FINITENESS CONDITIONS FOR UNIONS OF SEMIGROUPS Nabilah Hani Abu-Ghazalh A Thesis Submitted for the Degree of PhD at the University of St Andrews 2013 Full metadata for this item is available in Research@StAndrews:FullText at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/3687 This item is protected by original copyright This item is licensed under a Creative Commons License FINITENESS CONDITIONS FOR UNIONS OF SEMIGROUPS Nabilah Hani Abu-Ghazalh Thesis submitted to the University of St Andrews for the degree of Doctor of Philosophy March, 2013 CONTENTS DECLARATION 6 ACKNOWLEDGMENTS 8 ABSTRACT 10 PREFACE 11 1 SEMIGROUPTHEORYPRELIMINARIES 15 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Basicsandmonogenicsemigroups . . . . . . . . . . . . . . . . . . . . 15 1.3 Relations,congruencesandhomomorphisms . . . . . . . . . . . . . . 16 1.4 IdealsandGreenrelations . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5 Classesandconstructions . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.6 Freesemigroupsandpresentations . . . . . . . . . . . . . . . . . . . . 23 1.7 Residualfiniteness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 I DISJOINT UNIONS OF A SMALL NUMBER OF COPIES OF A (SEMI)GROUP 26 2 GENERALDISJOINTUNIONSOFTWOSEMIGROUPS 27 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 Syntacticcongruencecondition . . . . . . . . . . . . . . . . . . . . . . 29 2.3 (Left,Right)idealsconditions . . . . . . . . . . . . . . . . . . . . . . . 31 3 CLASSIFICATIONOFDISJOINTUNIONSOFTWOANDTHREECOPIES OFAGROUP 35 1 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 Unionsoftwocopiesofagroup . . . . . . . . . . . . . . . . . . . . . . 35 3.3 Unionsofthreecopiesofagroup . . . . . . . . . . . . . . . . . . . . . 36 3.4 Finitenessconditionsfordisjointunionsofgroups . . . . . . . . . . . 41 4 CLASSIFICATION OF DISJOINT UNIONS OF TWO COPIES OF THE FREEMONOGENICSEMIGROUP 42 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2 Classificationofsemigroupswhicharedisjointunionsoftwocopies ofthefreemonogenicsemigroup . . . . . . . . . . . . . . . . . . . . . 43 4.3 Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.4 Comparisonbetweendisjointunionsoftwocopiesofthefreemono- genicsemigroupandtwocopiesoftheinfinitecyclicgroup . . . . . . 49 5 CLASSIFICATIONOFDISJOINTUNIONSOFTHREECOPIESOFTHE FREEMONOGENICSEMIGROUP 51 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2 Classificationofsemigroupswhicharedisjointunionsofthreecopies ofthefreemonogenicsemigroup . . . . . . . . . . . . . . . . . . . . . 55 5.3 Semigroupsofthesametype . . . . . . . . . . . . . . . . . . . . . . . 74 5.4 Comparisonbetweendisjointunionsofthreecopiesofthefreemono- genicsemigroupandthreecopiesoftheinfinitecyclicgroup . . . . . 77 5.5 Disjointunionofaninfinitecyclicgroupandafreemonogenicsemi- group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6 CLASSIFICATION OF DISJOINT UNIONS OF TWO COPIES OF THE FREESEMIGROUPOFRANKTWO 89 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.2 Sixbalancedsemigroups . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.3 Preliminary,technicalresults . . . . . . . . . . . . . . . . . . . . . . . 100 6.4 Classificationofbalancedsemigroups . . . . . . . . . . . . . . . . . . 105 6.5 Residualfiniteness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 II DISJOINT UNIONS OF ANY NUMBER OF COPIES OF 2 THE FREE MONOGENIC SEMIGROUP 113 7 RECTANGULAR BANDS OF FINITELY MANY COPIES OF THE FREE MONOGENICSEMIGROUP 114 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 7.2 Finitepresentability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.3 Specialexample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 7.4 Residualfiniteness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 8 FINITENESSCONDITIONSFORDISJOINTUNIONSOFFINITELYMANY COPIESOFTHEFREEMONOGENICSEMIGROUP 122 8.1 Preliminaries: multiplicationandarithmeticprogressions . . . . . . . 122 8.2 Finitepresentability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 8.3 Residualfiniteness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 8.4 Hopficity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 8.5 Commutativesemigroups . . . . . . . . . . . . . . . . . . . . . . . . . 134 9 DECIDABILITYFORDISJOINTUNIONSOFFINITELYMANYCOPIES OFTHEFREEMONOGENICSEMIGROUP 137 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 9.2 Wordproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 9.3 Subsemigroupmembershipproblem . . . . . . . . . . . . . . . . . . . 141 10 CONCLUDINGREMARKSANDCONJECTURES 147 Bibliography 150 3 LIST OF TABLES 5.1 The nine types of semigroups which are disjoint unions of three copies of the free monogenic semigroup (up to isomorphism and anti-isomorphism) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2 Generalforbiddentypes . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.3 Forbiddentypesinthefamily (a,a,∗,∗,∗,∗) . . . . . . . . . . . . . . 57 5.4 Forbiddentypesinthefamily (b,a,∗,∗,∗,∗) . . . . . . . . . . . . . . 59 5.5 Themultiplicationof xj and y where x, y ∈ {a,b,c} inthepresenta- tion (cid:104)a,b,c|ab = ai,ba = ai,ac = c2,ca = a2,bc = ci,cb = ai(cid:105) . . . . . . 67 5.6 Themultiplicationof xi and y where x, y ∈ {a,b,c} inthepresenta- tion (cid:104)a,b,c|ab = b2,ba = a2,ac = c2,ca = b2,bc = c2,cb = a2(cid:105) . . . . . 69 5.7 Themultiplicationof xi and y where x, y ∈ {a,b,c} inthepresenta- tion (cid:104)a,b,c|ab = b2,ba = a2,ac = c2,ca = a2,bc = c2,cb = a2(cid:105) . . . . . 71 5.8 Themultiplicationof xj and y where x, y ∈ {a,b,c} inthepresenta- tion (cid:104)a,b,c|ab = b2,ba = a2,ac = bi,ca = ai,bc = ai,cb = bi(cid:105) . . . . . 73 6.1 Themultiplicationofxi andyj wherex, y ∈ {a,b,c,d}inthepresen- tation (cid:104)a,b,c,d | ac = c2, ca = a2, bc = dc, cb = ab, ad = cd, da = ba, bd = d2, db = b2 (cid:105) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 6.2 Themultiplicationofxi andyj wherex, y ∈ {a,b,c,d}inthepresen- tation (cid:104)a,b,c,d | ac = d2, ca = b2, bc = cd, cb = ba, ad = dc, da = ab, bd = c2, db = a2 (cid:105) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 7.1 Themultiplicationofarectangularband . . . . . . . . . . . . . . . . . 114 k+1 (cid:70) 7.2 Therectangularbandsemigroup S . . . . . . . . . . . . . . . . . . 115 i i=1 k+1 h k+1 (cid:70) (cid:70) (cid:70) 7.3 Asplitofthesemigroup S to S and S . . . . . . . . . . . 115 i i i i=1 i=1 i=h+1 4 k+1 (cid:70) 7.4 Theonerowrectangularbandsemigroup S . . . . . . . . . . . . 116 i i=1 k+1 k (cid:70) (cid:70) 7.5 Asplitoftheonerowsemigroup S to S and S . . . . . . . 116 i i k+1 i=1 i=1 7.6 The multiplication on the subsemigroup S of the semigroup free P 4 productoftwotrivialsemigroups . . . . . . . . . . . . . . . . . . . . . 117 7.7 Rectangularbandoffourcopiesofthefreemonogenicsemigroup . . 119 5 DECLARATION I, Nabilah Hani Abu-Ghazalh, hereby certify that this thesis, which is approxi- mately26.000wordsinlength,hasbeenwrittenbyme,thatitistherecordofwork carried out by me and that it has not been submitted in any previous application for a higher degree. I was admitted as a research student in January 2009 and as a candidate for the degree of Doctor of Philosophy in September 2009; the higher study for which this is a record was carried out in the University of St Andrews between2009and2012. Signature: Name: NabilahAbu-Ghazalh Date I, Nik Rusˇkuc, hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of Doctor of Philosophy in theUniversityofStAndrewsandthatthecandidateisqualifiedtosubmitthisthe- sisinapplicationforthatdegree. Signature: Name: NikRusˇkuc Date In submitting this thesis to the University of St Andrews we understand that we are giving permission for it to be made available for use in accordance with the regulations of the University Library for the time being in force, subject to any copyright vested in the work not being affected thereby. We also understand that the title and the abstract will be published, and that a copy of the work may be madeandsuppliedtoanybonafidelibraryorresearchworker,thatmythesiswill beelectronicallyaccessibleforpersonalorresearchuseunlessexemptbyawardof an embargo as requested below, and that the library has the right to migrate my thesis into new electronic forms as required to ensure continued access to the the- 6 sis. Wehaveobtainedanythird-partycopyrightpermissionsthatmayberequired in order to allow such access and migration, or have requested the appropriate embargo below. The following is an agreed request by candidate and supervisor regardingtheelectronicpublicationofthisthesis: Access to Printed copy and electronic publication of thesis through the University ofStAndrews. Signature: Name: NabilahAbu-Ghazalh Date Signature: Name: NikRusˇkuc Date 7
Description: