Nanocomposite, Ceramic, and Thin Film Scintillators Pan Stanford Series on Renewable Energy — Volume 2 Nanocomposite, Ceramic, and Thin Film Scintillators editors edited by Preben Maegaard Anna Krenz Martin Nikl Wolfgang Palz The Rise of Modern Wind Energy Wind Power for the World Published by Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988 Email: [email protected] Web: www.panstanford.com British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Nanocomposite, Ceramic, and Thin Film Scintillators All rights reserved. This book, or parts thereof, may not be reproduced in any form Copyright © 2017 by Pan Stanford Publishing Pte. Ltd. or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN 978-981-4745-22-2 (Hardcover) ISBN 978-981-4745-23-9 (eBook) Printed in the USA Contents Preface 1. In troduc tion to Scintillators x1i Martin Nikl and Valentin V. Laguta 2. 1N.a1n ocomInptroosdituec Stcioinnt illators 215 Markus P. Hehlen, Nickolaus A. Smith, Michael W. Blair, Andy Li, Sy Stange, Robert D. Gilbertson, Edward A. McKigney, and Ross E. Muenchausen 2.1 Introduction 25 2.2 Physical Properties of Nanocomposite Scintillators 30 2.2.1 Optical Properties 30 2.2.1.1 Material requirements for radiation detectors 30 2.2.1.2 Scattering in optical nanocomposites 35 2.2.2 Energy Deposition 40 2.2.3 Energy Transport 43 2.3 Experimental Methods 49 2.3.1 Optical Characterization 50 2.3.2 Radioluminescence Characterization 53 2.3.3 Gamma-Ray Response Characterization 57 2.4 Nanocomposite Materials 58 2.4.1 Organic–Organic Composites 58 2.4.2 Inorganic–Organic Composites 59 2.4.3 Inorganic–Inorganic Composites 64 3. G2.l5a ss–CSeurammmica Srcyi natnildla Otourt look 6799 Jacqueline A. Johnson, Russell L. Leonard, Carlos Alvarez, Brooke Barta, and Stefan Schweizer 3.1 Introduction 80 vi Contents 3.2 Glass Ceramics 81 3.2.1 Materials Systems 81 3.2.2 Characterization 84 3.3 Applications in Medicine 90 3.4 Homeland Security Applications 96 4. 3Tr.5an spaCreonntc Hluigshio-nDse nsity Oxide Ceramics Prepared 101 by Spark Plasma Sintering 107 Takashi Goto, Akihiko Ito, Akira Yoshikawa, Shunsuke Kurosawa, and Jan Pejchal 4.1 Introduction 108 4.1.1 Transparent Polycrystalline Ceramics 108 4.1.2 Spark Plasma Sintering 108 4.1.2.1 A schematic of the SPS method 109 4.1.2.2 Densification in the SPS process 110 4.1.3 Transpareαnt Ceramics Prepared by SPS 111 4.1.3.1 -Al2O3 113 4.1.3.2 MgO 113 4.1.3.3 Sesquioxides (Y2O3, Sc2O3, Eu2O3, Lu2O3) 113 4.1.3.4 Spinel (MgAl2O4, ZnAl2O4) 114 4.1.3.5 Garnets (Y3Al5O12, Lu3Al5O12) 114 4.1.3.6 Glasses 114 4.1.4 Fundamental Properties of Lu-Based Oxide Ceramics 114 4.2 Preparation of Transparent Lu2O3 Ceramics 116 4.2.1 Effect of Temperature 117 4.2.2 Effect of Pressure and Holding Time 118 4.2.3 Two-Step Sintering 119 4.2.4 Effect of LiF Addition 121 4.2.5 Comparison with the Other Sintering Techniques 122 4.3 Preparation of Transparent Lu2Hf2O7 Ceramics 123 4.4 Preparation of Transparent Lu3Al5O12 Ceramics 124 Contents vii 4.4.1 Effect of Temperature 125 3+ 2+ 4.4.2 Reduction of Eu to Eu in LuAG Ceramics 126 4.4.3 Comparison with the Other Sintering Techniques 127 4.5 Ceramic Scintillation Materials Prepared by SPS 127 4.5.1 Garnet-Based Ceramics 128 4.5.2 SrHfO3-Based Ceramics 133 4.5.3 Lu2O3-Based Scintillation Ceramics 138 5. 4LP.6E -GroSwunm Tmhianr-yF ilm Scintillators 114525 Miroslav Kucera and Petr Prusa 5.1 Introduction 156 5.2 Liquid Phase Epitaxy 157 5.2.1 Principles of LPE of Oxide Scintillators 157 5.2.2 Isothermal LPE 158 5.2.3 Fluxes 161 5.2.3.1 PbO-B2O3 flux (here referred as PbO flux) 162 5.2.3.2 BaO-B2O3-BaF2 flux (here referred as BaO flux) 163 5.2.3.3 Other fluxes 164 5.2.3.4 Ion segregation coefficients 164 5.2.4 Epitaxial Growth on Substrates 167 5.2.5 Defects in LPE Films 171 5.3 Characterization Methods: Experimental Techniques 176 5.3.1 XRD and Structural Properties of Films 176 5.3.2 Optical Methods: Absorption, Photoluminescence, PL Decay Kinetics 179 5.3.3 Scintillation Properties 180 5.3.4 LY Measurements of Scintillating Epitaxial Films 181 5.4 Materials 186 5.4.1 Garnets 186 3+ 5.4.1.1 Ce -doped YAG and LuAG 189 3+ 5.4.1.2 Ce -doped multicomponent garnets 193 viii Contents 3+ 5.4.1.3 Pr -doped garnets 198 5.4.2 Perovskites 203 3+ 5.4.2.1 Ce -doped YAP/LuAP 204 3+ 3+ 5.4.2.2 Pr , Tb -doped perovskites 206 5.4.2.3 Concluding remarks 208 5.4.3 Orthosilicates 209 3+ 5.4.3.1 Ce -doped YSO, LSO 209 5.4.3.2 Other dopants 213 5.4.3.3 Concluding remarks 215 5.5 Applications of the LPE Films 215 5.5.1 Electron Detection in SEM 215 5.5.2 X-ray Microimaging Screens 215 5.5.3 Other Applications of Epitaxial Films: 6. Luminescence oWf Pabv-e agnudid Bei -PRlealnaater dL aCseenrtse, rWs ianr m LEDs 217 Aluminum Garnet, Perovskite, and Orthosilicate Single-Crystalline Films 227 Svetlana Zazubovich, Aleksei Krasnikov, Yuriy Zorenko, Vitali Gorbenko, Vladimir Babin, Eva Mihokova, and Martin Nikl 6.1 Introduction 227 6.2 Sample Preparation and Characterization Methods 230 2+ 6.3 Luminescence of Single Pb -Based Centers in Aluminum Garnets and Perovskites 234 6.4 Luminescence of Complex Pb-Related Centers in Aluminum Garnets and Perovskites 240 6.5 Influence of Pb-Related Centers on 3+ 3+ Luminescence of Ce and Pr in Garnets and Perovskites 244 6.5.1 Energy Transfer from the Excited Pb-Related Centers to Impurity Ions 245 3+ 6.5.2 Energy Transfer from Excited Ce 3+ or Pr Ions to Lead-Induced Centers 245 6.5.3 Reabsorption of the Localized Exciton Emission in the Absorption Bands of 3+ 3+ Ce and Pr Centers 246 Contents ix 6.5.4 Overlap of the Emission Bands of Lead-Induced and Impurity Centers 247 6.6 Luminescence of Lead-Related Centers in Lutetium and Yttrium Oxyorthosilicates 247 6.6.1 Characteristics of the Ultraviolet Luminescence 249 6.6.2 Characteristics of the Blue Luminescence 254 3+ 6.7 Luminescence of Bi -Related Centers in Aluminum Garnets 255 6.7.1 Characteristics of the Ultraviolet Luminescence 255 6.7.2 Characteristics of the Visible Luminescence 260 3+ 6.8 Luminescence of Bi -Related Centers in Lutetium and Yttrium Oxyorthosilicates 263 6.8.1 Characteristics of the Ultraviolet Luminescence 263 6.8.2 Characteristics of the Visible Luminescence 269 6.9 Possible Models of Pb-Related Centers in Aluminum Garnets and Perovskites 270 2+ 6.9.1 Single Pb -Based Centers of the 2 4+ Type of {Pb –Pt } 271 2+ 6.9.2 Single Pb -Based Centers of the 2+ 4+ Type of {Pb –Pb } 271 6.9.3 Dimer Lead Centers 272 6.10 The Origin of Pb-Related Centers in Lutetium and Yttrium Oxyorthosilicates 273 6.11 The Origin of Bi-Related Centers in Aluminum Garnets and Oxyorthosilicates 277 6.11.1 The Centers Responsible for the Ultraviolet Luminescence 279 6.11.2 The Centers Responsible for the Visible Luminescence 281 6.12 Scintillation Characteristics of Single-Crystalline Films 284 6.13 Conclusions 287 x Contents 7. ZnO-Based Phosphors and Scintillators: Preparation, Characterization, and Performance 303 Daniel Nižňanský, Jakub Růžička, Alena Beitlerová, Jindřich Houžvička, Petr Horodyský, Václav Tyrpekl, Ivo Jakubec, Akira Yoshikawa, and Martin Nikl 7.1 Introduction 304 7.2 Experimental 309 7.2.1 Sample Preparation 309 7.2.2 Characterization Methods 312 7.3 Experimental Results 312 Index7.4 Summary 327 333