ebook img

Nakajima's problem: convex bodies of constant width and constant brightness PDF

0.11 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nakajima's problem: convex bodies of constant width and constant brightness

NAKAJIMA’S PROBLEM: CONVEX BODIES OF CONSTANT WIDTH AND 6 CONSTANT BRIGHTNESS 0 0 2 RALPHHOWARDANDDANIELHUG n DedicatedtoRolfSchneiderontheoccasionofhis65thbirthday a J 0 ABSTRACT. ForaconvexbodyK⊂Rn,thekthprojectionfunctionofKassignstoany 2 k-dimensionallinearsubspaceofRnthek-volumeoftheorthogonalprojectionofK to thatsubspace.LetKandK0beconvexbodiesinRn,andletK0becentrallysymmetric G] andsatisfyaweakregularityandcurvaturecondition(whichincludesallK0with∂K0of classC2withpositiveradiiofcurvature). AssumethatKandK0haveproportional1st M projectionfunctions(i.e.,widthfunctions)andproportionalkthprojectionfunctions. For 2≤k<(n+1)/2andfork=3,n=5weshowthatKandK0arehomothetic.Inthe . h specialcasewhereK0isaEuclideanball,wethusobtaincharacterizations ofEuclidean t ballsasconvexbodiesofconstantwidthandconstantk-brightness. a m [ 1 1. INTRODUCTION AND STATEMENTOF RESULTS v 9 LetK beaconvexbody(acompact,convexsetwithnonemptyinterior)inRn,n 3. ≥ 9 Assumethat, foranyline, the lengthofthe projectionofK to the lineis independentof 4 thatline and, foranyhyperplane,the volumeof theprojectionofK to the hyperplaneis 1 independentofthathyperplane.MustK thenbeaEuclideanball? 0 In dimensionthree, thisproblemhasbecomeknownasNakajima’sproblem[11]; see 6 0 [1],[2],[3],[4],[5],[6].ItiseasytocheckthattheanswertoitisintheaffirmativeifKisa / convexbodyinR3ofclassC2.ForgeneralconvexbodiesinR3,theproblemismuchmore h difficultandasolutionhasonlybeenfoundrecently.LetG(n,k)denotetheGrassmannian t a ofk-dimensionallinearsubspacesofRn. AconvexbodyK inRnissaidtohaveconstant m k-brightness,k 1,...,n 1 ,ifthek-volumeV (K U)oftheorthogonalprojection k : ofK tothelinea∈rs{ubspaceU− }G(n,k)isindependento|fthatsubspace.Themap v ∈ Xi πk: G(n,k) R, U Vk(K U), → 7→ | r is referredto as the kth projection functionof K. Hence a convexbodyK has constant a width(i.e.constant1-brightness)ifithasconstant1stprojectionfunction(widthfunction). 1.1.Theorem ([7]). Let K be a convexbody in Rn having constantwidth and constant 2-brightness.ThenK isaEuclideanball. ThistheoremprovidesacompletesolutionoftheNakajimaprobleminR3 forgeneral convex bodies. In the present paper, we continue this line of research. Our main result complementsTheorem1.1bycoveringthecasesofconvexbodiesofconstantwidthand constantk-brightnesswith2 k <(n+1)/2ork =3,n=5. ≤ Date:December11,2005. 2000MathematicsSubjectClassification. 52A20. Key wordsand phrases. Constant width, constant brightness, projection function, characterization ofEu- clideanballs,umbilics. 1 2 RALPHHOWARDANDDANIELHUG 1.2. Theorem. Let K be a convex body in Rn having constant width and constant k- brightnesswith2 k <(n+1)/2,ork =3,n=5. ThenK isaEuclideanball. ≤ Theprecedingtwotheoremscanbegeneralizedto pairsofconvexbodiesK,K0 hav- ing proportionalprojectionfunctions, providedthat K0 is centrally symmetric and has a minimalamountofregularity. 1.3.Theorem. LetK,K0beconvexbodiesinRn,andletK0becentrallysymmetricwith positive principal radii of curvature on some Borel subset of the unit sphere of positive measure. Let2 k < (n+1)/2,orletk = 3,n = 5inwhichcaseassumethesurface ≤ areameasureS4(K0, )ofK0 isabsolutelycontinuouswithpositivedensity. Assumethat · thereareconstantsα,β >0suchthat π1(K)=απ1(K0) and πk(K)=βπk(K0). ThenK andK0arehomothetic. As the naturalmeasure on the unit sphere, Sn−1, we use the invariantHaar probabil- ity measure (i.e. spherical Lebesgue measure), or what is the same thing the (n 1)- dimensionalHausdorffmeasure, n−1,normalizedsothatthetotalmassisone. We−view H the principal radii of curvature as functions of the unit normal, despite the fact that the unit normal map is in general a set valued function (cf. the beginning of Section 2 be- low). Theassumptionthattheprincipalradiiofcurvaturearepositiveonasetofpositive measuremeansthatthereisaBorelsubsetofSn−1 ofpositivemeasuresuchthatonthis setthereverseGaussmapissinglevalued,differentiable(inageneralizedsense)andthe eigenvaluesofthedifferentialarepositive.Explicitly,thisconditioncanbestatedinterms of second orderdifferentiabilitypropertiesof the supportfunction(againsee Section 2). In particular, it is certainly satisfied if K0 is of class C+2, and therefore letting K0 be a EuclideanballrecoversTheorem1.2. TherequiredconditionallowsforpartsofK0 tobe quiteirregular.Forexampleif∂K0hasapointthathasasmallneighborhoodwhere∂K0is C2 withpositiveGauss-Kroneckercurvature,thentheassumptionwillhold,regardlessof howroughtherestoftheboundaryis. Forexamplea“sphericalpolyhedron”constructed byintersectinga finite numberofEuclideanballsin Rn willsatisfy the condition. More generallyiftheconvexbodyK0 isanintersectionofafinitecollectionofbodiesofclass C2,itwillsatisfythecondition. + Theorem1.3extendsthe mainresultsin[8]forthe rangeofdimensionsk,nwhereit appliesbyreducingtheregularityassumptiononK0 anddoingawaywithanyregularity assumptions on K. However, the classical Nakajima problem, which concerns the case n=3andk =2,isnotcoveredbythepresentapproach. Despite recentprogressontheNakajimaproblemvariousquestionsremainopen. For instance, can Euclidean balls be characterized as convex bodies having constant width and constant (n 1)-brightnessif n 4? This question is apparently unresolvedeven − ≥ for smooth convex bodies. A positive answer is available for smooth convex bodies of revolution(cf.[8]). Fromtheargumentsofthepresentpaperthefollowingpropositionis easytocheck. 1.4. Proposition. Let K,K0 Rn be convex bodies that have a common axis of revo- ⊂ lution. Let K0 be centrally symmetric with positive principal radii of curvature almost everywhere. AssumethatK andK0 haveproportionalwidth functionsandproportional kthprojectionfunctionsforsomek 2,...,n 2 . ThenK andK0arehomothetic. ∈{ − } ItisapleasurefortheauthorstodedicatethispapertoRolfSchneider. ProfessorRolf Schneiderhasbeenalargesourceofinspirationforcountlessstudentsandcolleaguesall NAKAJIMA’SPROBLEM:CONVEXBODIESOFCONSTANTWIDTHANDCONSTANTBRIGHTNESS 3 over the world. His willingness to communicate and share his knowledge make contact withhimapleasurableandmathematicallyrewardingexperience. Thesecondnamedau- thorhasparticularlybeenenjoyingmanyyearsof support, personalinteractionandjoint research. 2. PRELIMINARIES Let K be a convexbody in Rn, and let h : Rn R be the supportfunctionof K, K whichisaconvexfunction.Forx Rnlet∂h (x)be→thesubdifferentialofh atx. This K K isthesetofvectorsv Rn sucht∈hatthefunctionh v, achievesitsminimumatx. K Itiswellknownthat,f∈orallx Rn,∂h (x)isanon−emhpty·icompactconvexsetandisa K ∈ singletonpreciselyatthosepointswhereh isdifferentiableintheclassicalsense(cf.[13, K pp. 30–31]). For u Sn−1 the set ∂h (u) is exactly the set of x ∂K such that u is K ∈ ∈ anoutwardpointingnormaltoK atx(cf.[13,Thm1.7.4]). Butthisisjustthedefinition ofthereverseGaussmap(whichingeneralisnotsinglevalued,butasetvaluedfunction) andso the functionu ∂h (u) givesa formulaforthe reverseGaussmapin termsof K 7→ thesupportfunction. Inthefollowing,by“almosteverywhere”ontheunitsphereorby“foralmostallunit vectors” we mean for all unit vectors with the possible exclusion of a set of spherical Lebesgue measure zero. A theorem of Aleksandrov states that a convex function has a generalizedsecondderivativealmosteverywhere,whichwewillviewasapositivesemi- definite symmetric linear map rather than a symmetric bilinear form. This generalized derivativecaneitherbedefinedintermsofasecondorderapproximatingTaylorpolyno- mialatthepoint,orintermsofthesetvaluedfunctionx ∂h (x)beingdifferentiable K 7→ inthesenseofsetvaluedfunctions(boththesedefinitionsarediscussedin[13,p.32]).At pointswheretheAleksandrovsecondderivativeexists∂h issinglevalued. Becauseh K K is positivelyhomogeneousof degreeone, if it is Aleksandrovdifferentiableat a pointx, thenitisAleksandrovdifferentiableatallpointsλxwith λ > 0. ThenFubini’stheorem impliesthatnotonlyish Aleksandrovdifferentiableat nalmostallpointsofRn,butit K isalsoAleksandrovdifferentiableat n−1almostallpoinHtsofSn−1. Forpointsu Sn−1 whereitexists,letd2h (u)denotetHheAleksandrovsecondderivativeofh . Let∈u⊥ de- K K notetheorthogonalcomplementofu. Thenthe restrictiond2h (u)u⊥ isthe derivative K ofthereverseGaussmapatu. Theeigenvaluesofd2h (u)u⊥ aret|heprincipalradiiof K curvatureatu. Asthediscussionaboveshowstheseexistata|lmostallpointsofSn−1. Ausefultoolforthestudyofprojectionfunctionsofconvexbodiesarethesurfacearea measures. An introductionto these Borelmeasuresonthe unitsphereisgivenin [13], a morespecializedreference(forthepresentpurpose)iscontainedintheprecedingwork[8]. The topordersurface area measure Sn−1(K, ) of the convexbodyK Rn can be ob- tainedasthe(n 1)-dimensionalHausdorffm·easure n−1oftherevers⊂esphericalimage ofBorelsetsof−theunitsphereSn−1. TheRadon-NikHodymderivativeofSn−1(K, )with · respecttothesphericalLebesguemeasureistheproductoftheprincipalradiiofcurvature ofK. Sinceforalmosteveryu Sn−1,theradiiofcurvatureofK atu Sn−1 arethe eigenvalues of d2hK(u)u⊥, the∈Radon-Nikodym derivative of Sn−1(K,∈) with respect tosphericalLebesguem|easureisthefunctionu det d2h (u)u⊥ , w·hichisdefined K 7→ | almost everywhere on Sn−1. In particular, if Sn−1(K,(cid:0)) is absolutel(cid:1)y continuous with · respect to spherical Lebesgue measure, the density function is just the Radon-Nikodym derivative. For explicit definitions of these and other basic notions of convex geometry neededhere,wereferto[13]and[8]. 4 RALPHHOWARDANDDANIELHUG The following lemma contains more precise information about the Radon-Nikodym derivative of the top order surface area measure. We denote the support function of a convexbodyK byh,ifK isclearfromthecontext. Forafixedunitvectoru Sn−1 and i N, we also putω := v Sn−1 : v,u 1 (2i2)−1 , wheneveru is∈clear from i ∈ ∈ h i≥ − thecontext. Henceωi u(cid:8),asi ,inthesenseofHaus(cid:9)dorffconvergenceofclosed ↓ { } → ∞ sets. 2.1. Lemma. Let K Rn be a convex body. If u Sn−1 is a point of second order ⊂ ∈ differentiabilityofthesupportfunctionhofK,then lim Sn−1(K,ωi) =det d2h(u)u⊥ . i→∞ Hn−1(ωi) (cid:0) | (cid:1) Proof. ThisisimplicitlycontainedintheproofofHilfssatz2in[10]. Asimilarargument, inaslightlymoreinvolvedsituation,canbefoundin[9]. (cid:3) AnanalogueofLemma2.1forcurvaturemeasuresisprovidedin[12,(3.6)Hilfssatz]. As another ingredient in our approach to Nakajima’s problem, we need two simple algebraic lemmas. Here we write M for the cardinality of a set M. If x1,...,xn are | | realnumbersand I = {i1,...,ik} ⊆ {1,...,n} we set xI := xi1...xik. We also put x∅ :=1. 2.2. Lemma. Let b > 0 be fixed. Let x1,...,xn−1,y1,...,yn−1 be nonnegative real numberssatisfying x +y =2 and x +y =2b i i I I foralli=1,...,n 1andallI 1,...,n 1 with I =k,wherek 2,...,n 2 . − ⊂{ − } | | ∈{ − } Then x1,...,xn−1 2and y1,...,yn−1 2. |{ }|≤ |{ }|≤ Proof. Wecanassumethatx1 xn−1. Thenwehavey1 yn−1. ≤···≤ ≥···≥ Ifx1 = 0,theny1 = 2. Further,forI′ 2,...,n 1 with I′ = k 1,wehave ⊂ { − } | | − y1yI′ = 2b, hence yI′ = b. Since k 2, we get y2,...,yn−1 > 0. Moreover, since ≥ k 1 n 3,weconcludethaty2 = =yn−1. Thisshowsthatalsox2 = =xn−1, − ≤ − ··· ··· andthus x1,...,xn−1 2and y1,...,yn−1 2. |{ }|≤ |{ }|≤ Ifyn−1 =0,thesameconclusionisobtainedbysymmetry. If x1 > 0 and yn−1 > 0, then x1,...,xn−1,y1,...,yn−1 > 0. Now we fix any set J 1,...,n 1 with J = k +1. The argumentat the beginning of the proof of ⊆ { − } | | Lemma4.2in [8] showsthat x : i J 2. Since k+1 3, we first obtainthat i x1,...,xn−1 2,andthe|n{also ∈y1,.}.|.,≤yn−1 2. ≥ (cid:3) |{ }|≤ |{ }|≤ 2.3. Lemma. Let n 4, and let b > 0 be fixed. Let x1,...,xn−1,y1,...,yn−1 be ≥ nonnegativerealnumberssatisfying x +y =2 and x +y =2b i i I I foralli=1,...,n 1andallI 1,...,n 1 with I =n 2. Then − ⊂{ − } | | − (2.1) x = y =b l l lY6=i,j lY6=i,j wheneveri,j 1,...,n 1 aresuchthatx =x . i j ∈{ − } 6 NAKAJIMA’SPROBLEM:CONVEXBODIESOFCONSTANTWIDTHANDCONSTANTBRIGHTNESS 5 Proof. Fortheproof,wemayassumethati = 1andj = n 1,tosimplifythenotation. − Thenwehave x1 xn−2+y1 yn−2 =2b, ··· ··· x2 xn−1+y2 yn−1 =2b, ··· ··· whichimpliesthat x2 xn−2(xn−1 x1)+y2 yn−2(yn−1 y1)=0. ··· − ··· − Moreover,x1+y1 =2=xn−1+yn−1yields xn−1 x1 =y1 yn−1 =0, − − 6 andthus x2 xn−2 =y2 yn−2. ··· ··· Hence 2x2 xn−2 =(x1+y1)x2 xn−2 =x1x2 xn−2+y1x2 xn−2 ··· ··· ··· ··· =x1x2 xn−2+y1y2 yn−2 =2b, ··· ··· andthus b=x2 xn−2 =y2 yn−2. ··· ··· (cid:3) 3. PROOFS First,bypossiblydilatingK,wecanassumethatα=1. Hencetheassumptioncanbe statedas (3.1) π1(K)=π1(K0) and πk(K)=βπk(K0) forsomek 2,...,n 2 . LetK∗ denotethereflectionofK intheorigin. Then(3.1) ∈{ − } yieldsthat K+K∗ =2K0 and Vk(K U)=βVk(K0 U) | | forallU G(n,k). Minkowski’sinequality(cf.[13])thenimpliesthat ∈ Vk(2K0 U)=Vk(K U +K∗ U) | | | Vk(K U)k1 +Vk(K∗ U)k1 k ≥ (cid:16) | | (cid:17) 1 k = 2Vk(K U)k (cid:16) | (cid:17) =βVk(2K0 U). | EqualityinMinkowski’sinequalitywillholdifandonlyifK∗ U andK U arehomothetic. | | Astheyhavethesamevolumethisisequivalenttotheirbeingtranslatesofeachother,in whichcaseK U iscentrallysymmetric. Henceβ 1withequalityifandonlyifK U is centrallysymm| etricforalllinearsubspacesU G≤(n,k). Sincek 2,thisistheca|seif ∈ ≥ andonlyif K is centrallysymmetric(cf. [4, Thm.3.1.3]). So if β = 1, then K and K0 mustbehomothetic. Inthefollowing,weassumethatβ (0,1). Thiswillleadtoacontradictionandthus ∈ provethetheorem. Wewriteh,h0 forthesupportfunctionsofK,K0. Hereandinthefollowing,“almost all”or“almostevery”referstothenaturalHaarprobabilitymeasureonSn−1. Moreover a linear subspace “E” as an upper index indicates that the corresponding functional or 6 RALPHHOWARDANDDANIELHUG measure is considered with respect to E as the surroundingspace. By assumption there is a Borel subset P Sn−1 with positive measure such that for all u P all the radii ⊆ ∈ ofcurvatureof K0 in the directionu existandare positive. As K0 is symmetricwe can assume thatu P if andonlyif u P. Let N be the set of pointsu Sn−1 where ∈ − ∈ ∈ theprincipalradiiofcurvatureofK donotexist. SinceN isthe setofpointswherethe Alexandrovsecondderivativeofhdoesnotexist,itisasetofmeasurezero. Byreplacing P byP r(N ( N))wecanassumethattheradiiofcurvatureofbothK0 andK exist ∪ − atallpointsofP. AsbothN and N havemeasurezerothissetwillstillhavepositive − measure. Letu Sn−1 besuchthathandh0 aresecondorderdifferentiableatuandat uand ∈ − thattheradiiofcurvatureofK0atuarepositive.Thisistrueofallpointsu P,whichis notemptyasithaspositivemeasure. LetE G(n,k+1)besuchthatu ∈E. Thenthe ∈ ∈ assumptionimpliesthatalso πkE(K|E)=βπkE(K0|E). Henceweconcludeasin[8]that SkE(K|E,·)+SkE(K∗|E,·)=2βSkE(K0|E,·). Since h(K|E,·) = hK|E andh(K0|E,·) = hK0|E are secondorderdifferentiableat u andat uwithrespecttoE, Lemma2.1appliedwith respectto thesubspaceE implies − that det d2hK|E(u)E u⊥ +det d2hK∗|E(u)E u⊥ | ∩ | ∩ (cid:0) (cid:1) (cid:0) =2β(cid:1)det d2h (u)E u⊥ . K0|E | ∩ (cid:0) (cid:1) Sincehandh0aresecondorderdifferentiableatuandat u,thelinearmaps − L(h)(u): T Sn−1 T Sn−1, v d2h(u)(v), u u → 7→ L(h0)(u): TuSn−1 TuSn−1, v d2h0(u)(v), → 7→ are well defined and positive semidefinite. Since the radii of curvature of K0 at u are positive,wecandefine Lh0(h)(u):=L(h0)(u)−1/2◦L(h)(u)◦L(h0)(u)−1/2 asin[8]inthesmoothcase. Inthissituation,theargumentsin[8]canberepeatedtoyieldthat L (h)(u)+L (h)( u)=2id (3.2) h0 h0 − kL (h)(u)+ kL (h)( u)=2β kid, ∧ h0 ∧ h0 − ∧ where id is the identity map on T Sn−1. Lemma 3.4 in [8] shows that L (h)(u) and u h0 Lh0(h)(−u) have a common orthonormalbasis of eigenvectors e1,...,en−1, with cor- respondingeigenvalues(relativeprincipalradiiof curvature)x1,...,xn−1 at u and with eigenvaluesy1,...,yn−1at u. Afterachangeofnotation(ifnecessary),wecanassume − that0 x1 x2 xn−1. By(3.2)wethusobtain ≤ ≤ ≤···≤ (3.3) x +y =2 and x +y =2β i i I I fori=1,...,n 1andI 1,...,n 1 with I =k. − ⊂{ − } | | Proof of Theorem 1.3 when 2 k < (n + 1)/2. From (3.3) and Lemma 2.2 we ≤ concludethatthereissomeℓ 0,...,n 1 suchthat ∈{ − } x1 = =xℓ <xℓ+1 = =xn−1 and y1 = =yℓ >yℓ+1 = =yn−1. ··· ··· ··· ··· NAKAJIMA’SPROBLEM:CONVEXBODIESOFCONSTANTWIDTHANDCONSTANTBRIGHTNESS 7 (a)Ifk ℓ,then ≤ x1+y1 =2 and xk1 +y1k =2β. Hence 1= x1+y1 k xk1 +y1k =β, (cid:18) 2 (cid:19) ≤ 2 contradictingtheassumptionthatβ <1. (b)Letk > ℓ. Sincek < (n+1)/2wehave2k < n+1ork < n+1 k. Hence − k n k <n ℓ,andthusk n 1 ℓ. Butthen ≤ − − ≤ − − xℓ+1+yℓ+1 =2 and xkℓ+1+yℓk+1 =2β, and we arrive at a contradiction as before. This proves Theorem 1.3 when 2 k < (n+1)/2 ≤ (cid:3) Proof of Theorem 1.3 when k = 3,n = 5. In this case we are assuming that K0 haspositiveradiiofcurvatureatalmostallpointsofSn−1. Ash hasAlexandrovsecond derivativesatalmostallpoints,foralmostallu Sn−1 theradiiofcurvatureofK exist ∈ atbothuand uandattheseunitvectorsK0 haspositiveradiiofcurvature. Recallthat − x1 ≤···≤x4aretheeigenvaluesofLh0(h)(u). Wedistinguishthreecaseseachofwhich willleadtoacontradiction. (a) x1 = x2. Then Lemma 2.2 yields that x1 < x2 = x3 = x4 and therefore also 6 y2 =y3 =y4. Hence x32+y23 =2β and x2+y2 =2, andthus 1= x2+y2 3 x32+y23 =β, (cid:18) 2 (cid:19) ≤ 2 contradictingthatβ <1. Sothiscasecannotarise. (b)x1 =x2 andx1 =x3,i.e.x1 =x2 =x3. Thenalsoy1 =y2 =y3,andweget x31+y13 =2β and x1+y1 =2, which,asbefore,leadstoacontradictionandthusthiscasecannotarise. (c) x1 = x2 and x1 = x3, i.e. x1 = x2 < x3 = x4 by Lemma2.2. Since x1 = x3, 6 6 Lemma2.3impliesthat (3.4) x2x4 =β =y2y4. Inaddition,wehave (3.5) x2+y2 =2=x4+y4. Weshowthattheseequationsdeterminex2,x4,y2,y4asfunctionsofβ. Substituting(3.4) into(3.5),weget β β +y2 =2, x4+ =2. x4 y2 Combiningthesetwoequations,wearriveat β y2+ =2, 2 β − y2 8 RALPHHOWARDANDDANIELHUG whereweusedthatx4 =2− yβ2 6=0. Thisequationfory2canberewrittenas y22 2y2+β =0. − Hence,wefindthat(recallthat0<β <1) y2 =1 1 β. ± − p Consequently, x2 =2 y2 =1 1 β. − ∓ − From(3.4),wealsoget p β β x4 = = =1 1 β, x2 1∓√1−β ±p − andfinallyagainby(3.4) β β y4 = = =1 1 β. y2 1±√1−β ∓p − Sincex1 =x2 <x3 =x4,thisshowsthat (3.6) x1 =x2 =1 1 β, x3 =x4 =1+ 1 β. − − − p p By assumption the surface area measure S4(K0, ) of K0 is absolutely continuous with density function u det(d2h0(u)u⊥). Since K· +K∗ = 2K0, the non-negativityof 7→ | themixedsurfaceareameasuresS(K[i],K∗[4 i], )andthemultilinearityofthesurface − · areameasuresyieldsthat 4 4 S4(K, ) S(K[i],K∗[4 i], ) · ≤ (cid:18)i(cid:19) − · Xi=0 =S4(K+K∗, )=24S4(K0, ). · · This implies that S4(K, ) is absolutely continuous as well, with density function u det(d2h(u)u⊥). Nowob·servethatthecases(a)and(b)havealreadybeenexcludeda7→nd | therefore the present case (c) is the only remaining one. Hence, using the definition of L (h)(u), h0 det(d2h(u)u⊥) det(d2h0(u)|u⊥) =det(Lh0(h)(u))=x1x2x3x4 =β2, | foralmostallu S4. Thuswededucethat ∈ S4(K, )=β2S4(K0, ). · · Minkowski’suniquenesstheoremnowimpliesthatK andK0arehomothetic,henceK is centrallysymmetric.Symmetricconvexbodieswiththesamewidthfunctionaretranslates ofeachother. Butthenagainβ =1,acontradiction. REFERENCES [1] G.D.Chakerian,Setsofconstantrelativewidthandconstantrelativebrightness,Trans.Amer.Math.Soc. 129(1967),26–37. [2] G.D. Chakerian, H. Groemer, Convex bodies of constant width, Convexity and its applications, 49–96, Birkha¨user,Basel,1983. [3] H.T.Croft,K.J.Falconer,R.K.Guy,Unsolvedproblemsingeometry.Correctedreprintofthe1991original. Problem Books inMathematics. Unsolved Problems inIntuitive Mathematics, II.Springer-Verlag, New York,1994.xvi+198pp. [4] R.J.Gardner, Geometric tomography, Encyclopedia ofMathematics andits Applications, vol.58, Cam- bridgeUniversityPress,NewYork,1995. NAKAJIMA’SPROBLEM:CONVEXBODIESOFCONSTANTWIDTHANDCONSTANTBRIGHTNESS 9 [5] P.Goodey, R.Schneider, W.Weil, Projection functions ofconvex bodies, Intuitive geometry(Budapest, 1995),BolyaiSoc.Math.Stud.,vol.6,Ja´nosBolyaiMath.Soc.,Budapest,1997,pp.23–53. [6] E.Heil, H.Martini, Special convex bodies, Handbook ofconvex geometry, Vol. A,B,347–385, North- Holland,Amsterdam,1993. [7] R.Howard,Convexbodiesofconstantwidthandconstantbrightness,Adv.Math.,toappear. [8] R.Howard,D.Hug,Smoothconvexbodieswithproportionalprojectionfunctions,IsraelJ.Math.,toappear. [9] D.Hug,Curvaturerelationsandaffinesurfaceareaforageneralconvexbodyanditspolar,ResultsMath. 29(1996),233-248. [10] K.Leichtweiß, U¨bereinigeEigenschaftenderAffinoberfla¨chebeliebiger konvexerKo¨rper,ResultsMath. 13(1988),255–282. [11] S.Nakajima,EinecharakteristischeEigenschaftderKugel,Jber.DeutscheMath.-Verein35(1926),298– 300. [12] R.Schneider,BestimmungkonvexerKo¨rperdurchKru¨mmungsmaße,Comment.Math.Helvet.54(1979), 42–60. [13] R.Schneider,Convexbodies:TheBrunn-Minkowskitheory,EncyclopediaofMathematicsanditsApplica- tions,vol.44,CambridgeUniversityPress,Cambridge,1993. DEPARTMENTOFMATHEMATICS,UNIVERSITYOFSOUTHCAROLINA,COLUMBIA,S.C.29208,USA E-mailaddress:[email protected] URL:http://www.math.sc.edu/∼howard MATHEMATISCHESINSTITUT,UNIVERSITA¨TFREIBURG,D-79104FREIBURG,GERMANY E-mailaddress:[email protected] URL:http://home.mathematik.uni-freiburg.de/hug/

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.