogeneousSubstrates 121 3.3.2.1 Spreadingofdroplets 121 3.3.2.2 Dewettingofthinfilms 122 3.3.3 StructuredSubstrates 127 3.3.3.1 Topographicallystructuredsubstrates 128 3.3.3.2 Chemicallystructuredsubstrates 131 3.4 Outlook 133 © 2013 by Taylor & Francis Group, LLC February5,2013 11:9 PSPBook-9inx6in 00-Jean-Pierre–prelims Contents vii 4 StabilityofThinLiquidFilms 155 Gu¨nterReiter 4.1 Introduction 156 4.2 TheoreticalConsiderations 159 4.3 ExperimentalDetails 163 4.3.1 WhyPolymers? 163 4.3.2 SpecialFeaturesofthePolymer-Coated Substrate 164 4.3.3 HamakerConstants 166 4.3.4 ExchangingtheBoundingFluidMedium 167 4.4 ExperimentalInvestigationsofSelf-Destructionof ThinLiquidFilms 168 4.4.1 EvolutionofFilmMorphology 168 4.4.2 ThicknessDependence 173 4.4.3 TheInfluenceoftheInterfacebetweenFilm andBoundingMedium 178 4.5 ConcludingRemarks 183 5 ThinFilmsinCompleteWettingandtheSpecificCaseof NematicLiquidCrystals 193 A.M.Cazabat,U.Delabre,C.Richard,andY.YipCheungSang 5.1 Introduction 193 5.2 ThinFilmsinCompleteWetting:Generalities 194 5.2.1 Tanner’sLaw 194 5.2.2 ElementaryPictureofaNematicFilm 196 5.3 TechniquesandInvestigatedSystems 198 5.3.1 BriefOverviewofOurExperimental Techniques 198 5.3.1.1 Microdroplets:spatiallyresolved ellipsometry 198 5.3.1.2 Steppedellipsometricprofilesand structuralinteraction 201 5.3.1.3 Pancakes 202 5.3.1.4 Ellipsometricprofilesofnematic microdroplets 204 5.3.1.5 Extendednematicfilms 206 5.3.2 ThePhysicsofThinNematicFilms 209 5.3.2.1 Nematicorderatmesoscopicscale 209 © 2013 by Taylor & Francis Group, LLC February5,2013 11:9 PSPBook-9inx6in 00-Jean-Pierre–prelims viii Contents 5.3.2.2 Aboutvariationsofnematicorder 209 5.3.2.3 Elasticityandanchoring 210 5.4 ExperimentalStudiesofExtendedNematicFilms 213 5.4.1 InvestigatedLiquidCrystals:TheSeriesof n-Cyanobiphenyls 213 5.4.1.1 Generalproperties 213 5.4.1.2 Observedbehavior:similaritiesand differences 214 5.4.1.3 Elasticconstantsandanchoring energies 216 5.4.2 “PhaseDiagrams”andCoexistingPhases 217 5.4.2.1 Phasediagrams 217 5.4.2.2 Coexistingphases 218 5.4.3 LineTensionof6CBFilmsonWater 220 5.4.3.1 LinetensionfarfromT 220 NI 5.4.3.2 LinetensionclosetoT 223 NI 5.5 SummaryandConclusion 224 6 DropletMorphologyatNanometerScale 235 AntonioChecco 6.1 Introduction 235 6.2 ImagingofNanoscaleDropsbyAFM:TimeLineof Achievements 236 6.3 NanodropletMorphologyonHomogeneousand InhomogeneousSubstrates 242 6.3.1 HomogeneousSubstrates 242 6.3.2 InhomogeneousSubstrates 247 6.4 SummaryandOutlook 253 7 SurfaceBubblesinMicro-andNanofluidics 259 BramBorkentandDetlefLohse 7.1 Introduction 260 7.2 ControlledSurfaceBubbleCavitation 260 7.2.1 ExperimentalSetup 261 7.2.2 SingleBubble 262 7.2.3 TwoBubbles 264 7.2.4 BubblesinaRowandaBubbleMatrix 266 7.2.5 CavitationfromNanosizedPits 268 © 2013 by Taylor & Francis Group, LLC February5,2013 11:9 PSPBook-9inx6in 00-Jean-Pierre–prelims Contents ix 7.3 SurfaceNanobubbles 269 7.3.1 WhatAreSurfaceNanobubbles? 270 7.3.2 SurfaceNanobubblesSubjectedtoExtreme Stresses 271 7.3.3 PreferenceinSize 274 7.3.4 Electrolysis:AControlledandReproducible WaytoCreateSurfaceNanobubbles 275 7.3.5 AnotherConjectureWhySurfaceNanobubbles DoNotDissolve? 276 7.4 Conclusions 277 8 UseofUltrasonicShearWavesfortheStudyofLiquid Interfaces 281 DiethelmJohannsmannandAnneFinger 8.1 Introduction 282 8.2 PeculiaritiesofAcousticShearWaves 285 8.2.1 ShearWavesDoNotPropagateinLiquids 285 8.2.2 TheAmplitudeofOscillationIsSmall 286 8.2.3 QCMAveragesovertheActiveArea 286 8.2.4 EvenDiluteSoftSamplesAreEasilyDetected 286 8.2.5 QCMOperatesatMHzFrequencies 287 8.2.6 ThereAreElectricandDielectricArtifacts 288 8.2.7 TheVibrationMayInduceStationaryFlow 288 8.3 SimplePlanarModelsofSlip 288 8.4 ElectrochemicallyProducedBubblesMayInduce NegativeFrequencyShift 292 8.5 NumericalCalculations 295 8.6 Bubble-InducedAcousticStreaming 298 8.7 Conclusions 301 9 NanomeniscusMechanicalProperties 307 Jean-PierreAime´,ThierryOndarc¸uhu,RodolpheBoisgard, LaureFabie´,MathieuDelmas,andCharlotteFouche´ 9.1 OverviewandMotivations 307 9.2 TheoreticalBackground 308 9.2.1 StaticCapillaryForce 309 9.2.1.1 Boundaryconditionsandconstraints 309 9.2.1.2 Generalapproaches 310 © 2013 by Taylor & Francis Group, LLC

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.