Nano-Ultrasonics and Nano-Acoustics Chi-Kuang Sun Graduate Institute of Electro-Optical Engineering, Department of Electrical Engineering, and Center for Genomic Medicine National Taiwan University & Research Center for Applied Science, Acadia Sinica Taipei, TAIWAN Medical Ultrasonics Resolution limited by Acoustic Wavelength 50MHz, 50-500 μm Acoustic Controlled Electronic Devices by using SAWs (Surface Acoustic Waves) Frequency ~ 1GHz Wavelength Several μm C. L. Foden, et al., Phys. Rev. A 62, 011803 (R), 2000. Acousto-electric Effect: SAW (GHz, μm) (cid:198) 2D, Slow response time, Micron scale resolution Nanoultrasonics 3D imaging with nano resolution (cid:132) THz electronic control with high spatial accuracy (cid:132) (down to a nano scale) Require (cid:132) (Coherent) acoustic wave with a nano wavelength (cid:132) Generation (cid:132) Detection (cid:132) Synthesization (cid:132) Propagation control (cid:132) Based on piezoelectric semiconductor (cid:132) Subjects of this lecture Acoustics 101. (cid:132) Previous non-piezoelectric works. (cid:132) Generation and detection of coherent acoustic phonons (cid:132) (nanoacoustic waves) in piezoelectric multilayers and a single layer Manipulation and optical coherent control of the (cid:132) nanoacoustic waves Study of the nanoacoustic superlattice (phononic bandgap (cid:132) crystal), nanoacoustic cavity, and the supersonic paradox. Nanoultrasonics. (cid:132) THz electronic control using nano-acoustic waves. (cid:132) Nano-acoustic waveguiding. (cid:132) Confined acoustic vibrations in nanoparticles. (cid:132) Subject 1 Acoustics 101. (cid:132) Previous non-piezoelectric works. (cid:132) Generation and detection of coherent acoustic phonons (cid:132) (nanoacoustic waves) in piezoelectric multilayers and single layer. Manipulation and optical coherent control of the (cid:132) nanoacoustic waves Study of the nanoacoustic superlattice (phononic bandgap (cid:132) crystal), nanoacoustic cavity, and the supersonic paradox. Nanoultrasonics. (cid:132) THz electronic control using nano-acoustic waves. (cid:132) Nano-acoustic waveguiding. (cid:132) Confined acoustic vibrations in nanoparticles. (cid:132) ⎡⎡XX ⎤⎤ xx ⎢⎢ ⎥⎥ YY ⎢⎢ yy ⎥⎥ ⎢⎢ZZ ⎥⎥ Longitudinal Acoustic Wave zz ⎢⎢ ⎥⎥ YY ⎢⎢ zz ⎥⎥ ⎢⎢ZZ ⎥⎥ ⎢⎢ xx ⎥⎥ ∂u ⎢⎣⎢⎣XXyy⎥⎦⎥⎦ S = Strain (no unit): ; u: displacement; (cid:132) ∂z 應力 Stress (force/area): T = CS; C: elastic constant (area/force); (cid:132) 應變 X x X ⎡X ⎤ ⎡c c c c c c ⎤ ⎡e ⎤ y x 11 12 13 14 15 16 xx ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ Y c c c c c c e ⎢ y ⎥ ⎢ 21 22 23 24 25 26 ⎥ ⎢ yy ⎥ ⎢ Z ⎥ ⎢c c c c c c ⎥ ⎢e ⎥ z 31 32 33 34 35 36 zz ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ Y c c c c c c e ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ z 41 42 43 44 45 46 yz ⎢ Z ⎥ ⎢c c c c c c ⎥ ⎢e ⎥ ⎢ x ⎥ ⎢ 51 52 53 54 55 56 ⎥ ⎢ zx ⎥ ⎢⎣X ⎥⎦ ⎢⎣c c c c c c ⎥⎦ ⎢⎣e ⎥⎦ y 61 62 63 64 65 66 xy T = C S Wave Equation of Stress T ∂T (1) = F = ρ u(cid:5) (cid:5) = ρ v (cid:5) v : velocity; ρ : density of mass; mo mo mo ∂z ∂v ∂S (2) “Conservation of mass” = ∂z ∂t ∂v ∂ ⎛ ∂u ⎞ ∂ ⎛ ∂u ⎞ ∂S = = = ⎜ ⎟ ⎜ ⎟ ∂z ∂z ⎝ ∂t ⎠ ∂t ⎝ ∂z ⎠ ∂t From (1) and (2), we have wave eq. of T ∂ 2T ∂ ⎛ ∂ 2u ⎞ ∂ 2S ρ ∂ 2T = ρ = ρ = mo ⎜ ⎟ ∂z2 mo ∂z ∂t2 mo ∂t2 C ∂t2 ⎝ ⎠ Assume j(ωt±β z) T ∝ e a We have ρ ω C β =ω m0 = V = , 聲速 a c V a ρ a m0 Energy Density Elastic energy density (cid:132) 1 1 1 2 2 W = T S = CS = T c 2 2 2C Kinetic energy density (cid:132) 1 2 W = ρ v v m0 2 Considering the wave propagating in the forward direction : ∂ u ∂ u ∂ z V v = = = SV = a T a ∂ t ∂ z ∂ t C V 2 1 ρ vv∗ = ρ a TT ∗ = TT ∗ C V = m0 m0 C 2 C a ρ m0 ∴ W = W c v Acoustic Impedance E T y Z ≡ ⇔ Z = a EM v H x Note when the propagation direction is reversed, the acoustic • impedance is different in sign. Consider forward propagation • T C Z = − F = = ρ C = V ρ ≡ Z F m0 a m0 0 v V F a Reflection of acoustic waves from interface Z − Z Γ = 02 01 − − − − → z Z + Z 02 01 medium 1 medium 2
Description: