ebook img

N-[2-(N-Cyclo-hexyl-carbamo-yl)propan-2-yl]-N-(2-iodo-phen-yl)prop-2-ynamide. PDF

0.53 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview N-[2-(N-Cyclo-hexyl-carbamo-yl)propan-2-yl]-N-(2-iodo-phen-yl)prop-2-ynamide.

organic compounds ActaCrystallographicaSectionE Orthorhombic,P222 Z=4 Structure Reports a=7.7511(3)A˚ 1 1 1 MoK(cid:3)radiation b=10.0726(4)A˚ (cid:4)=1.68mm(cid:4)1 Online c=24.6063(9)A˚ T=200K ISSN1600-5368 V=1921.11(13)A˚3 0.19(cid:5)0.08(cid:5)0.06mm Datacollection N-[2-(N-Cyclohexylcarbamoyl)propan-2- BrukerAPEXIIQuazar 25494measuredreflections yl]-N-(2-iodophenyl)prop-2-ynamide diffractometer 4795independentreflections Absorptioncorrection:multi-scan 4399reflectionswithI>2(cid:2)(I) (SADABS;Bruker,2001). R =0.024 int Saeed Balalaie,a* Yaghoub Haghighatnia,a Frank Tmin=0.741,Tmax=0.906 Romingerb and Vahid Amanic Refinement R[F2>2(cid:2)(F2)]=0.027 (cid:2)(cid:5) =0.83eA˚(cid:4)3 aPeptideChemistryResearchCenter,K.N.ToosiUniversityofTechnology,POBox wR(F2)=0.060 (cid:2)(cid:5)max=(cid:4)0.90eA˚(cid:4)3 15875-4416,Tehran,Iran,bOrganisch-ChemischesInstitut,Universita¨tHeidelberg, S=1.04 Absmoinlutestructure:Flack(1983), ImNeuenheimerFeld270,69120Heidelberg,Germany,andcShahidBeheshti 4795reflections 2041Friedelpairs University,DepartmentofChemistry,Evin,Tehran1983963113,Iran 224parameters Flackparameter:0.237(16) Correspondencee-mail:[email protected] Hatomstreatedbyamixtureof independentandconstrained Received17December2011;accepted21December2011 refinement Keyindicators:single-crystalX-raystudy;T=200K;mean(cid:2)(C–C)=0.004A˚; Rfactor=0.027;wRfactor=0.060;data-to-parameterratio=21.4. Table 1 Hydrogen-bondgeometry(A˚,(cid:2)). In the title compound, C H IN O , the cyclohexane ring D—H(cid:3)(cid:3)(cid:3)A D—H H(cid:3)(cid:3)(cid:3)A D(cid:3)(cid:3)(cid:3)A D—H(cid:3)(cid:3)(cid:3)A 19 23 2 2 adopts a chair conformation, and the mean plane of the N1—H1(cid:3)(cid:3)(cid:3)O6i 0.79(3) 2.25(3) 3.016(3) 164(3) propiolamide unit is approximately perpendicular to the C4—H4C(cid:3)(cid:3)(cid:3)O6i 0.98 2.42 3.291(3) 148 benzene ring [dihedral angle = 88.12(13)(cid:2)]. Weak intra- C26—H26(cid:3)(cid:3)(cid:3)O1 0.95 2.57 3.270(3) 131 molecular C—H(cid:3)(cid:3)(cid:3)O hydrogen bonding is observed between Symmetrycode:(i)x(cid:4)12;(cid:4)yþ12;(cid:4)z. the carbonyl group and the benzene ring. In the crystal, Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT classical N—H(cid:3)(cid:3)(cid:3)O hydrogen bonds and weak C—H(cid:3)(cid:3)(cid:3)O (Bruker, 2007); data reduction: SAINT; program(s) used to solve interactions are present. structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure:SHELXTL;moleculargraphics:SHELXTL;softwareused Related literature topreparematerialforpublication:SHELXTL. For background to multi-component reactions (MCRs), see: WearegratefultotheK.N.ToosiUniversityofTechnology Do¨mling & Ugi (2000); Tietze (1996); Tietze et al. (2006); forfinancial support. Do¨mling (2006); Zhu &Bienayme (2005). Supplementary data and figures for this paper are available from the IUCrelectronicarchives(Reference:XU5415). References Bruker(2001).SADABS.BrukerAXSInc.,Madison,Wisconsin,USA. Bruker(2007).APEX2andSAINT.BrukerAXSInc.,Madison,Wisconsin, USA. Do¨mling,A.(2006).Chem.Rev.106,17–89. Do¨mling,A.&Ugi,I.(2000).Angew.Chem.Int.Ed.39,3168–3210. Flack,H.D.(1983).ActaCryst.A39,876–881. Sheldrick,G.M.(2008).ActaCryst.A64,112–122. Tietze,L.F.(1996).Chem.Rev.96,115–136. Experimental Tietze, L., Brasch, G. & Gericke, K. M. (2006). In Domino Reactions in OrganicChemistry.Weinheim:Wiley-VCH. Crystaldata Zhu, J. & Bienayme, H. (2005). In Multicomponent Reactions. Weinheim: Wiley-VCH. C H INO M =438.29 19 23 2 2 r o272 Balalaieetal. doi:10.1107/S1600536811055140 ActaCryst.(2012).E68,o272 supplementary materials supplementary materials Acta Cryst. (2012). E68, o272 [ doi:10.1107/S1600536811055140 ] N-[2-(N-Cyclohexylcarbamoyl)propan-2-yl]-N-(2-iodophenyl)prop-2-ynamide S. Balalaie, Y. Haghighatnia, F. Rominger and V. Amani Comment Multicomponent reactions (MCRs) have attracted considerable interest owing to their exceptional synthetic efficiency (Dömling & Ugi, 2000; Tietze, 1996; Tietze et al., 2006). Especially isocyanide based MCRs (IMCRs) allow for the syn- thesis of a large number of different scaffolds. The design of novel IMCRs has attracted great attention for construction of different organic functional groups (Dömling, 2006; Zhu & Bienayme, 2005). The iodophenyl group in the title compound is oriented orthogonal to the amid group, meaning that there is no conjugation between these two pi systems. The two amid groups themselves however are planar as expected, indicating a considerable amount of π- conjugation in the N—C=O units, thus partially double bond character and hindered rotation around the amide single bonds. The crystal lattice is stabilized by weak intermolecular N—H···O=C type hydrogen bonding with N1 acting as hydrogen donor and O6 as hydrogen acceptor, leading to one-dimenssional chains in crystallographic a direction. The N···O distance amounts to 3.015 (3) Å and the N—H···O angle to 163 (1)°. Intermolecular N—H···O and C—H···O hydrogen bond are effective in the stabilization of the crystal structure of the title compound (Table 1 & Fig. 2). Experimental The product was obtained via a four-component reaction of acetone, 2-iodo-aniline, propiolic acid, and cyclohexylisocyanide in methanol at room temperature. To a solution of acetone (58 mg, 1 mmole) in methanol (5 mL) 2-iodo-aniline (219 mg, 1 mmol) was added. The reaction mixture was stirred at room temperature for 1 h. Then propiolic acid (70 mg, 1 mmol) was added and stirring was continued for 15 min, followed by the addition of cyclohexylisocyanide (1 mmol, 123 mg). After stirring for 24 h at room temperature the reaction mixture was neutralized with 30 mL saturated aqueous NaHCO solution 3 and extracted with EtOAc (3 × 20 mL). The combined organic layers were dried with anhydrous magnesium sulfate and the solvent was evaporated. The residue was crystallized from acetonitrile. Refinement Imino H atom was located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically with C—H = 0.95–1.00 Å and constrained to ride on their parent atoms, U (H) = 1.5U (C) for methyl H atoms and iso eq 1.2U (C) for the others. eq Figures Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Dis- placement ellipsoids are drawn at the 30% probability level. sup-1 supplementary materials Fig. 2. Unit-cell packing diagram for title compound. N-[2-(N-Cyclohexylcarbamoyl)propan-2-yl]-N-(2- iodophenyl)prop-2-ynamide Crystal data C19H23IN2O2 F(000) = 880 Mr = 438.29 Dx = 1.515 Mg m−3 Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å Hall symbol: P 2ac 2ab Cell parameters from 9927 reflections a = 7.7511 (3) Å θ = 2.6–30.2° b = 10.0726 (4) Å µ = 1.68 mm−1 c = 24.6063 (9) Å T = 200 K V = 1921.11 (13) Å3 Polyhedron, colourless Z = 4 0.19 × 0.08 × 0.06 mm Data collection Bruker APEXII Quazar 4795 independent reflections diffractometer Radiation source: ImuS microsource 4399 reflections with I > 2σ(I) mirror Rint = 0.024 ω scans θmax = 28.4°, θmin = 1.7° Absorption correction: multi-scan h = −10→10 (SADABS; Bruker, 2001). Tmin = 0.741, Tmax = 0.906 k = −13→13 25494 measured reflections l = −32→32 Refinement Refinement on F2 Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring Least-squares matrix: full sites H atoms treated by a mixture of independent and R[F2 > 2σ(F2)] = 0.027 constrained refinement wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.0194P)2 + 1.3105P] where P = (Fo2 + 2Fc2)/3 S = 1.04 (Δ/σ)max = 0.001 4795 reflections Δρmax = 0.83 e Å−3 224 parameters Δρmin = −0.90 e Å−3 0 restraints Absolute structure: Flack (1983), 2041 Friedel pairs Primary atom site location: structure-invariant direct Flack parameter: 0.237 (16) methods sup-2 supplementary materials Special details Experimental. Hydrogen atom positions were calculated according to geometrical criteria except the amide hydrogen atom H1, which was refined isotropically. The thermal parameters of the hydrogen atoms were set to be 1.2 times the Ueq of the preceding carbon atom, 1.5 for the methyl groups. The conformation of the methyl hydrogen atoms was allowed to refine. The symmetry of the crystal is chir- al, albeit a racemic twinning parameter was introduced and refined to 24% racemic twinning. Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance mat- rix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, convention- al R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R- factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. 2 Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å ) x y z Uiso*/Ueq I1 0.57763 (4) 0.484096 (19) −0.195485 (7) 0.06160 (8) C1 0.5745 (3) 0.45305 (19) 0.02668 (8) 0.0263 (4) O1 0.6285 (2) 0.55977 (16) 0.04340 (7) 0.0345 (4) N1 0.5421 (3) 0.3503 (2) 0.05975 (8) 0.0309 (4) H1 0.500 (4) 0.286 (3) 0.0467 (12) 0.040 (9)* C2 0.5255 (3) 0.4367 (2) −0.03397 (9) 0.0267 (5) C3 0.3395 (3) 0.4863 (3) −0.03893 (10) 0.0359 (5) H3A 0.3070 0.4905 −0.0774 0.054* H3B 0.3303 0.5749 −0.0228 0.054* H3C 0.2621 0.4251 −0.0198 0.054* C4 0.5371 (3) 0.2937 (2) −0.05554 (10) 0.0327 (6) H4A 0.6521 0.2578 −0.0480 0.049* H4B 0.5167 0.2935 −0.0949 0.049* H4C 0.4498 0.2387 −0.0376 0.049* N5 0.6435 (2) 0.52550 (19) −0.06570 (7) 0.0235 (3) C6 0.8158 (3) 0.5074 (2) −0.05990 (8) 0.0260 (4) O6 0.8799 (2) 0.41486 (16) −0.03473 (7) 0.0335 (4) C7 0.9261 (3) 0.6074 (2) −0.08547 (9) 0.0293 (4) C8 1.0242 (3) 0.6882 (3) −0.10125 (12) 0.0403 (6) H8 1.1032 0.7533 −0.1140 0.048* C11 0.5534 (3) 0.3660 (2) 0.11881 (9) 0.0322 (5) H11 0.6491 0.4301 0.1262 0.039* C12 0.6003 (6) 0.2373 (3) 0.14650 (11) 0.0576 (9) H12A 0.7101 0.2031 0.1314 0.069* H12B 0.5093 0.1704 0.1397 0.069* C13 0.6195 (6) 0.2595 (4) 0.20757 (12) 0.0733 (12) H13A 0.6457 0.1739 0.2255 0.088* H13B 0.7172 0.3206 0.2144 0.088* sup-3 supplementary materials C14 0.4561 (7) 0.3178 (5) 0.23188 (13) 0.0853 (15) H14A 0.4738 0.3351 0.2711 0.102* H14B 0.3602 0.2535 0.2281 0.102* C15 0.4094 (6) 0.4470 (4) 0.20299 (14) 0.0775 (11) H15A 0.5001 0.5140 0.2100 0.093* H15B 0.2994 0.4814 0.2178 0.093* C16 0.3911 (4) 0.4258 (4) 0.14159 (13) 0.0591 (9) H16A 0.2924 0.3662 0.1342 0.071* H16B 0.3681 0.5120 0.1236 0.071* C21 0.5826 (3) 0.6458 (2) −0.09059 (9) 0.0260 (4) C22 0.5475 (3) 0.6514 (2) −0.14595 (10) 0.0330 (5) C23 0.4942 (4) 0.7698 (3) −0.16949 (12) 0.0459 (7) H23 0.4712 0.7737 −0.2074 0.055* C24 0.4746 (4) 0.8817 (3) −0.13790 (13) 0.0481 (8) H24 0.4374 0.9624 −0.1541 0.058* C25 0.5086 (3) 0.8773 (3) −0.08294 (13) 0.0430 (6) H25 0.4946 0.9547 −0.0613 0.052* C26 0.5634 (4) 0.7595 (2) −0.05932 (10) 0.0331 (5) H26 0.5880 0.7566 −0.0215 0.040* 2 Atomic displacement parameters (Å ) U11 U22 U33 U12 U13 U23 I1 0.10850 (18) 0.04834 (10) 0.02796 (8) −0.00472 (12) −0.00363 (10) −0.00355 (8) C1 0.0263 (10) 0.0266 (10) 0.0261 (9) 0.0010 (9) 0.0000 (9) 0.0007 (7) O1 0.0449 (10) 0.0277 (8) 0.0308 (8) −0.0074 (7) −0.0019 (7) −0.0011 (7) N1 0.0416 (12) 0.0262 (9) 0.0248 (9) −0.0054 (9) 0.0019 (9) 0.0003 (7) C2 0.0308 (12) 0.0244 (10) 0.0250 (11) −0.0029 (8) −0.0007 (8) 0.0048 (9) C3 0.0266 (11) 0.0392 (14) 0.0420 (13) −0.0034 (11) −0.0014 (9) 0.0066 (13) C4 0.0435 (15) 0.0254 (11) 0.0294 (12) −0.0066 (10) −0.0008 (11) 0.0001 (9) N5 0.0254 (8) 0.0219 (8) 0.0233 (8) 0.0010 (7) −0.0015 (6) 0.0034 (7) C6 0.0282 (10) 0.0234 (11) 0.0264 (9) 0.0031 (9) 0.0002 (8) −0.0019 (9) O6 0.0319 (9) 0.0286 (8) 0.0401 (9) 0.0064 (7) −0.0021 (7) 0.0075 (7) C7 0.0265 (10) 0.0293 (10) 0.0320 (10) 0.0021 (10) −0.0015 (11) 0.0016 (8) C8 0.0374 (14) 0.0369 (14) 0.0465 (16) −0.0044 (11) 0.0019 (11) 0.0054 (11) C11 0.0388 (13) 0.0325 (11) 0.0252 (11) −0.0060 (11) −0.0009 (10) −0.0008 (8) C12 0.093 (3) 0.0495 (16) 0.0300 (13) 0.0162 (19) 0.0072 (17) 0.0079 (12) C13 0.117 (4) 0.071 (2) 0.0311 (16) 0.002 (2) −0.0048 (18) 0.0153 (14) C14 0.124 (4) 0.104 (3) 0.0283 (15) −0.038 (3) 0.023 (2) −0.0124 (18) C15 0.081 (2) 0.101 (3) 0.0510 (19) 0.007 (2) 0.017 (2) −0.0330 (19) C16 0.0514 (19) 0.079 (2) 0.0472 (17) 0.0156 (17) 0.0047 (14) −0.0178 (16) C21 0.0223 (9) 0.0254 (10) 0.0303 (10) 0.0006 (9) −0.0009 (10) 0.0064 (8) C22 0.0331 (13) 0.0351 (12) 0.0308 (12) 0.0005 (10) −0.0031 (10) 0.0072 (9) C23 0.0486 (16) 0.0490 (17) 0.0401 (15) 0.0054 (13) −0.0056 (12) 0.0194 (13) C24 0.0412 (15) 0.0388 (15) 0.0643 (19) 0.0131 (12) 0.0040 (13) 0.0244 (14) C25 0.0442 (14) 0.0277 (12) 0.0572 (17) 0.0095 (11) 0.0136 (13) 0.0051 (12) C26 0.0350 (13) 0.0285 (11) 0.0356 (12) 0.0018 (11) 0.0042 (12) 0.0025 (9) sup-4 supplementary materials Geometric parameters (Å, °) I1—C22 2.093 (3) C12—C13 1.526 (4) C1—O1 1.225 (3) C12—H12A 0.9900 C1—N1 1.341 (3) C12—H12B 0.9900 C1—C2 1.549 (3) C13—C14 1.519 (6) N1—C11 1.464 (3) C13—H13A 0.9900 N1—H1 0.80 (3) C13—H13B 0.9900 C2—N5 1.499 (3) C14—C15 1.526 (6) C2—C3 1.531 (3) C14—H14A 0.9900 C2—C4 1.538 (3) C14—H14B 0.9900 C3—H3A 0.9800 C15—C16 1.532 (4) C3—H3B 0.9800 C15—H15A 0.9900 C3—H3C 0.9800 C15—H15B 0.9900 C4—H4A 0.9800 C16—H16A 0.9900 C4—H4B 0.9800 C16—H16B 0.9900 C4—H4C 0.9800 C21—C26 1.387 (3) N5—C6 1.356 (3) C21—C22 1.390 (3) N5—C21 1.438 (3) C22—C23 1.389 (4) C6—O6 1.225 (3) C23—C24 1.377 (4) C6—C7 1.463 (3) C23—H23 0.9500 C7—C8 1.179 (3) C24—C25 1.379 (4) C8—H8 0.9500 C24—H24 0.9500 C11—C16 1.503 (4) C25—C26 1.388 (3) C11—C12 1.509 (4) C25—H25 0.9500 C11—H11 1.0000 C26—H26 0.9500 O1—C1—N1 122.5 (2) H12A—C12—H12B 108.2 O1—C1—C2 120.06 (19) C14—C13—C12 111.3 (3) N1—C1—C2 117.20 (19) C14—C13—H13A 109.4 C1—N1—C11 120.5 (2) C12—C13—H13A 109.4 C1—N1—H1 117 (2) C14—C13—H13B 109.4 C11—N1—H1 121 (2) C12—C13—H13B 109.4 N5—C2—C3 109.78 (17) H13A—C13—H13B 108.0 N5—C2—C4 110.11 (19) C13—C14—C15 110.1 (3) C3—C2—C4 109.4 (2) C13—C14—H14A 109.6 N5—C2—C1 106.81 (17) C15—C14—H14A 109.6 C3—C2—C1 105.83 (19) C13—C14—H14B 109.6 C4—C2—C1 114.71 (19) C15—C14—H14B 109.6 C2—C3—H3A 109.5 H14A—C14—H14B 108.2 C2—C3—H3B 109.5 C14—C15—C16 111.3 (3) H3A—C3—H3B 109.5 C14—C15—H15A 109.4 C2—C3—H3C 109.5 C16—C15—H15A 109.4 H3A—C3—H3C 109.5 C14—C15—H15B 109.4 H3B—C3—H3C 109.5 C16—C15—H15B 109.4 C2—C4—H4A 109.5 H15A—C15—H15B 108.0 C2—C4—H4B 109.5 C11—C16—C15 110.3 (3) H4A—C4—H4B 109.5 C11—C16—H16A 109.6 C2—C4—H4C 109.5 C15—C16—H16A 109.6 sup-5 supplementary materials H4A—C4—H4C 109.5 C11—C16—H16B 109.6 H4B—C4—H4C 109.5 C15—C16—H16B 109.6 C6—N5—C21 118.79 (19) H16A—C16—H16B 108.1 C6—N5—C2 117.79 (19) C26—C21—C22 119.3 (2) C21—N5—C2 121.66 (17) C26—C21—N5 119.6 (2) O6—C6—N5 123.7 (2) C22—C21—N5 121.0 (2) O6—C6—C7 120.31 (19) C23—C22—C21 120.1 (2) N5—C6—C7 116.0 (2) C23—C22—I1 118.8 (2) C8—C7—C6 173.3 (3) C21—C22—I1 121.10 (17) C7—C8—H8 180.0 C24—C23—C22 120.0 (3) N1—C11—C16 111.3 (2) C24—C23—H23 120.0 N1—C11—C12 111.7 (2) C22—C23—H23 120.0 C16—C11—C12 112.2 (3) C23—C24—C25 120.4 (2) N1—C11—H11 107.1 C23—C24—H24 119.8 C16—C11—H11 107.1 C25—C24—H24 119.8 C12—C11—H11 107.1 C24—C25—C26 119.8 (3) C11—C12—C13 110.0 (3) C24—C25—H25 120.1 C11—C12—H12A 109.7 C26—C25—H25 120.1 C13—C12—H12A 109.7 C21—C26—C25 120.4 (2) C11—C12—H12B 109.7 C21—C26—H26 119.8 C13—C12—H12B 109.7 C25—C26—H26 119.8 O1—C1—N1—C11 6.4 (4) C11—C12—C13—C14 56.8 (4) C2—C1—N1—C11 −168.3 (2) C12—C13—C14—C15 −56.6 (4) O1—C1—C2—N5 32.0 (3) C13—C14—C15—C16 56.0 (5) N1—C1—C2—N5 −153.1 (2) N1—C11—C16—C15 −177.5 (3) O1—C1—C2—C3 −84.9 (3) C12—C11—C16—C15 56.5 (4) N1—C1—C2—C3 90.0 (2) C14—C15—C16—C11 −55.7 (5) O1—C1—C2—C4 154.3 (2) C6—N5—C21—C26 −84.0 (3) N1—C1—C2—C4 −30.8 (3) C2—N5—C21—C26 80.6 (3) C3—C2—N5—C6 171.13 (19) C6—N5—C21—C22 94.0 (3) C4—C2—N5—C6 −68.3 (3) C2—N5—C21—C22 −101.4 (3) C1—C2—N5—C6 56.8 (2) C26—C21—C22—C23 0.1 (4) C3—C2—N5—C21 6.5 (3) N5—C21—C22—C23 −177.9 (2) C4—C2—N5—C21 127.0 (2) C26—C21—C22—I1 179.06 (19) C1—C2—N5—C21 −107.8 (2) N5—C21—C22—I1 1.1 (3) C21—N5—C6—O6 172.8 (2) C21—C22—C23—C24 −0.5 (4) C2—N5—C6—O6 7.7 (3) I1—C22—C23—C24 −179.5 (2) C21—N5—C6—C7 −6.7 (3) C22—C23—C24—C25 0.4 (4) C2—N5—C6—C7 −171.79 (19) C23—C24—C25—C26 0.2 (4) C1—N1—C11—C16 82.0 (3) C22—C21—C26—C25 0.5 (4) C1—N1—C11—C12 −151.7 (3) N5—C21—C26—C25 178.5 (2) N1—C11—C12—C13 177.2 (3) C24—C25—C26—C21 −0.6 (4) C16—C11—C12—C13 −57.0 (4) Hydrogen-bond geometry (Å, °) D—H···A D—H H···A D···A D—H···A N1—H1···O6i 0.79 (3) 2.25 (3) 3.016 (3) 164 (3) sup-6 supplementary materials C4—H4C···O6i 0.98 2.42 3.291 (3) 148. C26—H26···O1 0.95 2.57 3.270 (3) 131. Symmetry codes: (i) x−1/2, −y+1/2, −z. sup-7 supplementary materials Fig. 1 sup-8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.