ebook img

Nanofabrication: Principles and Applications PDF

84 Pages·2016·3.558 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nanofabrication: Principles and Applications

SPRINGER BRIEFS IN MATERIALS Christo Papadopoulos Nanofabrication Principles and Applications 123 SpringerBriefs in Materials TheSpringerBriefsSeriesinMaterialspresentshighlyrelevant,concisemonographs on a wide range of topics covering fundamental advances and new applications in thefield.Areasofinterestincludetopicalinformationoninnovative,structuraland functional materials and composites as well as fundamental principles, physical properties, materials theory and design. SpringerBriefs present succinct summaries ofcutting-edgeresearchandpracticalapplicationsacrossawidespectrumoffields. Featuringcompactvolumesof50to125pages,theseriescoversarangeofcontent from professional toacademic. Typical topicsmightinclude (cid:129) A timely report of state-of-the-art analytical techniques (cid:129) A bridge between new research results, as published in journal articles, and a contextual literature review (cid:129) A snapshot of a hot or emerging topic (cid:129) An in-depth case study or clinical example (cid:129) A presentation of core concepts that students must understand in order to make independent contributions Briefsarecharacterizedbyfast,globalelectronicdissemination,standardpublishing contracts, standardized manuscript preparation and formatting guidelines, and expeditedproductionschedules. More information about this series at http://www.springer.com/series/10111 Christo Papadopoulos Nanofabrication Principles and Applications 123 Christo Papadopoulos Electrical andComputer Engineering University of Victoria Victoria Canada ISSN 2192-1091 ISSN 2192-1105 (electronic) SpringerBriefs inMaterials ISBN978-3-319-31740-3 ISBN978-3-319-31742-7 (eBook) DOI 10.1007/978-3-319-31742-7 LibraryofCongressControlNumber:2016943135 ©TheAuthor(s)2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland Contents 1 Introduction.... .... .... ..... .... .... .... .... .... ..... .... 1 1.1 Nanostructure Fabrication... .... .... .... .... .... ..... .... 3 1.2 Overview of Brief.... ..... .... .... .... .... .... ..... .... 4 Reference .. .... .... .... ..... .... .... .... .... .... ..... .... 5 2 Silicon Planar Processing and Photolithography.... .... ..... .... 7 2.1 Photolithographic Patterning. .... .... .... .... .... ..... .... 8 2.2 Thin Film Deposition. ..... .... .... .... .... .... ..... .... 12 2.3 Summary .. .... .... ..... .... .... .... .... .... ..... .... 13 References.. .... .... .... ..... .... .... .... .... .... ..... .... 14 3 Direct-Write Lithography Approaches ... .... .... .... ..... .... 15 3.1 Electron-Beam Lithography . .... .... .... .... .... ..... .... 15 3.2 Focused Ion-Beam Lithography .. .... .... .... .... ..... .... 19 3.2.1 Resist Patterning.... .... .... .... .... .... ..... .... 19 3.2.2 Milling .. .... ..... .... .... .... .... .... ..... .... 19 3.3 Summary .. .... .... ..... .... .... .... .... .... ..... .... 21 References.. .... .... .... ..... .... .... .... .... .... ..... .... 21 4 Stamping Methods... .... ..... .... .... .... .... .... ..... .... 23 4.1 Nanoimprint Lithography... .... .... .... .... .... ..... .... 23 4.2 Microcontact Printing. ..... .... .... .... .... .... ..... .... 26 4.3 Summary .. .... .... ..... .... .... .... .... .... ..... .... 28 Reference .. .... .... .... ..... .... .... .... .... .... ..... .... 28 5 Scanning-Probe Methods . ..... .... .... .... .... .... ..... .... 29 5.1 Single Atom/Molecule Manipulation .. .... .... .... ..... .... 30 5.2 Nanolithography. .... ..... .... .... .... .... .... ..... .... 31 5.2.1 Subtractive Patterning.... .... .... .... .... ..... .... 32 5.2.2 Additive Patterning.. .... .... .... .... .... ..... .... 32 5.3 Summary .. .... .... ..... .... .... .... .... .... ..... .... 34 References.. .... .... .... ..... .... .... .... .... .... ..... .... 35 v vi Contents 6 Natural Lithography. .... ..... .... .... .... .... .... ..... .... 37 6.1 Self-assembled Masks. ..... .... .... .... .... .... ..... .... 37 6.1.1 Colloidal Lithography.... .... .... .... .... ..... .... 37 6.1.2 Anodic Aluminum Oxide . .... .... .... .... ..... .... 39 6.1.3 Block Copolymers... .... .... .... .... .... ..... .... 41 6.2 Templated Growth ... ..... .... .... .... .... .... ..... .... 42 6.3 Summary .. .... .... ..... .... .... .... .... .... ..... .... 44 References.. .... .... .... ..... .... .... .... .... .... ..... .... 44 7 Direct-Growth and Self-assembly.... .... .... .... .... ..... .... 45 7.1 Vapor-Based Growth . ..... .... .... .... .... .... ..... .... 45 7.1.1 Metallic Clusters and Quantum Wells/Dots.... ..... .... 45 7.1.2 Carbon Nanotubes and Semiconductor Nanowires ... .... 49 7.2 Liquid-Based Growth. ..... .... .... .... .... .... ..... .... 52 7.2.1 Colloids.. .... ..... .... .... .... .... .... ..... .... 52 7.2.2 Composites... ..... .... .... .... .... .... ..... .... 53 7.2.3 Molecular Structures. .... .... .... .... .... ..... .... 55 7.3 Hybrid Methods. .... ..... .... .... .... .... .... ..... .... 59 7.4 Summary .. .... .... ..... .... .... .... .... .... ..... .... 60 References.. .... .... .... ..... .... .... .... .... .... ..... .... 61 8 Practical Examples and Case Studies of Nanofabrication ..... .... 63 8.1 Tri-Gate Field-Effect Transistors (3D FETs). .... .... ..... .... 63 8.2 Patterned Two-Dimensional Electron Gas (2DEG) Structures. .... 65 8.3 Nanoscale Biosensors. ..... .... .... .... .... .... ..... .... 67 8.4 Photonic Crystals and Nanophotonics.. .... .... .... ..... .... 68 8.5 Nanomechanical Structures.. .... .... .... .... .... ..... .... 71 8.6 Polymer-CNT Composites .. .... .... .... .... .... ..... .... 73 8.7 CNT Arrays and Junctions.. .... .... .... .... .... ..... .... 77 Reference .. .... .... .... ..... .... .... .... .... .... ..... .... 81 Chapter 1 Introduction Alltechnologyisultimatelybasedonthepropertiesofthematerial(s)fromwhichit ismade.Thetraditionaldivisionofhistoryintoe.g.,stoneorironages,pointstothe importantrolematerialsandtechnologyhaveplayedinhumancivilization.Wenow know that the different interactions among atoms and their arrangement in space leads to the wide diversity of materials found in nature; from individual molecules to complex organisms. The periodic table describes elements at the scale of indi- vidual atoms.1 Just beyond the atomic level, the properties we normally associate withmosttypesofmatter(solids,liquids,etc.)begintoappear(e.g.,color,density, viscosity,conductivity).Nanotechnologyisessentiallyaboutengineeringmaterials andtheirpropertiesattheseverysmalllengthscales(approximatelyintherangeof 1–100 nm) to create new types of structures and devices. Astheextentofamaterialisreducedinoneormorespatialdimensionsmanyof its properties can be dramatically altered. This makes nanotechnology a subject of both fundamental and practical interest. By controlling the size and shape of a structureatthenanometerscale(ornanoscale),themechanical,chemical,electrical, optical, etc., properties of materials can be tailored for specific applications. Nanofabrication seeks to make or construct such structures using a variety of approaches,whichisthetopicofthisBrief.Weshallseethatnanoscalefabrication oftenrequiresuniquetechniquesandtoolsthatmakeitdistinctfromthecreationof larger scale man-made structures such as bridges, towers and even miniature parts or machines. 1Roughly1Åor10−10m. ©TheAuthor(s)2016 1 C.Papadopoulos,Nanofabrication,SpringerBriefsinMaterials, DOI10.1007/978-3-319-31742-7_1 2 1 Introduction Fig.1.1 Numberof nanoscalescienceand technologyrelatedpatents (whitecircles,USPTO)and publications(blackdots,Web ofScience)peryearbetween 1991and2012[adaptedfrom H.Chenetal., J.Nanopart.Res.15, 1951(2013)] A now famous lecture given by Richard Feynman in December 1959,2 is often credited with first discussing nanofabrication approaches and nanotechnology in general. While this may not have been the earliest exposition or account3 of nanofabricationitwascertainlyapioneeringvisionofthegreatpotentialthatexists withinnanoscalescienceandtechnology.TheinitialideasmentionedinFeynman’s talk and many others would continue to be developed in the following decades, which has led to the practical implementation of structures and applications based on nanoscale materials. Figure 1.1 displays the number of patents (USPTO) and scientific publications (worldwide) related to nanoscale science and technology from 1991 to 2012. The tremendous recent growth in the area has been fueled by a comprehensive global effort involving governments, academia and industry. Large corporations such as IBM, Samsung, Xerox, Intel, GE, 3M, etc. are all involved in nanomaterials research and development and it is now commonplace to see nanotechnology occupyingacentralrolebothinscientificresearchandaspartofmanycommercial products from electronics to textiles, medicine, automobiles/aircraft and beyond, whilethefieldcontinuestogrowatarapidpace.4This“nano”ubiquity(stilljustin its nascent stages)haslargelybeenenabled byadvancesinnanofabrication, which underpins the application of nanoscale materials. 2R.P. Feynman, “There’s Plenty of Room at the Bottom”, Annual Meeting of the American PhysicalSociety,1959.TranscriptreprintedinJ.Microelectromech.Syst.1,60(1992). 3See,e.g.,M.Faraday,Philos.Trans.R.Soc.London147,145(1857). 4The market for products incorporating nanomaterials is expected to be several trillion USD by 2020. 1.1 NanostructureFabrication 3 Fig.1.2 Nanostructure examples, from left to right—high-resolution transmission electron microscope(HRTEM)cross-sectionimageofaCdSe-CdScore-shellquantumdotshowingatomic latticeplanes,scalebar=2nm[sourceO.Chenetal.,Nat.Mater.12,445(2013)];Single-walled carbon nanotube schematic model; HRTEM cross-section image of GaN/AlN quantum wells consistingof2–3atomicmonolayersofgalliumnitridesandwichedbetweenlayersofaluminum nitride[sourceJ.Sellésetal.,Sci.Rep.6,21650(2016)] 1.1 Nanostructure Fabrication Inthistextwedefineananostructuretobeanymaterialwhichhasnanometerscale (*1–100 nm)extentinatleastonespatialdimension.Oneoftenspeaksof2D,1D or0Dstructures,5whichreferstomaterialsconfined,i.e.,withnanoscaleextent,in one, two or all three dimensions, respectively. Examples of 0D structures include semiconductor quantum dots, C buckyballs and metal nanoparticles. 1D objects 60 include carbon nanotubes, semiconductor nanowires and long molecules such as DNA, polymers, etc. 2D materials have been studied for many years with the semiconductor quantumwell beingthemostwell-knownexample.Applicationsof nanostructures include: 0D materials ascatalysts, inbiosensors and advanced laser structures; 1D structures in various composite materials, electronics and energy generation/storage; Quantum wells in laser diodes (e.g., in optical telecommunica- tionsandopticaldiscstorage)andalsoforhigh-speedtransistors(e.g.,inmicrowave/ RF applications). Figure 1.2 contains examples of some of the nanostructures that willappearinsubsequentchapters. Thenanofabricationmethodsusedtocreatenanostructuresareusuallyclassified as either top-down or bottom-up (Fig. 1.3). Top-down methods are usually sub- tractive,i.e.,materialisremovedtoformthedesiredstructure(e.g.,bychemicalor physical etching), and in particular always involve the reduction of a pre-existing material or structure. On the other hand, bottom-up approaches are additive, i.e., material is grown or assembled to form nanostructures (e.g., from vapor or liquid phases). The two standard examples used to represent top-down and bottom-up approaches are lithography and self-assembly (or growth), respectively. It is 5Generally,2D,1Dand0Dstructuresarealsooftenreferredtoasquantumwells,wiresanddots, respectively.However,thesetermsmayalsobeusedtodescribespecificnanostructuresdepending onthecontext(e.g.,“quantumdots”typicallyimpliesa0Dstructuremadefromasemiconducting material,unlessotherwisenoted).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.