ebook img

Na Channels from Phyla to Function PDF

650 Pages·2016·33.155 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Na Channels from Phyla to Function

VOLUMESEVENTYEIGHT C T URRENT OPICS IN MEMBRANES Na Channels from Phyla to Function CURRENT TOPICS IN MEMBRANES, VOLUME 78 Series Editors ROBERT BALABAN National Heart, Lung and Blood Institute National Institutes of Health Bethesda, Maryland, USA SIDNEY A. SIMON Department of Neurobiology Duke University Medical Centre Durham, North Carolina, USA VOLUME SEVENTY EIGHT C T URRENT OPICS IN MEMBRANES Na Channels from Phyla to Function Edited by ROBERT J. FRENCH Department of Physiology and Pharmacology and the Hotchkiss Brain Institute; Cumming School of Medicine University of Calgary, Calgary, Alberta, Canada SERGEI YU. NOSKOV University of Calgary, Centre for Molecular Simulation, Department of Biological Sciences, Calgary, Canada Amsterdam(cid:129)Boston(cid:129)Heidelberg(cid:129)London NewYork(cid:129)Oxford(cid:129)Paris(cid:129)SanDiego SanFrancisco(cid:129)Singapore(cid:129)Sydney(cid:129)Tokyo AcademicPressisanimprintofElsevier AcademicPressisanimprintofElsevier 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates 525BStreet,Suite1800,SanDiego,CA92101-4495,UnitedStates 125LondonWall,LondonEC2Y5AS,UnitedKingdom TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom Firstedition2016 Copyright(cid:1)2016ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite:www..elsevier.com/permissions. Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyand thesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein. ISBN:978-0-12-805386-7 ISSN:1063-5823 ForinformationonallAcademicPresspublications visitourwebsiteathttps://www.elsevier.com Publisher:ZoeKruze AcquisitionEditor:AlexWhite EditorialProjectManager:HeleneKabes ProductionProjectManager:VigneshTamil CoverDesigner:GregHarris TypesetbyTNQBooksandJournals DEDICATION WededicatethisvolumetothememoryofHarryA.Fozzard(1931–2014), an extraordinary physician-scientist, colleague, collaborator, and friend. Harry made landmark contributions to the understanding of cardiac physi- ology in general, and of voltage-gated sodium channels, in particular. CONTRIBUTORS K.Aimar DepartmentofBiomedicalPhysiologyandKinesiology,SimonFraserUniversity,Burnaby, BC,Canada T.W.Allen RMITUniversity,Melbourne,VIC,Australia;UniversityofCaliforniaDavis,Davis,CA, UnitedStates C.Barbosa IndianaUniversitySchoolofMedicine,Indianapolis,IN,UnitedStates C.Boiteux RMITUniversity,Melbourne,VIC,Australia E.D.Brodie,III UniversityofVirginia,Charlottesville,VA,UnitedStates V.Carnevale TempleUniversity,Philadelphia,PA,UnitedStates C.E.Clancy UniversityofCalifornia,Davis,Davis,CA,UnitedStates R.B.Clark UniversityofCalgary,Calgary,AB,Canada T.R.Cummins IndianaUniversitySchoolofMedicine,Indianapolis,IN,UnitedStates 0 N.DAvanzo UniversitédeMontréal,Montréal,QC,Canada P.G.DeCaen Children’sHospitalBoston,Boston,MA,UnitedStates;HarvardMedicalSchool,Boston, MA,UnitedStates;NorthwesternUniversity,Chicago,IL,UnitedStates K.R.DeMarco UniversityofCalifornia,Davis,Davis,CA,UnitedStates C.Domene King’sCollegeLondon,London,UnitedKingdom;UniversityofOxford,Oxford,United Kingdom S.C.Dudley,Jr. TheWarrenAlpertMedicalSchoolofBrownUniversity,Providence,RI,UnitedStates S.Furini UniversityofSiena,Siena,Italy V.S.Gawali MedicalUniversityofVienna,Vienna,Austria j xv xvi Contributors S.Geffeney UtahStateUniversityUintahBasin,Vernal,UT,UnitedStates R.Ghadiry-Tavi DepartmentofBiomedicalPhysiologyandKinesiology,SimonFraserUniversity,Burnaby, BC,Canada M-R.Ghovanloo DepartmentofBiomedicalPhysiologyandKinesiology,SimonFraserUniversity,Burnaby, BC,Canada W.R.Giles UniversityofCalgary,Calgary,AB,Canada D.Granata TempleUniversity,Philadelphia,PA,UnitedStates B.R.Green UniversityofUtah,SaltLakeCity,UT,UnitedStates;MonashUniversity,Parkville,VIC, Australia C.Hanifin UtahStateUniversityUintahBasin,Vernal,UT,UnitedStates C.Ing HospitalforSickChildren,Toronto,ON,Canada;UniversityofToronto,Toronto,ON, Canada L.L.Isom UniversityofMichiganNeuroscienceProgram,AnnArbor,MI,UnitedStates;Universityof MichiganMedicalSchool,AnnArbor,MI,UnitedStates B.Joos UniversityofOttawa,Ottawa,ON,Canada M.A.Kasimova TempleUniversity,Philadelphia,PA,UnitedStates M.Liu TheWarrenAlpertMedicalSchoolofBrownUniversity,Providence,RI,UnitedStates E.G.Moczydlowski CaliforniaNorthstateUniversity,RanchoCordova,CA,UnitedStates C.E.Morris OttawaHospitalResearchInstitute,Ottawa,ON,Canada V.Oakes King’sCollegeLondon,London,UnitedKingdom B.M.Olivera UniversityofUtah,SaltLakeCity,UT,UnitedStates R.Pom(cid:1)es HospitalforSickChildren,Toronto,ON,Canada;UniversityofToronto,Toronto,ON, Canada Contributors xvii P.C.Ruben DepartmentofBiomedicalPhysiologyandKinesiology,SimonFraserUniversity,Burnaby, BC,Canada D.B.Tikhonov RussianAcademyofSciences,St.Petersburg,RussianFederation H.Todt MedicalUniversityofVienna,Vienna,Austria G.Toledo UniversityofVirginia,Charlottesville,VA,UnitedStates T.N.Vien TuftsUniversity,Boston,MA,UnitedStates J.J.Winters UniversityofMichiganNeuroscienceProgram,AnnArbor,MI,UnitedStates K.-C.Yang TheWarrenAlpertMedicalSchoolofBrownUniversity,Providence,RI,UnitedStates A.Yu DepartmentofBiomedicalPhysiologyandKinesiology,SimonFraserUniversity,Burnaby, BC,Canada B.S.Zhorov McMasterUniversity,Hamilton,ON,Canada;RussianAcademyofSciences,St.Petersburg, RussianFederation PREFACE Sodium Channels: Structure, Function, and Beyond Emerging Views in the 21st Century In 2012, the entire field of membrane biophysics and physiology celebrated the 60th anniversary (Catterall, 2012) of seminal papers published by Hodgkin and Huxley revealing a selective, gated Na+ conductance as an essential and vital part of the action potential propagation in excitable cells (Hodgkin & Huxley, 1952a, 1952b; Hodgkin, Huxley, & Katz, 1952). We now know this conductance to be mediated by members of the family of voltage-gated sodium channel proteins (Nav). Nav channels have been the focus of numerous recent reviews, including Ahern, Payandeh, Bosmans, and Chanda (2016), Catterall (2014a, 2014b), Payandeh and Minor (2015), which were published in the last 2years. In the past six decades, progress in the study of ion transport by Na+ channels and various roles played by theminvirtuallyalltissueshavebeenacceleratedduetoanumberofadvance- ments in experimental techniques ranging from conventional X-ray crystal- lography to cryo-EM, spectroscopic techniques including rapidly evolving FRET and LRET, low-noise electrophysiology, and ultrahigh resolution microscopy to name a few of many (Ahern et al., 2016; Lacroix, Campos, Frezza, & Bezanilla, 2013; Payandeh & Minor, 2015)! The legacy of Hodgkin and Huxley instilling marriage between physics of ion transport and experimental protocols led to an intimate connection between experimental studies and mathematical modeling of the action potential where detailed models of sodium channel function were tightly coupledtoelectrophysiologicalrecordingsofselectiveiontransport,activa- tionanddeactivationdynamicsanditsperturbationbymutations,drugs,and other environmental factors. With the determination of the first crystal structure at high resolution (Payandeh, Scheuer, Zheng, & Catterall, 2011), the field received fresh impetus enabling detailed mapping of the molecular machinery of gating, locationofdrug-bindingpockets,andprovidingmolecularbasesforvarious roles played by the sodium channel in disease-linked mutations (Catterall, 2014a; McCusker et al., 2012). Paralleltothegrowthinexperimentalinsightsandsophisticatedmathe- matical models of Na+ channel function, the biomolecular simulations of j xix xx Preface ion channels in model membranes have made significant contributions to ourunderstandingofselectiveiontransport,drugbinding,andgatingmech- anisms.Asitisallbutimpossibletoobservetheatomicdetailsresponsiblefor specific transport processes with existing experimental approaches, compu- tational studies provide an invaluable window onto these processes, estab- lishing a basis for formal theories and providing testable predictions. Therefore,weareinauniquepositiontoobtaindetailedmolecularinsights into the properties of membrane proteins and directly link experimental observationstomolecularsimulationsatdifferentscales.Wecannowapply a combination of modeling and experimental techniques to studies of Na+ channels to provide a multiscale platform linking chemical transitions in single-ionchannelstothecontrolofprocessessuchasthedynamicvariation oftheheart’srhythmatthecellularororganlevel.Theunionofmolecular simulations driving and/or driven by experimental explorations into membrane proteins has already produced remarkable results, including the discoveryoffundamentalkineticandthermodynamicmechanismsunderly- ingselectivetransportcriticalincellularsignalingandtheelucidationofkey mechanisms of protein function regulation by lipids, to name a few. Of particular note, experimental and theoretical studies over recent decades have revealed converging evolutionary mechanisms by which bio- physical function is coupled to protein structure. Hence, methods that link slowconformationaldynamicsofproteinswithmembranedynamicssuchas bendingarecriticaltomakingprogressinourstudyofbiomembranes.This volume provides a comprehensive discussion on the development of novel methodologies,multiscalesimulationsandexperimentalstudiesofNachan- nels in various cells and tissues, and apparent implications to normal heart andbrainfunction.Thewell-orchestratedopeningandclosingofNachan- nelsisanessentialcontrolmechanismforelectricalexcitationandrelaxation in brain and heart tissues. Abnormalities resulting from inherited mutations and/orpharmacologicalblockadeofNachannelsaretightlyassociatedwith aberrations in action potentials, leading to the development of severe arrhythmias and neurological disorders such as neonatal epilepsy. The first structures of Na channels opened an avenue for detailed computationalstudiesofselectivetransportmechanismsprovidingunprece- dented insights into the bases of Nav channel function and roles. This present issue of Current Topics in Membranes entitled Na-Channels, From Phyla to Function presents a collection of articles that summarizes the cuttingedgeofinvestigationsintostructureandfunctionforthisremarkable class of membrane proteins from the excitable cells. Although there are

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.