ebook img

Nanocatalysts in Environmental Applications PDF

122 Pages·2018·1.385 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nanocatalysts in Environmental Applications

Green Energy and Technology Samira Bagheri Nurhidayatullaili Muhd Julkapli Nanocatalysts in Environmental Applications Green Energy and Technology More information about this series at http://www.springer.com/series/8059 Samira Bagheri Nurhidayatullaili Muhd Julkapli (cid:129) Nanocatalysts in Environmental Applications 123 Samira Bagheri Nurhidayatullaili MuhdJulkapli Nanotechnology andCatalysis Nanotechnology andCatalysis ResearchCentre ResearchCentre University of Malaya University of Malaya Kuala Lumpur Kuala Lumpur Malaysia Malaysia ISSN 1865-3529 ISSN 1865-3537 (electronic) Green Energy andTechnology ISBN978-3-319-69556-3 ISBN978-3-319-69557-0 (eBook) https://doi.org/10.1007/978-3-319-69557-0 LibraryofCongressControlNumber:2017962975 ©SpringerInternationalPublishingAG,partofSpringerNature2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerInternationalPublishingAGpart ofSpringerNature Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface The field of nanocatalysis has undergone an explosive growth during the past decade, both in homogeneous and heterogeneous catalyses. Nanoparticles have a largesurface-to-volumeratiocomparedtobulkmaterials,andtheyareattractiveto useascatalysts.Catalystsdailyaccelerateandboostthousandsofdifferentchemical reactions and thereby form the basis for the multibillion-dollar chemical industry worldwide and indispensable environmental protective technologies. Research in nanotechnology and nanoscience is expected to have a great impact on the devel- opment of new catalysts. Current demand for clean and renewable energy and environmental concerns urges researchers to approach for greener advanced oxi- dation processes such as photocatalysis. Visible-light-driven photocatalytic water splitting for the generation of clean hydrogen fuel and pollutant degradation for cleaner environment are promising topics. Design and development of advanced materials as photocatalyst is very crucial, and the success of the process lies with materials. In this book, we have highlighted principles and mechanism of several photocatalytic systems and design of advanced materials for their applications in photocatalysis.Veryfewbooksareavailableoncatalysisinproductionschemesor itsprimaryapplications,suchasenvironmentalapplications.Thisbookfillsthatgap withdetaileddiscussionsofenhancedphotocatalyticactivitybyusingmodification activated carbon in Chap. 1, surface modification of titania/gold nanoparticles for photocatalytic applications in Chap. 2, black titania for photodecomposition of organiccompoundsinChap.3,applicationsoftitaniaasaheterogeneouscatalystfor degradation of landfill leachates in Chap. 4, easy separation of magnetic photocat- alyst from aqueous pollutants in Chap. 5, solar-driven, highly stable photocatalyst system for mitigation oforganic pollutants viamixedphase titania inChap.6,and layered catalyst compositions for photo-treating of industrial effluents in Chap. 7. Kuala Lumpur, Malaysia Samira Bagheri Nurhidayatullaili Muhd Julkapli v Contents 1 Enhanced Photocatalytic Activity by Using Modification Activated Carbon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction: Basic Principles of Heterogeneous Photocatalysis System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Activated Carbon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Characterization of Carbon Nanomaterials. . . . . . . . . . . . . 2 1.2.2 Transformation of Biomass to Carbon. . . . . . . . . . . . . . . . 2 1.2.3 Catalytic Transformation of Biomass to Carbon. . . . . . . . . 3 1.3 Photocatalytic Systems with Activated Carbon . . . . . . . . . . . . . . . 8 1.3.1 Effect of Surface Properties . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.2 Activated Carbon/Transition Metal Oxide Photocatalysis System . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4 Activated Carbon Photocatalytic Systems: Future Trend . . . . . . . . 17 1.4.1 Granular and Spherical Activated Carbon Photocatalytic Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.4.2 ACF Photocatalysis System . . . . . . . . . . . . . . . . . . . . . . . 18 1.4.3 Graphene/Titania Photocatalysis System . . . . . . . . . . . . . . 18 1.4.4 Titania/CNT Photocatalysis System. . . . . . . . . . . . . . . . . . 18 1.4.5 Titania: Activated Carbon Semiconductor Doped Photocatalysis System . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.4.6 Titania: Activated Carbon Nonmetal Doped Photocatalysis System . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2 Surface Modification of Titania/Gold Nanoparticles for Photocatalytic Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.1 Introduction: Material Design in Photocatalysis System . . . . . . . . 25 2.1.1 Heterogeneous Photocatalysis System: Challenging Aspect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 vii viii Contents 2.2 Alteration on Structured of Photocatalysis System . . . . . . . . . . . . 26 2.2.1 Composites System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.2 Surface Attachment System . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.3 Doping System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3 Nanosized Gold Particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.1 Gold Nanoparticles: Material Development . . . . . . . . . . . . 27 2.3.2 Gold Nanoparticles: Properties . . . . . . . . . . . . . . . . . . . . . 28 2.4 Gold-Modified Semiconductor Photocatalysis: Material Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.5 Gold-Modified Semiconductor Photo Catalysis: Photocatalytic Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5.1 Titania–Gold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5.2 ZnO–Gold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.5.3 BiVO –Gold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4 2.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3 Black Titania for Photodecomposition of Organic Compounds. . . . . 37 3.1 Introduction: Photocatalyst Technology . . . . . . . . . . . . . . . . . . . . 37 3.2 Titania Photocatalysis: Fundamental Concept . . . . . . . . . . . . . . . . 38 3.2.1 Photocatalysis System: Challenges . . . . . . . . . . . . . . . . . . 38 3.3 Hydrogenated Titania Photocatalyst. . . . . . . . . . . . . . . . . . . . . . . 38 3.3.1 Hydrogenation Process: Fundamental Concept. . . . . . . . . . 39 3.3.2 Hydrogenation Process: Procedures and Parameters . . . . . . 39 3.3.3 Hydrogenated Titania: Basic Concept . . . . . . . . . . . . . . . . 41 3.4 Doped-Hydrogenated Titania Photocatalysis Systems . . . . . . . . . . 43 3.4.1 N-doped Hydrogenated Titania. . . . . . . . . . . . . . . . . . . . . 44 3.4.2 p-Type Doping Semiconductor. . . . . . . . . . . . . . . . . . . . . 45 3.5 Photodegradation Properties of Hydrogenated and Doped Titania . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4 Applications of Titania as a Heterogeneous Catalyst for Degradation of Landfill Leachates . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.1 Introduction: Principle of Organic Compound Decomposition . . . . 51 4.2 Photocatalysis Treatment: Basic Theory and Applications. . . . . . . 52 4.3 Design of Heterogeneous Photocatalysis . . . . . . . . . . . . . . . . . . . 52 4.3.1 Sizing of Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.3.2 Structured Modification . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.3.3 Functionalization Approach . . . . . . . . . . . . . . . . . . . . . . . 55 4.4 Photodegradation of Organic Compounds in Landfill . . . . . . . . . . 55 4.4.1 Operation Parameters: pH of Medium. . . . . . . . . . . . . . . . 56 4.4.2 Operation Parameters: Temperature. . . . . . . . . . . . . . . . . . 57 Contents ix 4.4.3 Operation Parameters: Light Intensity . . . . . . . . . . . . . . . . 57 4.4.4 Operation Parameters: Ozone Dosage . . . . . . . . . . . . . . . . 58 4.4.5 Operation Parameters: Catalysis Dosage . . . . . . . . . . . . . . 59 4.4.6 Operation Parameters: Reaction Time . . . . . . . . . . . . . . . . 59 4.4.7 Operation Parameters: Effect of Inorganic Ions . . . . . . . . . 60 4.4.8 Operation Parameters: Dissolved O . . . . . . . . . . . . . . . . . 60 2 4.5 Photocatalytic Activities in Landfill . . . . . . . . . . . . . . . . . . . . . . . 61 4.5.1 Photodecomposition Mechanism of Landfill Pollutant Compounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.5.2 Photodecomposition Kinetics of Landfill Pollutant Compounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.6 Heterogeneous Catalysis: Next Application in Landfill . . . . . . . . . 62 4.7 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5 Easy Separation of Magnetic Photocatalyst from Aqueous Pollutants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.1 Overview of Photocatalyst System. . . . . . . . . . . . . . . . . . . . . . . . 69 5.2 Deficiency of Photocatalyst System . . . . . . . . . . . . . . . . . . . . . . . 70 5.3 Preface and Benefits of Magnetic Photocatalysis System. . . . . . . . 70 5.4 Magnetic Photocatalyst System . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.4.1 Magnetic Photocatalyst: Metal Oxide/Metal Composites. . . 71 5.4.2 Magnetic Photocatalyst: Carbon-Based Composites . . . . . . 74 5.4.3 Magnetic Photocatalyst: Ceramic Composites . . . . . . . . . . 76 5.4.4 Magnetic Photocatalyst: Metal Doped. . . . . . . . . . . . . . . . 78 5.4.5 Magnetic Photocatalyst: Nonmetal Doped . . . . . . . . . . . . . 78 5.5 Industrial Relevance of Magnetic Photocatalyst . . . . . . . . . . . . . . 79 5.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6 Solar-Driven, Highly Stable Photocatalyst System for Mitigation of Organic Pollutants via Mixed Phase Titania. . . . . . . . . . . . . . . . . 87 6.1 Introduction: General Concept of Solar-Driven Photocatalyst . . . . 87 6.2 Mixed Phase Metal Oxide: Solar-Driven Photocatalyst Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.2.1 Factor of Highly Efficient Photocatalyst Process . . . . . . . . 89 6.3 Development Routes of Mixed Phase Titania. . . . . . . . . . . . . . . . 90 6.4 Physicochemical Nature of Mixed Phase Titania. . . . . . . . . . . . . . 93 6.5 Efficiency and Mechanism of Photocatalytic Activities of Mixed Phase Titania. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.5.1 Combination of Mixed Phase Titania (Brookite–Rutile) . . . 97 6.5.2 Combination of Mixed Phase Titania (Brookite–Anatase) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.5.3 Combination of Mixed Phase Titania (Rutile–Anatase) . . . 98 x Contents 6.6 Real Implementations of Mixed Phase Titania in Mitigation of Organic Pollutants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.7 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7 Layered Catalyst Compositions for Photo-Treating of Industrial Effluents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.1 Introduction: Solid Metal Oxide in Photocatalyst System . . . . . . . 105 7.1.1 Preview of Layered Catalyst Composition. . . . . . . . . . . . . 106 7.2 Categories of Layered Catalyst Composition . . . . . . . . . . . . . . . . 106 7.2.1 Hydroxide-Based Catalyst . . . . . . . . . . . . . . . . . . . . . . . . 106 7.2.2 Nanocarbon-Based Catalyst . . . . . . . . . . . . . . . . . . . . . . . 109 7.2.3 Clay-Based Catalyst. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.3 Industrial Applications of Layered Catalyst . . . . . . . . . . . . . . . . . 112 7.4 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.