1 MyTraces: Investigating Correlation and Causation between Users’ Emotional States and Mobile Phone Interaction ABHINAVMEHROTRA,UniversityCollegeLondon,UK FANITSAPELI,UniversityofBirmingham,UK ROBERTHENDLEY,UniversityofBirmingham,UK MIRCOMUSOLESI,UniversityCollegeLondonandeAlanTuringInstitute,UK Mostoftheexistingworkconcerningtheanalysisofemotionalstatesandmobilephoneinteractionhasbeenbasedon correlationanalysis.Inthispaper,forthersttime,wecarryoutacausalitystudytoinvestigatethecausallinksbetween usersemotionalstatesandtheirinteractionwithmobilephones,whichcouldprovidevaluableinformationtopractitioners andresearchers.eanalysisisbasedonadatasetcollectedin-the-wild.Werecorded5,118moodreportsfrom28usersovera periodof20days. Ourresultsshowthatusers’emotionshaveacausalimpactondierentaspectsofmobilephoneinteraction. Onthe otherhand,wecanobserveacausalimpactoftheuseofspecicapplications,reectingtheexternalusers’contextsuchas socializingandtravelingonhappinessandstresslevel.isstudyhasprofoundimplicationsforthedesignofinteractive mobilesystemssinceitidentiesthedimensionsthathavecausaleectsonusers’interactionwithmobilephonesandvice versa.esendingsmightleadtothedesignofmoreeectivecomputingsystemsandservicesthatrelyontheanalysisof theemotionalstateofusers,forexampleformarketinganddigitalhealthapplications. CCSConcepts:•Human-centeredcomputing Empiricalstudiesinubiquitousandmobilecomputing;HCIdesign ! andevaluationmethods;•Computingmethodologies Causalreasoninganddiagnostics; ! AdditionalKeyWordsandPhrases:MobileSensing,CausalityAnalysis. ACMReferenceformat: Abhinav Mehrotra, Fani Tsapeli, Robert Hendley, and Mirco Musolesi. 2017. MyTraces: Investigating Correlation and CausationbetweenUsers’EmotionalStatesandMobilePhoneInteraction.PACMInteract.Mob.WearableUbiquitousTechnol. 1,1,Article1(July2017),21pages. DOI:10.1145/nnnnnnn.nnnnnnn 1 INTRODUCTION Smartphones are part of our everyday lives and it is not surprising that, in the past years, researchers and practitioners have investigated several aspects of our interaction with these devices. Examples include the characterizationofapplicationusagebehavior[18],users’aentivenessandreceptivitytonotications[28] andmobilecommunication(viacallsandSMSs)paerns[42]. However,untilnow,onlyahandfulofstudies haveinvestigatedtherelationshipbetweenusers’moodandtheirmobilephoneinteractionbehavior[7,22,29, 34]. Indeed, goingbeyondthestudyofphysicalinteractionswithsmartphonesandexploringtheemotional interactionswiththemisafascinatingemergingareainubiquitouscomputing.Previousstudies,suchas[22], Permissiontomakedigitalorhardcopiesofallorpartofthisworkforpersonalorclassroomuseisgrantedwithoutfeeprovidedthat copiesarenotmadeordistributedforprotorcommercialadvantageandthatcopiesbearthisnoticeandthefullcitationontherst page.CopyrightsforcomponentsofthisworkownedbyothersthanACMmustbehonored.Abstractingwithcreditispermied.Tocopy otherwise,orrepublish,topostonserversortoredistributetolists,requirespriorspecicpermissionand/orafee.Requestpermissionsfrom [email protected]. ©2017ACM. 2474-9567/2017/7-ART1$15.00 DOI:10.1145/nnnnnnn.nnnnnnn PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. 1:2 • A.Mehrotraet.al. (a) (b) Fig.1. MyTracesapplication:(a)mainscreen,(b)moodquestionnaire. havedemonstratedthatcommunicationandapplicationusagepaernscanbeexploitedtostatisticallyinfer thedailymoodofauser.Anotherstudy[7]investigatedthecorrelationbetweentheapplicationusagepaerns andusers’mood,sleepandirritabilitystates.Somestudies[29,34]havealsoshownthatusers’cognitivestates (suchasfeelingboredandengagementwithothertasks)correlatewiththeirreceptivitytoinformationdelivered throughmobilephones. However, our goal is to go beyond “simple” correlation studies and try to extract and quantify causation relationships.Tothebestofourknowledge,only[54]hasconsideredtheproblemofcausalityusingmobilesensor data,inparticulartostudytheimpactofphysicalactivities(suchassiing,walkingandsoon)onstresslevels. However,theauthorsof[54]investigateonlythesehigh-levelactivitiesandnotday-to-day(micro-)interactions withbothphoneandnotications,suchasclickpaerns,reactionstonoticationsandsoon. Moreingeneral,detectingcausallinksbetweenusers’emotionalstatesandtheirinteractionwithmobilephones couldprovidevaluableinformationtodevelopersfordesigningmoreeective“emotion-aware”applicationsand tosocialscientistsforstudyingcertainaspectsofhumanbehavior.Forexample,trackingusers’communication throughphonecallsortextmessagesaswellassocialmediaapplicationsenablespractitionersandresearchersto understandwhetherremotecommunicationhasanimpactonusers’emotionalstateorwhetherpeoplechange theircommunicationpaernsaccordingtotheiremotionalstate. Inaddition, understandingwhetherusers’ emotionalstateinuencestheirreceptivitytomobilephonenoticationscouldallowtheestimationofanoptimal timefordeliveringcertaintypeofinformation.isisofkeyimportanceformarketing[2]anddigitalhealth[5,6] applications.Moreover,theresultsofthisworkmightbeusedfordevelopingmoreeectivepositivebehavior interventionsbasedonmobilephones[19].Ingeneral,theinteractionwithmobilephonesbecomesinasensea sourceofsecondarysignalsforquantifyingtheuser’semotionalstates. Inthispaper,tothebestofourknowledge,wepresenttherstcausalitystudy1concerningtheuser’semotional statesandmobilephoneinteractionbehavior.Inordertocarryoutourinvestigation,wedesignedanddeveloped 1ecausalanalysispresentedinthispapershowsthepotentialcausaleectintheabsenceofotherconfoundersand,inanycase,itprovides evidenceofstrongdependencybetweenvariables.Ourpurposeistoexaminethedependenciesamongtheexaminedobservablefactorsthat areexpressionoftheunderlyingcausesthatcannotbequantieddirectly(e.g.,socializationcouldbetheunderlyingcauseofhappiness ratherthantheuseofasocialapp). PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. MyTraces • 1:3 anapplicationcalledMyTraces(Figure1)thatusesanexperiencesamplingmethod(ESM)approachtocollect users’emotionalstatelevelsreportedbythemduringdierenttimesofthedayandcontinuouslylogstheir interactionwithmobilephones.Morespecically,theapplicationcollectsinformationaboutthreeemotional statesincludingactiveness,happinessandstresslevelsona5-pointLikertscaleaswellasdierentaspectsof phoneinteractionincludingnotonlyapplicationusageandcommunicationpaernsasintheexistingliterature, butalso,forthersttime,micro-interactionswithphoneandnotications,whichareusedtoderiveavarietyof metrics. ekeycontributionsofthispapercanbesummarizedasfollows: Forthersttimeweexaminehowphoneusageandusers’interactionwithnoticationsassociateswith • emotionalstatesusingadatasetcollectedin-the-wild. Wepresenttherstin-depthcausalityanalysisthatinvestigatesaseriesofcausalrelationshipsbetween • users’emotionalstatesandmobilephoneinteraction. Wediscussthelessonslearntfromthiscausalityanalysisincludingitsinherentlimitationsandaseriesof • questionsinthiseldfortheresearchcommunitythat,inouropinion,havebeenopenedbythisstudy. Webelievethatthisworkhasprofoundimplicationsforthedesignofinteractivemobilesystems.Infact,for thersttime,thispapergoesbeyondtheinvestigationofsimpleassociationsbetweenusers’interactionand theiremotionalstates,andthereforetheirexperience.Inthisworkweprovidearstinitialcharacterizationof thecausallinksbetweenusers’emotionalstatesandtheirinteractionwithmobiledevices.Indeed,thesendings canbeappliedtothedesignofmoreeectiveinteractiveapplicationsconsideringalsotheemotionalstatesofthe users. 2 OURAPPROACH 2.1 DefinitionofUserBehaviorMetrics Inthissectionweintroduceaseriesofmetricsthatarederivedbyquantifyingusers’emotionalstatesandtheir interactionwithmobilephones.esemetricsrepresentthebasisofourcorrelationandcausalityanalysisthat wewillpresentinthefollowingsection.Somemetricsareindeedclassicindicatorswidelyusedforthisclassof studiesintheubiquitouscomputingcommunity[7,22],whileothers,suchasthemetricsrelatedtophoneusage intermsofnoticationandscreeninteraction,areintroducedforthersttimeinthiswork. 2.1.1 EmotionalStates. Mostofthepreviousstudies[22,37]haveconsideredtheCircumplexmoodmodel withtwodimensionsnamely,valenceandarousal[38].AnalternativemodelwaspresentedbySchimmackand Rainerin[43].Accordingtotheirproposalthearousalstatecanbesplitintotwodimensions:tensearousaland energeticarousal.eauthorsjustifythissplitwiththefactthattheenergeticarousalisinuencedbyacircadian rhythm(i.e.,itcorrespondstoactivityinbraincellsthatregulateorganisms’sleep-wakecycle),whereastense arousaldoesnotshowasimilarcircadianrhythm.erefore,inourstudywesplit“arousal”intotensearousal (stressed-relaxed)andenergeticarousal(sleepy-active). Consequently,weconsiderthreeaspectsofemotionalstatesthatarecapturedduringtheday: activenesslevel:astateofbeingarousedandphysiologicalreadinesstorespond[35,51]; • happiness level: a state of positiveness and joy that is derived from external and momentary plea- • sures[44]; stresslevel:anegativestateofbeingunderhighmentalpressure[45]. • elevelsoftheseemotionalstatesarecomputedona5point-basedLikertscale,where1indicatesthelowest leveland5thehighestlevel. PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. 1:4 • A.Mehrotraet.al. Group Metric Description Count Totalnumberofnoticationsclicked. Acceptance% Percentageofnoticationsclickedoutoftotalarrived. %Handled(OtherDevice) Percentageofnoticationsthatarenothandledonphoneoutoftotal Notication noticationsarrived. AverageSeenTime(ST) Averageoftheseentimeofallnotications. AverageDecisionTime(DT) Averageofthedecisiontimeofallnotications. AverageResponseTime(RT) Averageoftheresponsetimeofallnotications. AllAppLaunchCount Numberoftimesapplicationsarelaunched. AllAppUniqueCount Numberofapplicationslaunched. AllAppUsageTime Timedurationforwhichapplicationswereused. SigAppLaunchCount Numberoftimessignicantapplicationsarelaunched. SigAppUniqueCount Numberofsignicantapplicationslaunched. SigAppUsageTime Timedurationforwhichapplicationswereused. PhoneUsage Non-SigLaunchCount Numberoftimesnon-signicantapplicationsarelaunched. Non-SigUniqueAppCount Numberofnon-signicantapplicationslaunched. Non-SigAppUsageTime Timedurationforwhichapplicationswereused. PhoneUsageTime Timedurationforwhichphonewasused. SingleClickCount Numberofsingleclicksonthephonescreen. LongClickCount Numberoflongclicksonthephonescreen. UnlockCount Numberoftimesthephonewasunlocked. LaunchCount Numberoftimesapplicationsarelaunched. ApplicationUsage UsageTime Timedurationforwhichapplicationswereused. CallCount Numberofcalls. CallUniqueCount Numberofcallstouniquecontacts. CallAverageDuration Averageofthedurationsofallcalls. Communication SMSCount NumberofSMSssent. SMSUniqueCount NumberofSMSssenttouniquecontacts. SMSAverageLength AveragebodylengthofallSMSssent. SMSSenttoReceivedRatio RatioofsenttoreceivedSMSscounts. Table1. Descriptionofphoneinteractionmetrics. 2.1.2 PhoneInteractionMetrics. Wenowdescribehowwecomputefourdierenttypesofmetricscapturing users’interactionwiththeirmobilephonesintermsofnotication,phoneusage,applicationusageandcom- municationpaerns.Inordertocomputethesemetricswerelyonthreeclassesofdata(describedinTable2): notication,phoneusageandcommunication.Allmetrics(seeTable1)arecomputedforeachuseronanhourly basisforalldays. PhoneUsageMetrics. Wederive3metricsbyusingthephoneusagedataforrepresentingtheinformation abouttheuser’sapplicationusagebehavior: AppLaunchCount,AppUniqueCount andAppUsageTime. We computethesemetricsforallapplicationsaswellassignicantandnon-signicantapplications.Here,signicant applicationsrefertoregularlyusedapplications.Inordertoidentifysuchapplications,wecomputetheaverage launchcountforallapplicationsandtheapplicationswhicharelaunchmorefrequentlythanthisaverageare consideredassignicantapplications.Allapplicationsthatdonotfallintothecategoryofsignicantapplications (i.e.,applicationsthatarenotusedregularly)arelabelledasnon-signicantapplications.Notethatthisseparation mightprovideuswithsomeinterestinginsightsabouttheuseofrarelyusedapplications(i.e.,non-signicant applications)inspecicsituations. PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. MyTraces • 1:5 Moreover,wecompute4additionalmetricsthatrepresentthebasicinformationabouttheuser’sinteraction withthephone:PhoneUsageTime,SingleClickCount,LongClickCountandUnlockCount.Itisworthnotingthat the“phoneusagetime”metricindicatestheoveralltimeperiodduringwhichtheuserwasengagedwiththe phoneincludingallapplicationsandthehomescreen. Notication Metrics. We use the notication and phone usage data to compute six metrics that represent aggregateinformationabouttheuser’sreceptivityandaentivenesstonotications.Forthreeofthesemetrics (AverageSeenTime, AverageDecisionTime andAverageResponseTime)weusethreetime-basedterms: seen, decisionandresponsetime. Here,seentimeisthetimeperiodfromthenoticationarrivaluntilthetimethenoticationwasseenbythe user.Decisiontimeisthetimeperiodfromthemomentausersawanoticationuntilthetimetheyacteduponit (byclicking,launchingitscorrespondingapporswipingtodismiss).Responsetimeisthesumoftheseenand decisiontimeperiods(i.e.,theoveralltimefromthenoticationarrivaluntilthemomentthenoticationwas reactedupon). Moreover,oneofthemetric“%Handled(OtherDevice)”representstheinformationabouttheuser’sengagement withotherdevices.Inordertoinferwhetheranoticationishandledornot(i.e.,handledonsomeotherdevice), weassumethatanoticationisautomaticallyremovedfromthenoticationbarofthephoneifitwasdelivered onsomeotherdeviceandtheuserhasalreadyinteractedwithitonthatdevice. ApplicationUsageMetrics. Inordertoinvestigateusers’applicationusagebehaviorfordierentapps,we divide them using the categories dened at the Google Play store [3]. e nine categories include business, communication,game,lifestyle,music,productivity,social,toolandtravelapplications.Finally,wecomputetwo metrics(LaunchCount andUsageTime)eachforthenineapplicationcategories. CommunicationMetrics.Weusethecalllogsfromthecommunicationdatatoextracttheinformationabout theuser’scallingbehavior.Wecompute3call-basedmetrics(CallCount,CallUniqueCount andCallAverage Duration)fortheincoming,outgoing,missedandrejectedcalls. Notethatwecouldnotcomputetheaverage timedurationformissedandrejectedcallsbecausesuchcallsalwayshavetimedurationequaltozero. Moreover,wecompute4SMS-basedmetrics(SMSCount,SMSUniqueCount,SMSAverageLengthandSMSSent toReceivedRatio)onlyforthemessagesthataresentbytheuser.Wedonotcomputethesemetricsforincoming SMSsbecausemobilephonesdonotprovidetheuserwithanycontrolforhandlingsuchincomingmessages. us,user’sbehaviorcouldnotbecapturedbyanyfeatureoftheincomingSMSs. 2.1.3 Context-basedMetrics. Weusethecontextdatatocomputetwometrics: (i)durationoftheinterval during which the user performs dierent activities; (ii) duration of the interval the user spends at dierent places. Wecomputebothmetricsonanhourlybasisforeachday. Moreover,foreachhourofadaywealso captureweathermetricsincludingtemperatureandhumidity.Itisworthnotingthatthesemetricsareusedas confoundingvariablesforthecausalityanalysisasdiscussedinthenextsection. 2.2 CorrelationAnalysis Inthissectionwedescribethemethodologywefollowedinordertostudytherelationshipsbetweenemotional states(i.e.,activeness,happinessandstress)andphoneinteractions. Inordertoquantifythisassociation,we computetheindividual-basedKendall’srankcorrelationcoecients.Weconsidertheabsolutevaluesofthese coecients because we are interested in the strength of the relationships between the variables. We then computetheaverageofthesecoecientvalues.WerelyonFisher’smethod[16]forcombiningthep-valuesof individual-basedcorrelationanalysis. ecorrelationanalysisisperformedbetweentheemotionalstateatthecurrenthour(i.e.,hourofthedayin whichtheinformationabouttheuser’semotionisacquired)andthevaluesoftheexaminedmetricsforthree PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. 1:6 • A.Mehrotraet.al. dierenttimeintervals:preceding,current andnexthour.Consequently,thenalnumberofdatasamplesinour analysisisequaltothetotalnumberofemotionalstatereportsprovidedbytheparticipants. It is worth noting that a large body of psychological studies have shown that emotions persist for a few hours[8,9]. erefore,inourstudyweaskuserstoreporttheiremotionalstatesintheprevioushours(see Figure 1.b). More specically, these questionnaires were administered four times a day at intervals of three hours.However,forouranalysisweconsideremotionalstatesinanhourlongperiodsinceweusethebehavioral metricsofpreviousandnexthoursandusingalongerperiodsofemotionalstateswouldintroduceoverlapsof theinformationgiventhefactthattheemotionsarereportedeverythreehours.Wediscussthedatacollection processindetailinthenextsection. ecorrelationresultsarepresentedasacorrelationmatrixplot.Inthismatrixthey-axisindicatesthephone interactionmetricsandthex-axisindicatesthetypeofemotionsthatarecorrelatedwiththemetriccomputedfor thespecichour.Here,thehourisrepresentedbythenumericvalueonthex-axislabels.Forinstance,inFigure3 theboxintherstrow(AcceptancePercentage)andtherstcolumn(-1Activeness)presentsthecoecientfor thecorrelationoftheactivenesslevelwiththeacceptancepercentageofnotications,computedbyusingdata relatedtothecurrent 1hour.Here,thecurrenthourreferstothehourinwhichauserreportedtheiremotional � state.Wesetthesignicancelevel� forthecorrelationresultsto0.05andnon-signicantcorrelationcoecients areindicatedbythewhiteboxesinthecorrelationplots. 2.3 CausalityAnalysis 2.3.1 Overview. Correlationanalysisrevealstherelationshipbetweenemotionalstateandthephoneinterac- tionmetrics.However,apurecorrelationbetweentwovariablesdoesnotnecessarilyimplytheexistenceofa causalinuenceasthevaluesofboththeexaminedvariablesmaybeassociatedwithotherfactors,i.e.,theycan be“explained”byotherfactors.Forinstance,userscommutingalongdistancemayreportreducedactiveness levelandtheymayalsospendmostoftheirtimeplayinggameswiththesmartphone.Inthiscase,acorrelation betweenactivenesslevelandgameapplicationsmaybeobserved. However,thevaluesofbothvariablesare stronglyinuencedbyuseractivity(i.e.,commutingonvehicle).erefore,weperformthecausalityanalysis betweenthevariablesthataresignicantlycorrelated. InordertobeabletoclaimthatanobservedrelationshipbetweenvariablesX andY (i.e.,X inuencesY)is causal,thevariableX shouldalwaystemporallyprecedeY andthereshouldbenootherexplanationforthe associationobservedbetweenthem.Here,X iscalledthetreatmentvariableandY istheoutcomevariable.Incase thereisathirdvariableZ (calledconfoundingvariable),whichinuencesbothX andY,theobservedassociation betweenX andY mightbespuriousandaributedsolelytoZ.us,inordertoconductavalidcausalinference analysisitisnecessarytocontrolanyconfoundingvariables. AccordingtoRubin’sframework,causalinferenceanalysiscanbeconductedbycomparingpotentialoutcomes [40].Tounderstandthis,letusconsiderU asasetofunits(e.g.,thesamplesofthevariable)thataredenotedbyu. Whenu hasbeenexposedtothetreatmentsX [0,1]togivetheoutputvaluesasY0(u)andY1(u)respectively. 2 Now,theaverageeectofthetreatmentforallunitsu U canbeestimatedasE Y (u) Y (u) . 1 0 2 { � } However,thefundamentalproblemofcausalinferenceisthatwecannotobservebothY andY forthesame 0 1 unit. erefore,weusethewidelyusedmatchingdesignapproach[39,47]accordingtowhichtheimpactof atreatmentvariableX onanoutcomevariableY canbeassessedbycomparingsamplesorunitswithsimilar valuesofZ (i.e.,theobservedconfoundingvariables).Forexample,ifwewanttoassesstheimpactofatreatment X onthestresslevel(i.e.,Y)andweconsiderthetimethattheyspendathomeasaconfoundingvariable(i.e., Z),wecancomparetheirstresslevelsonlyfortheobservationswhentheusershavespentsimilaramountof timeathome(i.e.,thedistancebetweenZ valuesisclosetozero).Here,thesimilaritybetweenZ valuescanbe computedbyusinganydistancemeasuresuchastheEuclideandistance. PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. MyTraces • 1:7 epurposeofusingthematchingdesignistondthe“mostsimilar”pairsofunitsandthencomputethe treatmenteect.Tounderstandthis,letusdenotewithU andV thesetsofunitsthathavereceivedatreatment0 and1,respectively.Matchingdesignaemptstondanoptimalsetofpairedunits(u,�) P,withu U and 2 2 � V suchthatthedistancebetweenpairedunitsontheirconfoundingvariablesisminimum.en,theaverage 2 treatmenteect(ATE)isestimatedasfollows: E Y (u) Y (�) (1) { 0 � 1 }(u,�)2P Notethatseveralapproachesforndingoptimalpairsofunitshavebeenproposed[50].Adetailedreviewof suchapproachesisoutofthescopeofthisstudy. Althoughthetreatmentvariableisgenerallysupposedtobebinary,thetraditionalmatchingframeworkhas beenextendedtosupportalsocontinuousvaluesfortreatmentvariables[23].Inthiscase,unitscannotbesplitto treatedandcontrolgroups;instead,everyunitofthestudycanbematchedtoanyother. en,theobjective oftheappliedmatchingmethodistomatchunitswithminimumdierenceoftheirconfoundingvariablesand maximumdierenceoftheirtreatmentvalues.AercreatingasetP ofmatchedunits,theaveragetreatment eectisestimatedas: Y(u) Y(�) E � (2) X(u) X(�) (u,�) P ⇢ � � 2 Inthisstudy,wewillapplythematchingdesignframeworkforcontinuoustreatments[23]inordertoanalyze: (1) theimpactofphoneusageonparticipants’emotionalstate.Inthiscase,thetreatmentvariableisoneof thephoneinteractionmetricspresentedinTable1andtheoutcomevariableisoneofthethreeemotional state-basedmetrics.Sinceacausallinkcannotexistbetweentwouncorrelatedvariablesandthetreatment needstoprecedetemporallytheoutcomevariable,weconductthisanalysisonlyonvariablesforwhicha statisticallysignicantcorrelationbetweenemotionalstateandprevioushour’sphoneinteractionmetrichas beenobserved. (2) theimpactofparticipants’emotionalstateontheirinteractionwiththeirsmartphone.Inthiscase,the treatmentvariableisoneofthreeemotionalstate-basedmetricsandtheoutcomevariableisoneofthe phoneinteractionmetrics.Similarly,weconductthisanalysisonlyonvariablesforwhichastatistically signicantcorrelationbetweenemotionalstateandnexthour’sphoneinteractionmetrichasbeenobserved. Aseparatecausalitystudyisconductedforeachpairofvariables.Itisworthnotingthatdistinguishingcause fromeectisanopenissueincausalityanalysis. Withrespecttothisspecictypeofstudy, understanding whetherthereportedmoodprecedestemporallytheexaminedactivityisveryhard.Forthisreason,inourwork, weusethelastreportedemotionalstateasconfoundingvariable.us,thisallowsustotestiftheemotionalstate oftheindividualpriortotheobservedactivityinuencestheoutcomevariable(forexamplephoneusage)ornot. However,theemotionalstatemaychangeaerbeingreportedandbeforetheobservedactivity.Unfortunately, insuchcasesthetemporalprecedencecannotbecaptured.Atthesametime,aspreviousstudiessuggest,the emotionsdonotuctuatefrequently[9],thereforewebelievethatthisissuewillnotsignicantlyimpactour study.Finally,giventhelimitedamountofdataperindividual,itisonlypossibletoperformacausalityanalysis acrossusers. Itisalsoworthnotingthataccordingtotheresultspresentedin[55],themethodusedforcausalityanalysis performsbeerthanotherexistinglinearmethods,suchaslinearregression.Moreover,wecannotapplyANOVA methodssincetheirkeyassumptionssuchaslinearityandnormalitydonotholdforourdataset.Forexample, variablessuchasnoticationresponsetimeandappusageareveryskewed. PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. 1:8 • A.Mehrotraet.al. Fig.2. DependenciesofPhoneUsageTimeandHappinesswiththemetricsofourstudy.Thelinesindicatetheassociation andthereforenodirectionisreported.Thetreatmentandoutcomevariablesareshownintheboxeswithboldlines. 2.3.2 ConfoundingVariables. Acrucialstepofouranalysisistheselectionofconfoundingvariables.ere areseveralfactorsthatcouldinuencebothusers’emotionalstateandsomeofthephoneinteractionmetrics thathavebeenpreviouslydiscussed.Forinstance,inordertoexaminetheimpactofusinggameapplicationson theuser’semotionalstatewemayneedtocontrolothertypesofapplicationsthatwereusedinthesameperiod. eamountoftimethatusersspendplayingmobilephonegamesmaycorrelatewiththeamountoftimethey spendusingotherapplicationsduetothefactthattheyarefeelingboredatthatmomentandwantstokilltime byusingdierentapplications. us,anobservedchangeintheuser’semotionalstatemaybeinuencedby theuseofanotherapplicationratherthanagameapplication.Furthermore,users’contextmodalitiessuchas locationandactivitymayalsoinuencetheiremotion[54]. Weapplythemethodologydescribedin[54,55]inordertoselectanappropriatesetofconfoundingvariables. Morespecically,weexaminethecorrelationsofallthepreviouslypresentedmetricswiththetreatmentand outcomevariablesofeachstudy.Metricsthatcorrelatewithboththetreatmentandtheoutcomevariableswill beincludedinthesetofconfoundingvariables.Moreover,theexaminedvariablesmaybeautocorrelated.For example,aparticipantwhoisexperiencingastressfulsituationwillprobablyreporthighstresslevelsonmultiple consecutivetimes.Hence,theprevioususerbehavior(i.e.interactionwiththephone,activityandlocation)and emotionalstateshouldbeexaminedaspossibleconfoundingvariables.Weconductpartialautocorrelationtests forthetreatmentandoutcomevariablesinordertodiscoverdependencieswiththeirpreviousvalues.Wealso examinethecorrelationofthetreatmentandoutcomevariableswithlaggedvaluesoftheconfoundingvariables conditionaltothesorterlaggedcorrelatedvalues.Forexample,inFigure2wedepictthedependenciesofthe treatmentvariablePhoneUsageTimeandtheoutcomevariableHappinesswithourmetrics.Wefoundthatonly Locationcorrelateswiththeexaminedvariables(i.e.,bothPhoneUsageTimeandHappiness).Wealsofoundthat ourvariables(PhoneUsageTimeandHappinesslevel)attimet correlatewiththeprecedingvalues(i.e.,variables attimet 1).However,theydonotcorrelatewithprecedingvaluesofLocation,butconditionaltothecurrent � Location(i.e.,Locationattimet).Hence,thesetofconfoundingvariableswillincludeonlytheLocationandthe one-laggedvaluesofPhoneUsageTimeandHappinessvariables. Sincemobilephoneusagepaernsmayvarysignicantlyfordierentuserswerequirethematchedsamplesto belongtothesameuser.Moreover,thephoneusagemaydependonthesamplingtime.Forexample,mostusers willprobablyusetheirphonelessintheearlymorning(e.g.,4:00am)comparedtoaernoonhours.Consequently, wecannotderivevalidconclusionsifwecomparesamplesofdierenttimeintervals.us,wesplitadayinto four time intervals: early morning (00:00-06:00), morning (06:00-12:00), aernoon (12:00-18:00) and evening (18:00-24:00)andweallowsamplestobematchedonlyiftheyarereportedduringthesametimeinterval.en, weapplyoptimalmatching[31]inordertondoptimalpairsofsamples.Weuseasdistancemetricbetween PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. MyTraces • 1:9 DataType Features Notication Arrivaltime,seentimeandremovaltime,alerttype(sound,vibrateandashing LED),user’sresponse(clickordismiss),senderapplicationnameandnotication title. Context Physicalactivityandlocation. Communication Time,typeandsender/recipientofcallsandSMSs. PhoneUsage Lock/unlockevent,singleclick,longclick,scrollsandusagetimeofallforeground applications(includinghomescreen). Table2. Classesofdatausedforcomputingphoneinteractionmetricsandcontext-basedfeatures. samplestheMahalanobisdistance[26]weightedbythedierenceonthetreatmentvariablevaluesasdescribed in[23].Aerndingtheoptimalpairs,weuseEquation2inordertoestimatetheaveragetreatmenteect.If thereisnoeect,ATEshouldbeclosetozero.Weusethet-testtoexamineiftheobservedvalueissignicantly dierentfromzero. Finally,weshouldstressthatourstudycontrolsonlyfortheobservedconfoundingvariables(i.e.,themetrics describedinSection2.1.3)andcouldbebiasedincaseofmissingconfounders. isisaknownlimitationof all causality studies based on observational data. Although several unobserved factors could inuence user emotional state, bias could be induced only by those factors that inuence also users interaction with their phones.Byincludingalargenumberofmetricsinourstudyandbycontrollingalsoforthepreviousvaluesof emotionalstateandphoneusage,weminimizethisbias.However,thepossibilitythatunobservedfactorscould inuencethevalidityofourresultscannotbeeliminated.us,thecausalanalysispresentedinthispapershows thepotentialcausaleectintheabsenceofotherconfoundersandinanycaseitprovidesevidenceofstrong dependencybetweenvariables. 2.3.3 EvaluationoftheCausalityFramework. Asdiscussedearlier,itisworthunderliningthatthefocusofour studyisnotonthedesignofanewcausalityframework.Infact,weadoptthecausalityframeworkpresented byTsapelietal.in[55],inwhichtheauthorsproposeacausalinferencemethodfortime-seriesdatabasedon matching-designtechniquesthatdoesnotrequireanyassumptionsaboutthefunctionalformoftherelationships amongthevariables.emethodisextensivelyevaluatedonsyntheticdatainscenarioswithbothlinearand non-lineardependenciesandwithvaryingnumberofconfoundingvariables. Accordingtoresultspresented in[55]thismethodismoreeectiveonavoidingfalsepositiveconclusionsthanexistingapproaches.Furthermore, thismethodhasalreadybeenappliedtomobilesensingdatainordertostudytheimpactofdailyactivitieson stress[54]. 3 DATACOLLECTION 3.1 Overview Inordertostudytheinuenceofemotionalstatesontheuser’smobileinteractionbehavior,weconductedan in-the-wild study.Morespecically,wedevelopedanAndroidappcalledMyTraces(showninFigure1)thatruns inthebackgroundtounobtrusivelyandcontinuouslycollectusers’mobilephoneinteractionlogsandthecontext information(aslistedinTable2). eMyTracesapplicationreliesontheAndroid’sNoticationListenerService[1]tologinteractionwith notications.ItusesGoogle’sActivityRecognitionAPI[4]toobtaintheinformationabouttheuser’sphysical activityclassiedaswalking,bicycling,commutingonvehicleorstill.Moreover,theapplicationsamplesGPS datainanadaptivesensingfashionasdescribedin[10].InordertoclustertheGPSdataweapplytheclustering algorithmpresentedin[54]. Foreachclusteredlocationweassignoneofthefollowinglabels: home,workor PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. 1:10 • A.Mehrotraet.al. other.Weassignthehomelabeltotheplacewhereauserspendsthemajorityofthenighthours(denedasthe timeintervalbetween20:00to08:00).Weconsiderworkplaceasthesecondmostsignicantplace(i.e.,theplace whereusersspendmostoftheirtimeapartfromhome).Allotherplacesarelabeledasother. Toacquirethedataabouttheuser’semotionalstates(activeness,happinessandstresslevel)throughoutthe day,werelyontheexperiencesamplingmethod(ESM)[13]. AsshowninFigure1.b,userscanregistertheir moodthroughaslidingbar.isbarusesa5point-basedLikertscalewhere1indicatesthelowestleveland5the highestlevel.Everydayamoodquestionnaireistriggeredatfourrandomtimesineverythreehourtimewindow between8.00amand11.00pmbyusingthephone’stime(i.e.,localtimezones).Wechosethistimewindowso thattheparticipantsdonotfeelannoyedbybeingaskedtorespondtothesurveysearlyinthemorningandlate atnight. Incaseaquestionnaireisdismissedornotrespondedtowithin30minutesfromitsarrivaltime,the applicationtriggersanotheralertaer30minutes. Sincethehighervaluesofactivenessandhappinesslevelsindicateapositiveemotion,wemeasuredthestress levelaccordingtoanegativescalethatmeanslowervaluewouldindicatehighlevelofstress.iswaywemake thescaleofallemotionalstatesconsistent(i.e.,thelowervaluesrefertonegativeemotionandhighervalues tothepositiveemotion). erefore,wereversethescalebysubtractingeachresponsevaluefrom6. So,iffor exampletheresponseis5(i.e.,verylowstress),wesubtractitfrom6torescaleitto1.us,withthereversed scalethelowervaluewillrefertolowerstresslevelandthehighervaluewouldindicatehigherstresslevel. Itisworthnotingthatuserswereaskedtoreporttheiremotionalstatesduringthepasthour(seeFigure1.b) ratherattheinstanceofrespondingtoanESM.Asdiscussedearlier,weemploythisapproachofusingsucha longerperiodforqueryingemotionalstatesbecausepreviouspsychologicalstudieshaveshownthatemotions persistforafewhours[8,9]. Additionally, we also collected data about weather at users’ location during the day at hourly basis. is dataconsistsoffeaturessuchastemperatureandhumidity.InordertoobtainthisdatawerelyontheWeather Underground’sHistoryAPI2.ItisworthnotingthatweusetheHistoryAPIbecausethisdatawascollectedaer thedatacollectionfrommobilephones. 3.1.1 RecruitmentoftheParticipants. eMyTracesapplicationwaspublishedonGooglePlayStoreandhas beenavailabletothegeneralpublicforfreesince4thJanuary2016.Itwasadvertisedthroughdierentchannels: academicmailinglists,Twier,FacebookandReddit. Inordertoaractmoreparticipantsforourstudy,we commiedtogiveincentivestotheparticipantsforreplyingtothequestionnairesforaminimumof30days.We commiedtoselect(throughaloery)onewinnerofaMoto360Smartwatchand20winnersofanAmazon voucher. Inordertoensureprivacycompliance,theMyTracesapplicationgoesthroughatwo-leveluseragreement toaccesstheuser’scriticaldata. Firstly, theuserhastogiveexplicitpermissionasrequiredbytheAndroid operatingsystemforcapturingapplicationusage,noticationsanduser’sinteractionwithmobilephone(suchas clicks,long-clicksandscrolls).Secondly,theapplicationshowsalistofinformationthatiscollectedandasks foruser’sconsent.Furthermore,thestudywasperformedinaccordancewithourinstitution’sethicalresearch procedureandtheconsentformitselfforthedatacollectionwasreviewedbyourinstitution’sEthicsReview Board. 3.2 Dataset Weconsiderthedatacollectedfrom4thJanuary2016to1stJuly2016.Inthisperiodtheapplicationwasinstalled by104users.However,manyusersdidnotactivelyrespondtothemoodquestionnairesandsomeuninstalled theapplicationaerafewdays.erefore,weselectedasubsetofthedatafortheanalysisbyconsideringonly theuserswhorantheapplicationforatleast20daysandrespondedtoatleast50%ofthemoodquestionnairesin 2www.wunderground.com/weather/api/d/docs?d=data/history PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017.
Description: