ebook img

n-Linear Algebra of Type I and Its Applications PDF

2008·2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview n-Linear Algebra of Type I and Its Applications

n- LINEAR ALGEBRA OF TYPE I AND ITS APPLICATIONS W. B. Vasantha Kandasamy e-mail:[email protected] web: http://mat.iitm.ac.in/~wbv www.vasantha.net Florentin Smarandache e-mail:[email protected] INFOLEARNQUEST Ann Arbor 2008 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N. Zeeb Road P.O. Box 1346, Ann Arbor MI 48106-1346, USA Tel.: 1-800-521-0600 (Customer Service) http://wwwlib.umi.com/bod/ Peer reviewers: Professor Sukanto Bhattacharya, Queensland University, Australia. Dr.S.Osman, Menofia University, Shebin Elkom, Egypt. Eng. Marian Popescu and Prof. Florentin Popescu, Craiova, Romania. Copyright 2008 by InfoLearnQuest and authors Cover Design and Layout by Kama Kandasamy Many books can be downloaded from the following Digital Library of Science: http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm ISBN-10: 1-59973-074-X ISBN-13: 978-1-59973-074-5 EAN: 9781599730745 Standard Address Number: 297-5092 Printed in the United States of America 2 CONTENTS Preface 5 Chapter One BASIC CONCEPTS 7 Chapter Two n-VECTOR SPACES OF TYPE I AND THEIR PROPERTIES 13 Chapter Three APPLICATIONS OF n-LINEAR ALGEBRA OF TYPE I 81 3 Chapter Four SUGGESTED PROBLEMS 103 FURTHER READING 111 INDEX 116 ABOUT THE AUTHORS 120 4 PREFACE With the advent of computers one needs algebraic structures that can simultaneously work with bulk data. One such algebraic structure namely n-linear algebras of type I are introduced in this book and its applications to n-Markov chains and n-Leontief models are given. These structures can be thought of as the generalization of bilinear algebras and bivector spaces. Several interesting n-linear algebra properties are proved. This book has four chapters. The first chapter just introduces n-group which is essential for the definition of n- vector spaces and n-linear algebras of type I. Chapter two gives the notion of n-vector spaces and several related results which are analogues of the classical linear algebra theorems. In case of n-vector spaces we can define several types of linear transformations. The notion of n-best approximations can be used for error correction in coding theory. The notion of n-eigen values can be used in deterministic modal superposition principle for undamped structures, which can find its applications in finite element analysis of mechanical structures with uncertain parameters. Further it is suggested that the concept of n- matrices can be used in real world problems which adopts fuzzy models like Fuzzy Cognitive Maps, Fuzzy Relational Equations and Bidirectional Associative Memories. The applications of 5 these algebraic structures are given in Chapter 3. Chapter four gives some problem to make the subject easily understandable. The authors deeply acknowledge the unflinching support of Dr.K.Kandasamy, Meena and Kama. W.B.VASANTHA KANDASAMY FLORENTIN SMARANDACHE 6 Chapter One B C ASIC ONCEPTS In this chapter we introduce the notion of n-field, n-groups (n (cid:2) 2) and illustrate them by examples. Throughout this book F will denote a field, Q the field of rationals, R the field of reals, C the field of complex numbers and Z , p a prime, the finite field of p characteristic p. The fields Q, R and C are fields of zero characteristic. Now we proceed on to define the concept of n-groups. DEFINITION 1.1: Let G = G (cid:3) G (cid:3) … (cid:3) G (n (cid:2) 2) where 1 2 n (cid:4) each (G, *, e) is a group with the binary operation and e i i i i i the identity element, such that G (cid:5) G, if i (cid:5) j, 1 (cid:2) j, i (cid:2) n. i j Further G (cid:6) G or G (cid:6) G if i (cid:5) j. Any element x (cid:7) G would be i j j i represented as x = x (cid:3) x (cid:3) …(cid:3) x ; where x (cid:7) G, i = 1, 2, …, 1 2 n i i n. Now the operations on G is described so that G becomes a group. For x, y (cid:7) G, where x = x (cid:3) x (cid:3) …(cid:3) x and y = y (cid:3) y 1 2 n 1 2 (cid:3) … (cid:3) y ; with x, y (cid:7) G, i = 1, 2, …, n. n i i i x * y = (x (cid:3) x (cid:3) …(cid:3) x ) * (y (cid:3) y (cid:3) … (cid:3) y ) 1 2 n 1 2 n = (x * y (cid:3) x * y (cid:3) … (cid:3) x * y ). 1 1 1 2 2 2 n n n 7 Since each x * y (cid:7) G we see x* y = (p (cid:3) p (cid:3) …(cid:3) p ) where i i i i 1 2 n x * y = p for i = 1, 2, …, n. Thus G is closed under the binary i i i i operation *. Now let e = (e (cid:3) e (cid:3) … (cid:3) e ) where e (cid:7) G the identity of 1 2 n i i G with respect to the binary operation, *, i = 1, 2, …, n we see i i e * x = x * e = x for all x (cid:7) G. e will be known as the identity element of G under the operation *. Further for every x = x (cid:3) x (cid:3) … (cid:3) x (cid:7) G; we have 1 2 n x(cid:8)1(cid:3)x(cid:8)1(cid:3)...(cid:3)x(cid:8)1 in G such that, 1 2 n x*x(cid:8)1 (cid:9)(x (cid:3)x (cid:3)...(cid:3)x )*(x(cid:8)1(cid:3)x (cid:8)1(cid:3)...(cid:3)x (cid:8)1) 1 2 n 1 2 n = x * x(cid:8)1 (cid:3)x * x (cid:8)1(cid:3)...(cid:3)x * x (cid:8)1 1 1 1 2 2 2 n n n = x-1 * x (e (cid:3) e (cid:3) … (cid:3) e ) = e. 1 2 n x(cid:8)1 (cid:9)x(cid:8)1(cid:3)x (cid:8)1(cid:3)...(cid:3)x (cid:8)1 1 2 n is known as the inverse of x = x (cid:3) x (cid:3) … (cid:3) x . We define (G, 1 2 n *, e) to be the n-group (n (cid:2) 2). When n = 1 we see it is the group. n = 2 gives us the bigroup described in [37-38] when n > 2 we have the n-group. Now we illustrate this by examples before we proceed on to recall more properties about them. Example 1.1: Let G = G (cid:3) G (cid:3) G (cid:3) G (cid:3) G where G = S 1 2 3 4 5 1 3 the symmetric group of degree 3 with (cid:10)1 2 3(cid:11) e (cid:9)(cid:12) (cid:13), 1 (cid:14)1 2 3(cid:15) G = (cid:16)g | g6 = e (cid:17), the cyclic group of order 6, G = Z , the group 2 2 3 5 under addition modulo 5 with e = 0, G = D = {a, b | a2 = b8 = 3 4 8 1; bab = a}, the dihedral group of order 8, e = 1 is the identity 4 element of G and G = A the alternating subgroup of S with 4 5 4 4 (cid:10)1 2 3 4(cid:11) e (cid:9)(cid:12) (cid:13). 4 (cid:14)1 2 3 4(cid:15) 8 Clearly G = S (cid:3) G (cid:3) Z (cid:3) D (cid:3) A is a n-group with n = 5. 3 2 5 8 4 Any x (cid:7) G would be of the form (cid:10)1 2 3(cid:11) (cid:10)1 2 3 4(cid:11) x(cid:9)(cid:12) (cid:13)(cid:3)g2 (cid:3)4(cid:3)b3(cid:3)(cid:12) (cid:13). (cid:14)2 1 3(cid:15) (cid:14)1 3 4 2(cid:15) (cid:10)1 2 3(cid:11) (cid:10)1 2 3 4(cid:11) x-1 = (cid:12) (cid:13)(cid:3)g4 (cid:3)1(cid:3)b5(cid:3)(cid:12) (cid:13). (cid:14)2 1 3(cid:15) (cid:14)1 4 2 3(cid:15) The identity element of G is (cid:10)1 2 3(cid:11) (cid:10)1 2 3 4(cid:11) (cid:12) (cid:13)(cid:3)e (cid:3)0(cid:3)1(cid:3)(cid:12) (cid:13) (cid:14)1 2 3(cid:15) 2 (cid:14)1 2 3 4(cid:15) = e (cid:3) e (cid:3) e (cid:3) e (cid:3) e . 1 2 3 4 5 Thus G is a 5-group. Clearly the order of G is o(G ) (cid:18) o(G ) (cid:18) 1 2 o(G ) (cid:18) o(G ) (cid:18) o(G ) = 6 (cid:18) 6 (cid:18) 5 (cid:18) 16 (cid:18) 12 = 34, 560. 3 4 5 We see o(G) < (cid:19). Thus if in the n-group G (cid:3) G (cid:3) … (cid:3) 1 2 G , every group G is of finite order then G is of finite order; 1 (cid:20) n i i (cid:20) n. Example 1.2: Let G = G (cid:3) G (cid:3) G where G = Z , the group 1 2 3 1 10 under addition modulo 10, G = (cid:16)g | g5 = 1(cid:17), the cyclic group of 2 order 5 and G = Z the set of integers under +. 3 Clearly G is a 3-group. We see G is an infinite group for order of G is infinite. 3 Further it is interesting to observe that every group in the 3- group G is abelian. Thus if G = G (cid:3) G (cid:3) … (cid:3) G , is a n- 1 2 n group (n (cid:2) 2), we see G is an abelian n-group if each G is an i abelian group; i = 1, 2, …, n. Even if one of the G in G is a non i abelian group then we call G to be only a non abelian n-group. Having seen an example of an abelian and non abelian group we now proceed on to define the notion of n-subgroup. We need all 9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.