ebook img

Nanoparticle-Mediated Delivery towards Advancing Plant Genetic Engineering PDF

2018·2.8 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nanoparticle-Mediated Delivery towards Advancing Plant Genetic Engineering

Opinion Nanoparticle-Mediated Delivery towards Advancing Plant Genetic Engineering Francis J. Cunningham,1,6 Natalie S. Goh,1,6 Gozde S. Demirer,1 Juliana L. Matos,2,3 and Markita P. Landry1,3,4,5,*,@ Genetic engineering of plants has enhanced crop productivity in the face of Highlights climatechangeandagrowingglobalpopulationbyconferringdesirablegenetic Plantbiotechnologyiskeytoensuring traitsto agricultural crops. Efficient genetic transformation inplants remains a food and energy security; however, biomolecule delivery and progeny challenge due to the cell wall, a barrier to [342_TD$DIFF]exogenous biomolecule delivery. regenerationcontinuetobekeychal- Conventional delivery methods are inefficient, damaging to tissue, or are only lengesinplantgeneticengineering. effective in a limited number of [343_TD$DIFF]plant species. Nanoparticles are promising Conventional biomolecule delivery materials for biomolecule delivery, owing to their ability to traverse plant cell methodsinplantshavecriticaldraw- wallswithoutexternalforce andhighlytunablephysicochemicalpropertiesfor backs,suchaslowefficiency,narrow species range, limited cargo types, diversecargoconjugationandbroadhostrangeapplicability.Withtheadventof andtissuedamage. engineerednucleasebiotechnologies,wediscussthepotentialofnanoparticles asanoptimalplatformtodeliverbiomoleculestoplants[344_TD$DIFF]forgeneticengineering. Advancesinnanotechnologyhavecre- atedopportunitiestoovercomelimita- tions in conventional methods: Current Biomolecule Delivery Methods for Genetic Engineering in Plants nanoparticles are promising for spe- Foodsecurityhasbeenthreatenedwithdecreasingcropyieldsandincreasing[346_TD$DIFF]foodconsumption cies-independent passive delivery of inthewakeofpopulationgrowth,climatechange,increasingshortageofarableland,andcrop DNA,RNA,andproteins. usageasrawmaterials[1,2].Classicalplantbreedingtoobtainplantswithpreferredgenotypes The advent of nuclease-based gen- requirescrossingandselectionofmultipleplantgenerations,whichdisallowsintroductionoftraits omeediting(e.g.,CRISPR-Cas9)has thatdonotcurrentlyexistinthespecies.Atechniquethatenablesspecifichorizontalgenetransfer usheredinaneweraofprecisegenetic standstogreatlybenefittheagriculturalindustrybyconferringdesirabletraitstoplants,suchas engineering that, among other impacts,hasenabledthedevelopment increasedyield,abioticstresstolerance,anddiseaseandpestresistance[3]. ofgeneticallyengineeredcropswith- outharshregulatoryrestrictions. Geneticengineeringhasrecentlyseenmajoradvancesinanimalsystems,thoughprogresshas lagged in plants[347_TD$DIFF]. When compared to the numerous and diverse gene and protein delivery Thepotentialofnanoparticlestoover- methodsdevelopedforanimalsystems,significantlyfewermethodsexistforplants(Figure1, comelimitationsinconventionaldeliv- erymakesthemexcellentcandidates KeyFigure).Broadly,moderngenetictransformationofplantsentailstwomajorsteps:genetic fordeliveryofnuclease-basedgenome cargodeliveryandregenerationofthetransformedplant,thenecessityanddifficultyofthelatter editingcargo,thusmakingnanoparti- beinghighlydependentonwhatdeliverymethodisusedandwhetherstabletransformationis cledeliveryacriticaltechnologyforthe advancement of plant genetic desired. Regenerationprocedures involve threeparts: theinduction of competenttotipotent engineering. tissue, tissue culture to form calli [348_TD$DIFF](see Glossary), and selection and progeny segregation. Regeneration protocols are dominated by complex hormone mixtures, which are heavily speciesandtissuedependent,makingprotocoloptimizationthekeytoincreasingprocedure efficacy.Thechallengeofgeneticcargodeliverytoplantsisattributedtothepresenceofthe multilayeredandrigidplantcellwall,otherwiseabsentinanimalcells,whichposesanadditional 1DepartmentofChemicaland physicalbarrierforintracellulardeliveryofbiomoleculesandisoneofthekeyreasonsforthe BiomolecularEngineering,University ofCaliforniaBerkeley,Berkeley,CA slowerimplementation andemployment ofgeneticengineeringtools inplants[4]. 94720,USA 2DepartmentofPlantandMicrobial Amongstconventionalplantbiomoleculedeliveryapproaches,Agrobacterium-mediatedand Biology,UniversityofCalifornia, Berkeley,CA94720,USA biolistic particle delivery are the two most established and preferred tools for plant genetic 3InnovativeGenomicsInstitute(IGI), transformations(Box1).Currentbiomoleculedeliverymethodstoplantsexperiencechallenges Berkeley,CA94720,USA 882 TrendsinBiotechnology,September2018,Vol.36,No.9 https://doi.org/10.1016/j.tibtech.2018.03.009 ©2018ElsevierLtd.Allrightsreserved. thathindertheirscopeofuse(Table1).Methodssuchaselectroporation[349_TD$DIFF],biolistics,Agro- 4CaliforniaInstituteforQuantitative bacterium-mediated delivery, or cationic delivery typically target immature plant tissue ([350_TD$DIFF]calli, Biosciences(QB3),Universityof CaliforniaBerkeley,Berkeley,CA meristems, or embryos). These methods require the regeneration of genetically modified 94720,USA progeny plants, which can be time-consuming and challenging, [351_TD$DIFF]whereby efficient protocols 5Chan-ZuckerbergBiohub,San Francisco,CA94158,USA have only been developed for a narrow range of plant species. Biolistic particle delivery 6Theseauthorscontributedequallyto circumvents the cell wall via mechanical force, but often damages portions of target tissue thiswork in the process and [352_TD$DIFF]yields low levels of gene expression [353_TD$DIFF]that is often sparse and sporadic. @Twitter:@Landry_lab Agrobacterium-mediated delivery is subject to orthogonal challenges, the largest being that Agrobacteriumdisplaysnarrowhostandtissuespecificity,evenbetweenspecificcultivarsof *Correspondence: [email protected](M.P.Landry). thesamespecies[5].Agrobacteriumgenerallyexperienceslowertransformationefficiencyfor bothdeliveryandregenerationinmonocotyledonousplants(monocots)overdicotyledon- ous plants (dicots). Additionally, Agrobacterium yields random DNA integration, which can cause disruption of important genes, or insertion into sections of the genome with poor or unstable expression [6]. Random DNA integration, however, can be prevented by utilizing magnifectionwithnonintegratingviruses[7],orbyusingaplasmiddeficientintransferDNA(T- DNA)insertion [8]. Insum,plantgeneticengineeringhaslaggedbehindprogressinanimalsystems;conventional methodsofbiomoleculedeliverytoplantsremainchallengedbyintracellulartransportthrough cellwalls,andinturnlimitplantgenetictransformationefficacy.Todate,plantbiotechnology lacks a method that allows passive delivery of diverse biomolecules into a broad range of plant phenotypes and species without the aid of external force and without causing tissue damage.Wepositnanotechnologyasakeydriverinthecreationofatransformationaltoolto address deliverychallenges andenhancetheutility ofplant geneticengineering. Nanoparticle-Mediated Biomolecule Delivery in Animal Systems Nanoparticles asMolecularTransportersinLivingSystems Nanotechnology has advanced a variety of fields, including manufacturing, energy, and medicine. Of particular interest isthe useof nanoparticles(NPs) (Box 2) asmolecular trans- portersincells,anareathathaslargelyfocusedonmoleculardeliveryinanimalsystems.NPs allow manipulation on a subcellular level, giving rise to a previously unattainable degree of controloverexogenousinteractionswithbiologicalsystems.Therefore,theimpactofNPsas drug andgene deliveryvehicles inanimalshasbeennothing shortof revolutionary. ThesmallsizeofNPsandtheirhighlytunablechemicalandphysicalpropertieshaveenabled NP engineering for NPs to bypass biological barriers and even localize NPs in subcellular domainsofCHOandHeLacells,amongothers[10–13].NPsserveasnonviral,biocompatible, andnoncytotoxicvectorsthatcantransportarangeofbiomolecules[smallmolecules,DNA, siRNA,miRNA,proteins,andribonucleoproteins(RNPs)][14–19]tobiologicalcells.Tothisend, variousfeaturesofNPs,includingsize,shape,functionalization,tensilestrength,aspectratio, andcharge,havebeentunedforefficientintracellularbiomoleculedeliverytoanimalsystems. Furthermore, ‘smart’ NPs have been developed to achieve responsive release of cargo for increased control of site-specificity [20]. Various NPs have been manufactured and are responsive to a range of stimuli, including temperature [21], pH [22], redox [23], and the presence of enzymes[24]. Outlookand ImplicationsforNanocarriersinPlant Science IncontrasttotheproliferatestudiesdemonstratingNP-mediateddeliveryinanimals,analogous researchinplantsisrelativelysparse(Figure1),owingtothetransportchallengeimposedbytheplant cellwall,whichrendersbiomoleculedeliverymorechallengingthanformostmammaliansystems. TrendsinBiotechnology,September2018,Vol.36,No.9 883 Nevertheless, knowledge gained from biomolecule delivery to animals provides a blueprint for Glossary translationtoplantsystems,andcouldaccelerateadvancementsinNP-mediatedplantbiomolecule Callus:amassofundifferentiated delivery. NP-mediated delivery may overcome the three foremost limitations of current delivery cellsthatcanbeusedtoregenerate techniquesinplantsystemsbycontrollingNPsizetotraversethecellwall,tuningchargeandsurface plants. Cultivars:shortforcultivated propertiestocarrydiversecargo,andgreaterbreadthinutilityacrossplantspecies. varieties,agroupofplantswith desiredcharacteristicsthathave NP-mediateddeliveryinanimalshassuccessfullycarriedmanytypesofcargoindiscriminately, beenselectedfromanaturally [354_TD$DIFF]wherebycertainmethodsforplants,suchasAgrobacterium,[355_TD$DIFF]canonlydeliverDNA.Forinstance, occurringspeciesandarepassed WangandcolleaguesreportNP-mediatedRNPdelivery[356_TD$DIFF]tomammaliancellsvialipidencapsulation throughpropagation. Dicotyledonousplants:oneofthe [25].Additionally,plastidengineeringisnotachievablewithAgrobacterium,whichonlytargetsthe twomajorgroupsoffloweringplants. plantnucleargenomeandcannottargetthechloroplastormitochondrialgenomes.Conversely, Theeponymoustermoriginatesfrom targetingmoietiescanbeattachedtoNPstoobtainsubcellularlocalizationandmodificationofthe thepresenceoftwoembryonic leavesupongermination. desired genome. Hoshino and coworkers demonstrate the delivery of quantum dots to the Additionally,dicotscanbe nucleusandmitochondriaofVero[357_TD$DIFF]kidneycellsusingrespectivelocalizingsignalpeptides[26]. distinguishedfrommonocotsbya Active targeting and controlled release is not achievable with conventional plant biomolecule numberofcharacteristicsthat includeleafveins,vascularbundles, deliverymethods,buthasbeendemonstratedinanimalsystemswithNP-baseddelivery.Davis rootdevelopment,floralbundles,and andcolleaguesdesignedapolymericNPwithahumantransferrinprotein-targetingligandand pollen.Seemonocotyledonous polyethylene-glycol(PEG)ontheNPexteriortodeliversiRNAtohumanmelanomatumorcells, plants. specifically [15]. [358_TD$DIFF]Additionally, Lai and coworkers accomplished stimuli-responsive controlled Electroporation:aphysical transfectionmethodwherean releaseofdrug moleculesand neurotransmittersencapsulated within mesoporoussilica NPs electricfieldisappliedtocreate (MSNs)to[359_TD$DIFF]neuroglialcells [27].Drawing inspirationfromprogress inNP-mediateddeliveryfor temporaryporesincellmembranes animalsystems,NP-mediatedcontrolleddeliveryandreleaseofbiomoleculeswithoutspecies fortheuptakeofgeneticcargointoa limitationsinplantsisaforthcominggoal. cell. Explant:anysegmentofaplantthat isremovedtoinitiateaculture. NP-Mediated Biomolecule Delivery to Plants Inplanta:atransformationparadigm NP–Plant Interactions involvingthegenetictransformation To date, most literature on NP–plant systems focuses on plant-based metallic nanomaterial ofanysegmentofaplantwithout theneedfortissuecultureand synthesis[28],agrochemicaldelivery[29],andNPuptake,showingbothvaluableanddeleterious regeneration. effectsonplantgrowth[30,31].Dicotandmonocotplantsexhibitvariabledegreesofdirectuptake Magnifection:deliveringvirus ofmanyNPtypes,includingMSNs[32],carbonnanotubes(CNTs)[33],quantumdots[34],and vectorsusingAgrobacteriumT-DNA metal/metal oxide NPs [35–37]. Once uptaken, certain types of NPs exhibit phytotoxicity via transfer. Meristems:regionsoftissue vascularblockage,oxidativestress,orDNAstructuraldamage[30].Conversely,NPshavebeen containingundifferentiatedcells. shown to improve root [360_TD$DIFF]and leaf growth, and chloroplast production [31]. Tradeoffs between Monocotyledonousplants:oneof phytotoxicityandgrowthenhancementasafunctionofspecies,growthconditions,NPproper- thetwomajorgroupsofflowering plantsthathaveoneembryonicleaf ties,anddosagearenotwellunderstoodandcallformorestudieswithafocusonNPphysicaland upongermination.Monocotsinclude chemicalproperties.ClosingtheknowledgegapinplantphysiologicalresponsetoNPuptakeis cropsthatmakeupthemajorityofa important and should be pursued in parallel with the enhancement of plant science using balanceddiet,suchasrice,wheat, engineered nanomaterials, as the ‘nanorevolution’ in targeted delivery to animals suggests andbarley.Seedicotyledonous plants. tremendouspotentialforanalogousprogressinplants. Passivedelivery:transportofcargo acrosscellwallandmembranetoan Heuristics forNanocarrierDesign intracellularlocationwithouttheuse Whileacompletestructure–functionlandscapeofphysicalandchemicalNPpropertiesthatdrive ofmechanicalforce. Protoplasts:plantcellswiththeir cargoloadingandcellularinternalizationremainselusive,aheuristicapproachtonanocarrierdesign cellwallsremoved,typicallythrough is a useful starting point. NP uptake and transport throughout plant tissue is limited by pore eithermechanicalorenzymatic diameters,settingsizeexclusionlimits(SELs)forvarioustissuesandorgansthatarediscussed means. extensivelyintheliterature[30,38–43].Thecellwalliscommonlythoughttoexcludeparticles>5– Recalcitrant:aspeciesofplantthat isdifficulttogeneticallytransform 20nm,althoughrecentlyNPsupto50nmindiameterhavebeenreportedascellwall-permeable andregenerateintomatureplants. through unclear mechanisms [38,41]. For genetic engineering applications, where cytosolic or Oftenusedinthecontextof nuclearlocalizationisnecessarytoaffectgenefunction,theplasmaandnuclearmembranes[361_TD$DIFF]pose Agrobacterium-mediated additionalbarrierstodelivery.Inpractice,thecellwall(SEL<50nm)playsadominantroleinNPsize transformation. 884 TrendsinBiotechnology,September2018,Vol.36,No.9 [362_TD$DIFF]internalizationlimitations,asthecellmembraneSELismuchlarger(>500nm)[38].NPchargeand Transgene:agenetakenfroman shape greatly influence cell membrane translocation and thus these properties are central to organismandtransferredintothe genomeofanother.Consequently, nanocarrieroptimization[44].Plantcellularuptakecanoccurthroughenergy-dependent(endocy- transgeneintegrationresultsin tosis) and energy-independent (direct penetration) pathways that are not well understood. It is transgenicplants. commonlyreportedthatinternalizationisfasterandmoreefficientforcationicNPsversusanionic NPs, due to [363_TD$DIFF]cationic NP binding with the negatively charged cell membrane [44]. This charge preferencehasbeendemonstratedinprotoplastsandwalledplantcells[45,46]. Endosomalescapeiscriticalforsubcellulardelivery,asvesicle-entrappedNPscanbetraffickedfor degradationorexocytosis[364_TD$DIFF],andremaininaccessiblefordownstreamprocessingiftrappedinthe endosome.SubcellularlocalizationofNPsinplantsisnotwellunderstoodbutwilldependonthe uptakepathway,asendocyticproteinsandvesiclecargoplayaroleinendosomefate[47],whereby directcellpenetrationbypasses[365_TD$DIFF]endosomalvesicleformationentirely.Seragandcolleaguesreport CNTinternalization[366_TD$DIFF]inprotoplaststhroughbothdirectpenetrationandendocytosis[367_TD$DIFF],supportingprior demonstrationsinmammaliancellsthathighaspectratioNPsundergovesicle-freeinternalization [48,49].However,[368_TD$DIFF]forSeragandcolleagues,directpenetrationwasonlyobservedforcellwall- impermeablemultiwalledCNTsinprotoplasts[369_TD$DIFF][48,49],motivatingfurtherstudiesforplantcellwall internalizationbyhighaspectratioNPs.Wongandcolleagueshavedemonstratedpassiveinternali- zationofsingle-walledCNTsinextractedchloroplasts[129]throughamechanismdependentonNP sizeandzetapotential[130].Cationic,pH-bufferingpolymersarewell-knownendosomedisruption agents[50]thatcanfunctionasligandstoimproveendosomalescape.Changandcolleaguesreport energy-independentinternalizationtowalledrootcellsbyorganicallyfunctionalizedsphericalMSNs [51].Notably,endocytosedsingle-walledCNTsinplantsaretraffickedtovacuolesbutlocalizeinthe cytosolwhenloadedwithDNA[33,48]. MostNPs[370_TD$DIFF]areamenabletosurfaceadsorption(physisorption)ofbiomoleculesasasimpleconju- gationstrategy.However,physisorptionmaybeunstabledependingonthespecificNPandcargo, andthuselectrostaticinteractionsarepreferablefornoncovalentcargoloading[52].Cationicsurface chemistrynotonlyenhancesendocyticuptakeandescape[371_TD$DIFF],butisalsoamenabletoelectrostatic loadingofgeneticcargo[372_TD$DIFF]viaattractionwithnegativelychargedDNA[373_TD$DIFF]andRNA.CovalentNPsurface functionalizationistypicallyachievedbyoneofmanyof‘click’chemistries[53].Notably,covalent attachmentofthiolatedDNAandproteinstogoldNPshasshownrecentsuccess[54]butthefield remainsopentonewstrategiesforcovalentbioconjugation,especiallyforapplicationsinplants.As analternativetosurfacefunctionalization,porousNPssuchasMSNscanbeinternallyloadedwith macromoleculesorsmallchemicalsalike,forcontrolledintracellularrelease[55]. NPswithsomeorallofthepropertiesmentionedabovehavedemonstratedsuccessfulbiomolecule deliveryinplantsand[374_TD$DIFF]aregoodstartingpointsforchoosingtheappropriateNP,ligand,andcargofora givenapplication.However,itshouldbenotedthatnanocarrierdesignisacomplex,multivariable optimizationprocess,suchthatsuccesswilllikelyrequiretweakingoftheseheuristicsfordifferent systemsuntilacompleteNPstructure–functionrelationshipisestablishedforplantsystems. Nanomaterials forPlantGenetic Engineering NPsarevaluablematerialsforintracellularbiomoleculedelivery,owingtotheirabilitytocross biologicalmembranes,protectandreleasediversecargoes,and[375_TD$DIFF]achievemultifacetedtargeting viachemicalandphysicaltunability.SuchpropertieshaveenabledNPstorevolutionizetargeted deliveryandcontrolledreleaseinmammaliansystems.However,nanocarrierdeliveryinplants remainslargelyunderexploredduetothecellwall,whichistypicallyovercomebychemicalor mechanical aid (Figure 1). Passive biomolecule delivery to plants is promising for minimally invasive, species-independent[376_TD$DIFF], in vivo genetic engineering of plants, especially for transient TrendsinBiotechnology,September2018,Vol.36,No.9 885 KeyFigure Nanoparticle (NP)-Mediated Genetic Cargo Delivery to Animals and Plants (A) NPs classes commonly employed in gene(cid:415)c cargo delivery Bio-inspired NPs Metallic / Magne(cid:415)c NPs • Calcium phosphate Gene(cid:415)c cargo has been delivered in: • Gold • Chitosan • Silver Both animal and plant systems • Liposomes • Iron oxide Gene(cid:415)c cargo delivereda–d Animal systems only Gene(cid:415)c cargo deliveredt–x Plant systems only Neither system DNA RNA Protein RNP DNA RNA Protein RNP Carbon-based NPs Silicon-based NPs Polymeric NPs • Single-walled carbon • Silica spheres • Polyethylene-glycol (PEG) nanotubes • Mesoporous silica NPs •Poly(lac(cid:415)c-co-glycolic acid) • Mul(cid:415)walled carbon nanotubes (MSNs) (PLGA) • Fullerenes • Silicon carbide • Polyethylenimine (PEI) Gene(cid:415)c cargo deliverede–g Gene(cid:415)c cargo deliveredh–k Gene(cid:415)c cargo deliveredi–s DNA RNA Protein RNP DNA RNA Protein RNP DNA RNA Protein RNP (B) Modes of NP-mediated cargo delivery Electropora(cid:415)on / Biolis(cid:415)c Magnetofec(cid:415)on Microinjec(cid:415)on sonopora(cid:415)on / optopora(cid:415)on Ca(cid:415)onic transfec(cid:415)on Incuba(cid:415)on Infiltra(cid:415)on Figure1.(A)NPscommonlyusedforbiomoleculedeliveryinbothanimalandplantsystemscoverfivemajorcategories:bio-inspired,carbon-based,silicon-based, polymeric,andmetallic/magnetic.Weprovideavisualcomparisonofdeliveryofvariousgeneticcargo[DNA,RNA,proteins(site-specificrecombinasesornucleases), andribonucleoprotein(RNP)]witheachofthefiveNPtypesacrossanimalandplantsystems.ItisevidentthatNP-mediateddeliveryhasbeenutilizedwithagreater varietyofgeneticcargoinanimalsthaninplants.(b)NP-mediatedcargodeliveryisconductedvia[321_TD$DIFF]severalmeans.Physicalmethodsinclude[322_TD$DIFF]creatingtransientporesin thecellmembranewithelectricfields,soundwaves,orlight,magnetofection,[323_TD$DIFF]microinjection,andbiolisticparticledelivery[324_TD$DIFF].Nonphysicalmethodsinclude[325_TD$DIFF]theuseof cationiccarriers,incubation,andinfiltration.a[64],b[86],c[87],d[88],e[89],f[68],g[90],h[91],i[45],j[92],k[58],l[93],m[94],n[95],o[96],p[97],q[98],r[99],s[81],t[100],u[63], v[101],w[102],x[54]. 886 TrendsinBiotechnology,September2018,Vol.36,No.9 Box1.CommonGeneDeliveryMethodsinPlants Agrobacterium-MediatedTransformation Agrobacteriumtumefaciensisasoilbacteriumthatinfectsawiderangeofdicots,causingcrowngalldisease.The formationofagallonthehostplantisachievedviathestabletransfer,integration,andexpressionofbacterialDNAin infectedplants.EngineeringoftheAgrobacteriumplasmidbysubstitutionofthegall-inducingvirulencegeneswith genesofinterestconferstheabilityofAgrobacteriumtotransformthehostplant.Forthisreason,Agrobacteriumhas beenharnessedasatoolforplantgenetictransformationsincetheearly1980s[107]. GenetictransformationoccursthroughaprocessinvolvingT-DNAexport,targeting,andinsertionintotheplantnuclear genome.TheexportofT-DNAfromthebacteriumtotheplantcellisfacilitatedbytheactivityofvirulencegenespresent in the tumor inducing-plasmid of Agrobacterium, but are not themselves transferred. These virulence genes are expressedinthepresenceofphenolicinducers,suchasacetosyringone[334_TD$DIFF],producedbywoundedplantcells.Agro- bacteriumattachestoplantcells,wherebordersequencesoneithersideoftheT-strand(asingle-strandedcopyofthe T-DNAsequence)arecleaved.TheT-strandisthencarriedbyatransporterwithanuclearlocalizationsequenceand integratedintotheplantnucleargenome.Integrationoccursatrandompositionsinthegenomevianonhomologous recombination,arepairpathwayfordouble-strandedbreaksinDNA. GeneGun-MediatedTransformation Aformofbiolisticparticledelivery(alsocalledparticlebombardment),thegenegun,isaphysicalmethodthatis commonly[335_TD$DIFF]utilizedforplantgenetictransformations.Developedin1982bySanford[336_TD$DIFF]andcolleagues[108],theprocess involvesgoldortungstenmicroparticles(ormicrocarriers)coatedwithgeneticcargothatareacceleratedbypressurized helium(He)gasintoplantcells,rupturingcellwallsandmembranes.Thegenegunconsistsofthreemainparts:arupture disk,macrocarrier(holdingmicrocarrierparticles),andstoppingscreen.Therupturediskisamembranedesignedto burstatacriticalpressureofHegas.WhenHegasisacceleratedtothedesiredpressure,therupturediskbursts, creatingashockwavethatpropelsthemacrocarriertowardstheplantcells.Themacrocarrier’smomentumisstopped bythestoppingscreen,whichallowsgeneticcargo-loadedmicrocarrierstopassandentertheplantcells. UnlikeAgrobacterium-mediatedtransformation,biolisticdeliverycanresultintransformationofthenuclear,plastidal,or mitochondrialgenomesduetothenonspecificlocalizationofgeneticcargo.Consequently,moreDNAneedstobe deliveredwithbiolisticdeliverythan[337_TD$DIFF]Agrobacterium-mediateddeliverywhentargetingthenucleargenome. expression in somatic tissue (Table 2). The potential of NP-based plant delivery methods is underscoredbythelimitationsofinvitroplantstudiesingeneral,whereinregenerationcapacity varieswidelyacrossspecies,genotype,andevenwithinasingleplantdependingondevelop- mentalageofsourcetissue[56].Currently,stabletransformationrequiresprogenyregeneration fromembryogeniccalliregardlessofthedeliverymethod(Table2).Thus,paralleloptimizationof deliveryandregenerationisnecessarytoimproveefficiencyandexpandstabletransformation capabilitiestoallplantspecies. In2007,TorneyandcolleagueswerethefirsttodemonstrateNP[377_TD$DIFF]co-deliveryofDNAandchemicals toNicotianatabacumplantsviabiolisticdeliveryof100–200-nmgold-cappedMSNs[45].Inthis study,achemicalexpressioninducerwasloadedintoMSNpores((cid:1)3nm)thatweresubsequently covalentlycappedwithgoldNPs.ThecappedMSNswerethencoatedwithGFPplasmidsand deliveredbygeneguntoN.tabacumcotyledons,whereinGFPexpressionwastriggeredupon uncappingandreleaseoftheexpressioninducer[45].Thisseminalpaperdemonstratedproofof conceptthatstrategiescommonforNPdeliveryofDNAtomammaliansystemscanbeadaptedto plants.Notably,goldMSNswerealsousedforbiolisticco-deliveryofDNAandproteins,namely GFPandCre-recombinase,demonstratingtheabilityofMSNstodeliverproteinsforgeneediting [58].Manydeliverystrategiesstillrequireagenegun,electromagneticfield,orprotoplastPEG- transfection[58–63]asNPstructure–functionparametershavenotyetbeenfullyoptimizedto [378_TD$DIFF]passivelybypassthecellwall(Table3).However,for[379_TD$DIFF]systemswheremechanicalorchemicalaidis necessaryfor[380_TD$DIFF]NPinternalization,thesmallsizeandhighsurfaceareaofnanocarriersstilloffers TrendsinBiotechnology,September2018,Vol.36,No.9 887 8 8 Table1.ScopeofUseSummaryforPlantBiomoleculeDeliveryMethods 8 T Deliverymethod Adverseeffectsofdelivery Targetspecies/tissue Cargotypeandsizea Limitations re nd Physical s inB Biolisticparticle- Damagetotargettissue&cargo,low Dependsontissuetypeb/ DNA,siRNA,miRNA, Targetingleavesrequiresdetachmentfrom iote (genegun) penetrationdepth,random calli,embryos,leaves ribonucleoproteins plant,whichlimitstimetoobservedelivery c hn mediateddelivery integration (RNPs),largecargo effects;targetingembryosrequireslaborious o lo size regenerationprotocols,theeffectivenessof g y, whichishighlyspecies/cultivar-dependent S e pte Electroporation Damagetotargettissue,nonspecific Unlimited/protoplastsc[328_TD$DIFF], Nucleicacids(DNA, Limitedcargo-carryingcapacity mb transportofmaterialthroughpores meristems,pollengrains siRNA,miRNA) e r mayleadtoimpropercellfunction 2 0 1 8, Chemical V o l. Polymer-mediated Highchargedensitiesinduce Speciesamenableto Nucleicacids(DNA, Regenerationishighlyinefficientformost 3 6, delivery cytotoxicity protoplastregeneration/ siRNA,miRNA) speciesintransientstudiesandrequires N o. protoplastsc tissueculture 9 Biological Agrobacterium- Canleadtoapoptosisandnecrosis, Narrowrangeofplant LimitedtoDNA,large Leaf-targeteddeliveryistransientandgene mediateddelivery randomintegration species,especially cargosize editsarenottransmittedtoprogeny,butallow restrictedfrommonocotsd[329_TD$DIFF]/ diversebiologicalstudies;requirestissue matureplants,immature culture(exceptArabidopsis)togenerate tissue,protoplasts progeny;exhibitshighhost-specificity Viraldelivery Virusintegration(canbemitigatedby Hostplantspecies Nucleicacids(DNA, Highlylimitedcargo-carryingcapacity usingnonintegratingviruses) restrictions/matureplants, siRNA,miRNA),very meristems limitedcargosize aWhilemostbiomoleculedeliverymethodstoplantscandeliveravarietyofgeneeditingreagents,DNAplasmidsarearguablythemostcommoncargoofinterest;DNAloadingcapacitiesareausefulmetric fortheupperlimitforcargosizeseachmethodcansustain. bWhilebiolisticparticle-mediateddeliverycantheoreticallybeutilizedinunlimitedtargetspecies,theabilitytotargetspeciesdependsonthetargettissue(byextension,cellwallstructuralstrength)and capabilityofavailableequipment. cTheuseofprotoplastsastargettissuenecessitatesregenerationprotocolsandprogenysegregationthataretime-consumingandarechallengedbythelimitedplantspeciesamenabletoprotoplast regeneration. dProgresshasbeenmadeonincreasingtransformationefficiencyinrecalcitrantmonocots[9]. Box2.Nanoparticles Nanoparticles(1–100nminatleastonedimension)canbeengineeredwithvariedcompositions,morphologies,sizes, andcharges,enablingtunablephysicalandchemicalproperties.Rangingfromzerotothreedimensional,NPsarenovel toolsthathaveawiderangeofapplications,includingbutnotlimitedtoenergystorage,sensingdevices,andbiomedical applications[109,110]. Inadditiontotheirhighdegreeoftunability,NPspossessseveraladvantagesthatvalidatetheirrecentwidespreaduse, withparticularemphasisinthebiomedicalindustry.MostNPscanbepreparedwithconsistentpropertiesforlowbatch- to-batchvariability,andcanbedesignedtotargetbiologicalsystems,tissues,cells,orsubcellularstructureswithhigh specificity[52].Moreover,NP-mediatedgeneanddrugdeliverycanovercomecommonissuesfacedwithviralvectors; NPsare[338_TD$DIFF]oftenlessimmunogenicandoncogenicandcancarrydiverseand[339_TD$DIFF]largercargo,althoughtheincreasedNP sizes[340_TD$DIFF]whenbiomoleculesaresurface-loadedraisethechallengeofbypassingbiologicalbarriers[111].Furthermore,the effectsofNPusehaveyettobethoroughlystudied,thoughexistingresearchpointsto[341_TD$DIFF]nanoparticlechemistry,size,and doseastunableparameterstocontrolcytotoxicity[112,113]. NPsaretypicallyclassifiedbasedonmorphologyandchemicalproperties.Themostcommoncategoriesinclude polymeric[114],lipid[115],magnetic[116],metallic[117],andcarbon-basedNPs[118].NPscanbesynthesizedwith eitheratop-downorbottom-upapproachusingtechniquessuchaslithography[119],deposition[120],andself- assembly[121]. InNP-baseddelivery,avarietyofstrategiesareemployedtoloadNPswiththedesiredcargo.Physicaltechniquessuch asencapsulationorentrapmentarecommonlyusedindrugdeliverytoensuretheprogressivereleaseofdrugs. ChemicaltechniqueswheretheNPsurfaceismodifiedforcargograftingareindevelopment,includingnoncovalent conjugation(electrostaticinteraction[122],p-pstacking[123])andcovalentconjugation[23]. superiorperformance overconventionalmethods.For instance,Torneyand colleagues’ [381_TD$DIFF]MSN study achieved transgene expression with 1000(cid:3)less DNA than [382_TD$DIFF]the tens to hundreds of microgramsofDNAtypicallyrequiredforconventionalPEG-transfectioninprotoplasts[45]. AfewrecentexamplesshowpromiseforNP-mediatedpassivedeliverytoplantsinvitro[64–66] andinvivo[51,67]in,forexample,N.tabacumprotoplasts[66]andArabidopsisthalianaroots [51,67],respectively(Table3).Demirerandcolleagueshaverecentlyachievedpassivedelivery of DNA plasmids and [383_TD$DIFF]protected siRNA using functionalized CNT [384_TD$DIFF]NPs for transient GFP expressioninErucasativa(arugula)leavesandtransientsilencingofconstitutivelyexpressed GFP in transgenic Nicotiana benthamiana leaves [68]. This study also demonstrates CNT- mediated transient GFP expression in Triticum aestivum (wheat), indicating the potential for passiveNPdeliveryinbothmodelandcropspecieswithhighefficiencyandlowtoxicity.While many more studies are needed to optimize NP properties and functionalization, these early resultsarepromisingforfurtherexplorationofNPsasaplantbiomoleculedeliveryplatformthat addressestheshortcomingsofconventionalmethods.Furthermore,withtheadventofnucle- ase-basedgeneeditingtechnologies(Box3),itisofgreatinteresttooptimizethedeliveryof these revolutionary [385_TD$DIFF]genome engineering tools by exploring NP-based delivery strategies for [386_TD$DIFF]diversebiomolecularcargoes. Genome Editing has Enabled a New Era of Plant Science Engineered Nucleasesfor PlantGenome Editing Engineered nuclease systems, namely ZFNs, TALENs, and CRISPR-Cas, have emerged as [387_TD$DIFF]breakthrough genome editing [388_TD$DIFF]tools owing to their high genetic engineering specificity and efficiency(Box3),wherebyCRISPR-Cashas [389_TD$DIFF]demonstrated increasedsimplicity,affordability, andmultiplexingcapabilitiesoverTALENsandZFNsinplants[69,70].Since2012,CRISPR-Cas hasshownsuccessforgenomeeditinginbothmodelandcropspecies,includingA.thaliana,N. benthamiana,N.tabacum(tobacco),Oryzasativa(rice),T.aestivum(wheat),Zeamays(corn), Solanumlycopersicum(tomato),andSorghumbicolor,amongothers[71,72].Notably,CRISPR- Casmutationsassmallas1bphavebeenconservedthroughthreeplantgenerations[73,74], TrendsinBiotechnology,September2018,Vol.36,No.9 889 8 90 Table2.ChallengesinPlantGeneticEngineeringandProposedAdvantagesofNPDelivery T Desiredoutcome Nonheritablea Heritable ren (somatic/transientexpression) (germline/stabletransformation) d s in Targetedtissue Leaves Roots Protoplasts Zygoticembryo Somaticembryogeniccalli B iote [331_TD$DIFF]Tissue-specificbiologicaland (cid:4) Cellwall (cid:4) Cellwall (cid:4) Cellwalldegradation (cid:4) Cellwall (cid:4) Cellwall c hn experimentalchallenges (cid:4) Inefficientcellularuptake (cid:4) Inefficientcellularuptake protocol (cid:4) Inefficient[332_TD$DIFF]cellularuptake (cid:4) Inefficient[332_TD$DIFF]cellularuptake o log (cid:4) Epidermalbarrier (cid:4) Inefficientcellularuptake (cid:4) Embryocollection/calli (cid:4) Totipotency/calliinduction y,S induction (cid:4) Calliregeneration ep (cid:4) Calliregeneration te m b ProposedadvantagesofNP (cid:4) NP-cellwallpermeability (cid:4) NP-cellwallpermeability (cid:4) TunableNPproperties (cid:4) NP-cellwallpermeability (cid:4) NP-cellwallpermeability e r2 delivery (cid:4) NP-stomatapermeability (cid:4) CationicNProot andligandsforsubcellular (cid:4) TunableNPproperties (cid:4) TunableNPproperties 0 18 [57] accumulation[46] targeting andligandsforsubcellular andligandsforsubcellular , Vo (cid:4) AnionicNPsroot-to-shoot (cid:4) Passiveuptakewithout targeting targeting l. 36 vasculartranslocation[46] genegunorprotoplasts ,N (cid:4) Passiveuptakeordirect (cid:4) TunableNPproperties o .9 mesophyllinjection andligandsforsubcellular withoutgenegunor targeting protoplasts (cid:4) TunableNPproperties andligandsforsubcellular targeting aWhile these somatic tissues (leaves, roots, protoplasts) are most commonly targeted for transient expression experiments, heritable outcomes may be derived [333_TD$DIFF]through somatic embryogenesis (dedifferentiationofsomatictissue). Table3.SelectSummaryofNP-MediatedGeneticEngineeringinPlants NPtype Cargo Plantspecies;cell/tissuetype Deliverymethod Comments Year Refs Withexternalaid GoldcappedMSNs GFPplasmid;chemical N.tabacumcotyledons;Z. Biolistic Co-deliveryandcontrolledreleaseof 2007 [45] expressioninducer maysembryos DNAandchemicals Poly-L-lysinecoated GFPplasmid DioscoreazingiberensisC.H. Sonoporation 5%transientexpressionefficiency; 2008 [60] starchNPs Wrightcallisuspension someintegrationoccurs Gold-platedMSNs GFPandmCherryplasmids; Alliumcepaepidermistissue Biolistic DNAandproteinco-delivery 2012 [59] GFPprotein MagneticgoldNPs b-glucuronidase(GUS) Brassicanapusprotoplasts Magneticfield TransientGUSexpression 2013 [61] plasmid andwalledcellsuspension Gold-platedMSNs AmCyan1andDsRed2 Z.maysembryos Biolistic DNAandproteinco-delivery;both 2014 [58] plasmids;Creprotein transientandstableexpression Dimethylaminoethyl Yellowfluorescentprotein N.tabacumandCeratodon PEGtransfection Bothtransientandstableexpression 2017 [62] methacrylate(DMAEM) (YFP)andGFPplasmids purpureusprotoplasts polymerNPs MagneticFe3O4NPs Selectablemarkergene Gossypiumhirsutumpollen Magneticfield (cid:1)1%efficiencyforgeneratingstable 2017 [63] plasmids transgenicseeds Invitrowithoutexternalaid Polyamidoamine GFPplasmid AgrostisstoloniferaL.calli Passive 48.5%cellsshowedtransient 2008 [65] (PAMAM)dendrimerNPs expression CalciumphosphateNPs GUSplasmid Brassicajunceahypocotyl Passive 80.7%stabletransformation 2012 [64] (CaPNPs) explants efficiency Organically YFPplasmid N.tabacumprotoplastsand Passive Bothtransientandstableexpression 2015 [66] functionalizedCNTs leafexplants Invivowithoutexternalaid Organically mCherryplasmid A.thalianaroots Passive 46.5%transientexpressionefficiency 2013 [51] functionalizedMSNs PAMAMdendrimerNPs Double-strandedDNAfor A.thalianaroots Passive Developmentalgenesilencingledto 2014 [67] T RNAinterference systemicphenotypes re nd Polymerfunctionalized GFPplasmid;siRNAfor E.sativa,N.benthamiana, Passive 95%transientsilencingefficiency; [68] s in CNTs transgenicGFPsilencing andT.aestivumleaves transientexpressioninmatureleaves B io te c h n o lo g y, S e p te m b e r 2 0 1 8 , V o l. 3 6 , N o . 9 8 9 1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.