ebook img

MyTraces: Investigating Correlation and Causation between Users' Emotional States and Mobile ... PDF

21 Pages·2017·1.59 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview MyTraces: Investigating Correlation and Causation between Users' Emotional States and Mobile ...

1 MyTraces: Investigating Correlation and Causation between Users’ Emotional States and Mobile Phone Interaction ABHINAVMEHROTRA,UniversityCollegeLondon,UK FANITSAPELI,UniversityofBirmingham,UK ROBERTHENDLEY,UniversityofBirmingham,UK MIRCOMUSOLESI,UniversityCollegeLondonand￿eAlanTuringInstitute,UK Mostoftheexistingworkconcerningtheanalysisofemotionalstatesandmobilephoneinteractionhasbeenbasedon correlationanalysis.Inthispaper,forthe￿rsttime,wecarryoutacausalitystudytoinvestigatethecausallinksbetween usersemotionalstatesandtheirinteractionwithmobilephones,whichcouldprovidevaluableinformationtopractitioners andresearchers.￿eanalysisisbasedonadatasetcollectedin-the-wild.Werecorded5,118moodreportsfrom28usersovera periodof20days. Ourresultsshowthatusers’emotionshaveacausalimpactondi￿erentaspectsofmobilephoneinteraction. Onthe otherhand,wecanobserveacausalimpactoftheuseofspeci￿capplications,re￿ectingtheexternalusers’contextsuchas socializingandtravelingonhappinessandstresslevel.￿isstudyhasprofoundimplicationsforthedesignofinteractive mobilesystemssinceitidenti￿esthedimensionsthathavecausale￿ectsonusers’interactionwithmobilephonesandvice versa.￿ese￿ndingsmightleadtothedesignofmoree￿ectivecomputingsystemsandservicesthatrelyontheanalysisof theemotionalstateofusers,forexampleformarketinganddigitalhealthapplications. CCSConcepts:•Human-centeredcomputing Empiricalstudiesinubiquitousandmobilecomputing;HCIdesign ! andevaluationmethods;•Computingmethodologies Causalreasoninganddiagnostics; ! AdditionalKeyWordsandPhrases:MobileSensing,CausalityAnalysis. ACMReferenceformat: Abhinav Mehrotra, Fani Tsapeli, Robert Hendley, and Mirco Musolesi. 2017. MyTraces: Investigating Correlation and CausationbetweenUsers’EmotionalStatesandMobilePhoneInteraction.PACMInteract.Mob.WearableUbiquitousTechnol. 1,1,Article1(July2017),21pages. DOI:10.1145/nnnnnnn.nnnnnnn 1 INTRODUCTION Smartphones are part of our everyday lives and it is not surprising that, in the past years, researchers and practitioners have investigated several aspects of our interaction with these devices. Examples include the characterizationofapplicationusagebehavior[18],users’a￿entivenessandreceptivitytonoti￿cations[28] andmobilecommunication(viacallsandSMSs)pa￿erns[42]. However,untilnow,onlyahandfulofstudies haveinvestigatedtherelationshipbetweenusers’moodandtheirmobilephoneinteractionbehavior[7,22,29, 34]. Indeed, goingbeyondthestudyofphysicalinteractionswithsmartphonesandexploringtheemotional interactionswiththemisafascinatingemergingareainubiquitouscomputing.Previousstudies,suchas[22], Permissiontomakedigitalorhardcopiesofallorpartofthisworkforpersonalorclassroomuseisgrantedwithoutfeeprovidedthat copiesarenotmadeordistributedforpro￿torcommercialadvantageandthatcopiesbearthisnoticeandthefullcitationonthe￿rst page.CopyrightsforcomponentsofthisworkownedbyothersthanACMmustbehonored.Abstractingwithcreditispermi￿ed.Tocopy otherwise,orrepublish,topostonserversortoredistributetolists,requirespriorspeci￿cpermissionand/orafee.Requestpermissionsfrom [email protected]. ©2017ACM. 2474-9567/2017/7-ART1$15.00 DOI:10.1145/nnnnnnn.nnnnnnn PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. 1:2 • A.Mehrotraet.al. (a) (b) Fig.1. MyTracesapplication:(a)mainscreen,(b)moodquestionnaire. havedemonstratedthatcommunicationandapplicationusagepa￿ernscanbeexploitedtostatisticallyinfer thedailymoodofauser.Anotherstudy[7]investigatedthecorrelationbetweentheapplicationusagepa￿erns andusers’mood,sleepandirritabilitystates.Somestudies[29,34]havealsoshownthatusers’cognitivestates (suchasfeelingboredandengagementwithothertasks)correlatewiththeirreceptivitytoinformationdelivered throughmobilephones. However, our goal is to go beyond “simple” correlation studies and try to extract and quantify causation relationships.Tothebestofourknowledge,only[54]hasconsideredtheproblemofcausalityusingmobilesensor data,inparticulartostudytheimpactofphysicalactivities(suchassi￿ing,walkingandsoon)onstresslevels. However,theauthorsof[54]investigateonlythesehigh-levelactivitiesandnotday-to-day(micro-)interactions withbothphoneandnoti￿cations,suchasclickpa￿erns,reactionstonoti￿cationsandsoon. Moreingeneral,detectingcausallinksbetweenusers’emotionalstatesandtheirinteractionwithmobilephones couldprovidevaluableinformationtodevelopersfordesigningmoree￿ective“emotion-aware”applicationsand tosocialscientistsforstudyingcertainaspectsofhumanbehavior.Forexample,trackingusers’communication throughphonecallsortextmessagesaswellassocialmediaapplicationsenablespractitionersandresearchersto understandwhetherremotecommunicationhasanimpactonusers’emotionalstateorwhetherpeoplechange theircommunicationpa￿ernsaccordingtotheiremotionalstate. Inaddition, understandingwhetherusers’ emotionalstatein￿uencestheirreceptivitytomobilephonenoti￿cationscouldallowtheestimationofanoptimal timefordeliveringcertaintypeofinformation.￿isisofkeyimportanceformarketing[2]anddigitalhealth[5,6] applications.Moreover,theresultsofthisworkmightbeusedfordevelopingmoree￿ectivepositivebehavior interventionsbasedonmobilephones[19].Ingeneral,theinteractionwithmobilephonesbecomesinasensea sourceofsecondarysignalsforquantifyingtheuser’semotionalstates. Inthispaper,tothebestofourknowledge,wepresentthe￿rstcausalitystudy1concerningtheuser’semotional statesandmobilephoneinteractionbehavior.Inordertocarryoutourinvestigation,wedesignedanddeveloped 1￿ecausalanalysispresentedinthispapershowsthepotentialcausale￿ectintheabsenceofotherconfoundersand,inanycase,itprovides evidenceofstrongdependencybetweenvariables.Ourpurposeistoexaminethedependenciesamongtheexaminedobservablefactorsthat areexpressionoftheunderlyingcausesthatcannotbequanti￿eddirectly(e.g.,socializationcouldbetheunderlyingcauseofhappiness ratherthantheuseofasocialapp). PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. MyTraces • 1:3 anapplicationcalledMyTraces(Figure1)thatusesanexperiencesamplingmethod(ESM)approachtocollect users’emotionalstatelevelsreportedbythemduringdi￿erenttimesofthedayandcontinuouslylogstheir interactionwithmobilephones.Morespeci￿cally,theapplicationcollectsinformationaboutthreeemotional statesincludingactiveness,happinessandstresslevelsona5-pointLikertscaleaswellasdi￿erentaspectsof phoneinteractionincludingnotonlyapplicationusageandcommunicationpa￿ernsasintheexistingliterature, butalso,forthe￿rsttime,micro-interactionswithphoneandnoti￿cations,whichareusedtoderiveavarietyof metrics. ￿ekeycontributionsofthispapercanbesummarizedasfollows: Forthe￿rsttimeweexaminehowphoneusageandusers’interactionwithnoti￿cationsassociateswith • emotionalstatesusingadatasetcollectedin-the-wild. Wepresentthe￿rstin-depthcausalityanalysisthatinvestigatesaseriesofcausalrelationshipsbetween • users’emotionalstatesandmobilephoneinteraction. Wediscussthelessonslearntfromthiscausalityanalysisincludingitsinherentlimitationsandaseriesof • questionsinthis￿eldfortheresearchcommunitythat,inouropinion,havebeenopenedbythisstudy. Webelievethatthisworkhasprofoundimplicationsforthedesignofinteractivemobilesystems.Infact,for the￿rsttime,thispapergoesbeyondtheinvestigationofsimpleassociationsbetweenusers’interactionand theiremotionalstates,andthereforetheirexperience.Inthisworkweprovidea￿rstinitialcharacterizationof thecausallinksbetweenusers’emotionalstatesandtheirinteractionwithmobiledevices.Indeed,these￿ndings canbeappliedtothedesignofmoree￿ectiveinteractiveapplicationsconsideringalsotheemotionalstatesofthe users. 2 OURAPPROACH 2.1 DefinitionofUserBehaviorMetrics Inthissectionweintroduceaseriesofmetricsthatarederivedbyquantifyingusers’emotionalstatesandtheir interactionwithmobilephones.￿esemetricsrepresentthebasisofourcorrelationandcausalityanalysisthat wewillpresentinthefollowingsection.Somemetricsareindeedclassicindicatorswidelyusedforthisclassof studiesintheubiquitouscomputingcommunity[7,22],whileothers,suchasthemetricsrelatedtophoneusage intermsofnoti￿cationandscreeninteraction,areintroducedforthe￿rsttimeinthiswork. 2.1.1 EmotionalStates. Mostofthepreviousstudies[22,37]haveconsideredtheCircumplexmoodmodel withtwodimensionsnamely,valenceandarousal[38].AnalternativemodelwaspresentedbySchimmackand Rainerin[43].Accordingtotheirproposalthearousalstatecanbesplitintotwodimensions:tensearousaland energeticarousal.￿eauthorsjustifythissplitwiththefactthattheenergeticarousalisin￿uencedbyacircadian rhythm(i.e.,itcorrespondstoactivityinbraincellsthatregulateorganisms’sleep-wakecycle),whereastense arousaldoesnotshowasimilarcircadianrhythm.￿erefore,inourstudywesplit“arousal”intotensearousal (stressed-relaxed)andenergeticarousal(sleepy-active). Consequently,weconsiderthreeaspectsofemotionalstatesthatarecapturedduringtheday: activenesslevel:astateofbeingarousedandphysiologicalreadinesstorespond[35,51]; • happiness level: a state of positiveness and joy that is derived from external and momentary plea- • sures[44]; stresslevel:anegativestateofbeingunderhighmentalpressure[45]. • ￿elevelsoftheseemotionalstatesarecomputedona5point-basedLikertscale,where1indicatesthelowest leveland5thehighestlevel. PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. 1:4 • A.Mehrotraet.al. Group Metric Description Count Totalnumberofnoti￿cationsclicked. Acceptance% Percentageofnoti￿cationsclickedoutoftotalarrived. %Handled(OtherDevice) Percentageofnoti￿cationsthatarenothandledonphoneoutoftotal Noti￿cation noti￿cationsarrived. AverageSeenTime(ST) Averageoftheseentimeofallnoti￿cations. AverageDecisionTime(DT) Averageofthedecisiontimeofallnoti￿cations. AverageResponseTime(RT) Averageoftheresponsetimeofallnoti￿cations. AllAppLaunchCount Numberoftimesapplicationsarelaunched. AllAppUniqueCount Numberofapplicationslaunched. AllAppUsageTime Timedurationforwhichapplicationswereused. SigAppLaunchCount Numberoftimessigni￿cantapplicationsarelaunched. SigAppUniqueCount Numberofsigni￿cantapplicationslaunched. SigAppUsageTime Timedurationforwhichapplicationswereused. PhoneUsage Non-SigLaunchCount Numberoftimesnon-signi￿cantapplicationsarelaunched. Non-SigUniqueAppCount Numberofnon-signi￿cantapplicationslaunched. Non-SigAppUsageTime Timedurationforwhichapplicationswereused. PhoneUsageTime Timedurationforwhichphonewasused. SingleClickCount Numberofsingleclicksonthephonescreen. LongClickCount Numberoflongclicksonthephonescreen. UnlockCount Numberoftimesthephonewasunlocked. LaunchCount Numberoftimesapplicationsarelaunched. ApplicationUsage UsageTime Timedurationforwhichapplicationswereused. CallCount Numberofcalls. CallUniqueCount Numberofcallstouniquecontacts. CallAverageDuration Averageofthedurationsofallcalls. Communication SMSCount NumberofSMSssent. SMSUniqueCount NumberofSMSssenttouniquecontacts. SMSAverageLength AveragebodylengthofallSMSssent. SMSSenttoReceivedRatio RatioofsenttoreceivedSMSscounts. Table1. Descriptionofphoneinteractionmetrics. 2.1.2 PhoneInteractionMetrics. Wenowdescribehowwecomputefourdi￿erenttypesofmetricscapturing users’interactionwiththeirmobilephonesintermsofnoti￿cation,phoneusage,applicationusageandcom- municationpa￿erns.Inordertocomputethesemetricswerelyonthreeclassesofdata(describedinTable2): noti￿cation,phoneusageandcommunication.Allmetrics(seeTable1)arecomputedforeachuseronanhourly basisforalldays. PhoneUsageMetrics. Wederive3metricsbyusingthephoneusagedataforrepresentingtheinformation abouttheuser’sapplicationusagebehavior: AppLaunchCount,AppUniqueCount andAppUsageTime. We computethesemetricsforallapplicationsaswellassigni￿cantandnon-signi￿cantapplications.Here,signi￿cant applicationsrefertoregularlyusedapplications.Inordertoidentifysuchapplications,wecomputetheaverage launchcountforallapplicationsandtheapplicationswhicharelaunchmorefrequentlythanthisaverageare consideredassigni￿cantapplications.Allapplicationsthatdonotfallintothecategoryofsigni￿cantapplications (i.e.,applicationsthatarenotusedregularly)arelabelledasnon-signi￿cantapplications.Notethatthisseparation mightprovideuswithsomeinterestinginsightsabouttheuseofrarelyusedapplications(i.e.,non-signi￿cant applications)inspeci￿csituations. PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. MyTraces • 1:5 Moreover,wecompute4additionalmetricsthatrepresentthebasicinformationabouttheuser’sinteraction withthephone:PhoneUsageTime,SingleClickCount,LongClickCountandUnlockCount.Itisworthnotingthat the“phoneusagetime”metricindicatestheoveralltimeperiodduringwhichtheuserwasengagedwiththe phoneincludingallapplicationsandthehomescreen. Noti￿cation Metrics. We use the noti￿cation and phone usage data to compute six metrics that represent aggregateinformationabouttheuser’sreceptivityanda￿entivenesstonoti￿cations.Forthreeofthesemetrics (AverageSeenTime, AverageDecisionTime andAverageResponseTime)weusethreetime-basedterms: seen, decisionandresponsetime. Here,seentimeisthetimeperiodfromthenoti￿cationarrivaluntilthetimethenoti￿cationwasseenbythe user.Decisiontimeisthetimeperiodfromthemomentausersawanoti￿cationuntilthetimetheyacteduponit (byclicking,launchingitscorrespondingapporswipingtodismiss).Responsetimeisthesumoftheseenand decisiontimeperiods(i.e.,theoveralltimefromthenoti￿cationarrivaluntilthemomentthenoti￿cationwas reactedupon). Moreover,oneofthemetric“%Handled(OtherDevice)”representstheinformationabouttheuser’sengagement withotherdevices.Inordertoinferwhetheranoti￿cationishandledornot(i.e.,handledonsomeotherdevice), weassumethatanoti￿cationisautomaticallyremovedfromthenoti￿cationbarofthephoneifitwasdelivered onsomeotherdeviceandtheuserhasalreadyinteractedwithitonthatdevice. ApplicationUsageMetrics. Inordertoinvestigateusers’applicationusagebehaviorfordi￿erentapps,we divide them using the categories de￿ned at the Google Play store [3]. ￿e nine categories include business, communication,game,lifestyle,music,productivity,social,toolandtravelapplications.Finally,wecomputetwo metrics(LaunchCount andUsageTime)eachforthenineapplicationcategories. CommunicationMetrics.Weusethecalllogsfromthecommunicationdatatoextracttheinformationabout theuser’scallingbehavior.Wecompute3call-basedmetrics(CallCount,CallUniqueCount andCallAverage Duration)fortheincoming,outgoing,missedandrejectedcalls. Notethatwecouldnotcomputetheaverage timedurationformissedandrejectedcallsbecausesuchcallsalwayshavetimedurationequaltozero. Moreover,wecompute4SMS-basedmetrics(SMSCount,SMSUniqueCount,SMSAverageLengthandSMSSent toReceivedRatio)onlyforthemessagesthataresentbytheuser.Wedonotcomputethesemetricsforincoming SMSsbecausemobilephonesdonotprovidetheuserwithanycontrolforhandlingsuchincomingmessages. ￿us,user’sbehaviorcouldnotbecapturedbyanyfeatureoftheincomingSMSs. 2.1.3 Context-basedMetrics. Weusethecontextdatatocomputetwometrics: (i)durationoftheinterval during which the user performs di￿erent activities; (ii) duration of the interval the user spends at di￿erent places. Wecomputebothmetricsonanhourlybasisforeachday. Moreover,foreachhourofadaywealso captureweathermetricsincludingtemperatureandhumidity.Itisworthnotingthatthesemetricsareusedas confoundingvariablesforthecausalityanalysisasdiscussedinthenextsection. 2.2 CorrelationAnalysis Inthissectionwedescribethemethodologywefollowedinordertostudytherelationshipsbetweenemotional states(i.e.,activeness,happinessandstress)andphoneinteractions. Inordertoquantifythisassociation,we computetheindividual-basedKendall’srankcorrelationcoe￿cients.Weconsidertheabsolutevaluesofthese coe￿cients because we are interested in the strength of the relationships between the variables. We then computetheaverageofthesecoe￿cientvalues.WerelyonFisher’smethod[16]forcombiningthep-valuesof individual-basedcorrelationanalysis. ￿ecorrelationanalysisisperformedbetweentheemotionalstateatthecurrenthour(i.e.,hourofthedayin whichtheinformationabouttheuser’semotionisacquired)andthevaluesoftheexaminedmetricsforthree PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. 1:6 • A.Mehrotraet.al. di￿erenttimeintervals:preceding,current andnexthour.Consequently,the￿nalnumberofdatasamplesinour analysisisequaltothetotalnumberofemotionalstatereportsprovidedbytheparticipants. It is worth noting that a large body of psychological studies have shown that emotions persist for a few hours[8,9]. ￿erefore,inourstudyweaskuserstoreporttheiremotionalstatesintheprevioushours(see Figure 1.b). More speci￿cally, these questionnaires were administered four times a day at intervals of three hours.However,forouranalysisweconsideremotionalstatesinanhourlongperiodsinceweusethebehavioral metricsofpreviousandnexthoursandusingalongerperiodsofemotionalstateswouldintroduceoverlapsof theinformationgiventhefactthattheemotionsarereportedeverythreehours.Wediscussthedatacollection processindetailinthenextsection. ￿ecorrelationresultsarepresentedasacorrelationmatrixplot.Inthismatrixthey-axisindicatesthephone interactionmetricsandthex-axisindicatesthetypeofemotionsthatarecorrelatedwiththemetriccomputedfor thespeci￿chour.Here,thehourisrepresentedbythenumericvalueonthex-axislabels.Forinstance,inFigure3 theboxinthe￿rstrow(AcceptancePercentage)andthe￿rstcolumn(-1Activeness)presentsthecoe￿cientfor thecorrelationoftheactivenesslevelwiththeacceptancepercentageofnoti￿cations,computedbyusingdata relatedtothecurrent 1hour.Here,thecurrenthourreferstothehourinwhichauserreportedtheiremotional � state.Wesetthesigni￿cancelevel� forthecorrelationresultsto0.05andnon-signi￿cantcorrelationcoe￿cients areindicatedbythewhiteboxesinthecorrelationplots. 2.3 CausalityAnalysis 2.3.1 Overview. Correlationanalysisrevealstherelationshipbetweenemotionalstateandthephoneinterac- tionmetrics.However,apurecorrelationbetweentwovariablesdoesnotnecessarilyimplytheexistenceofa causalin￿uenceasthevaluesofboththeexaminedvariablesmaybeassociatedwithotherfactors,i.e.,theycan be“explained”byotherfactors.Forinstance,userscommutingalongdistancemayreportreducedactiveness levelandtheymayalsospendmostoftheirtimeplayinggameswiththesmartphone.Inthiscase,acorrelation betweenactivenesslevelandgameapplicationsmaybeobserved. However,thevaluesofbothvariablesare stronglyin￿uencedbyuseractivity(i.e.,commutingonvehicle).￿erefore,weperformthecausalityanalysis betweenthevariablesthataresigni￿cantlycorrelated. InordertobeabletoclaimthatanobservedrelationshipbetweenvariablesX andY (i.e.,X in￿uencesY)is causal,thevariableX shouldalwaystemporallyprecedeY andthereshouldbenootherexplanationforthe associationobservedbetweenthem.Here,X iscalledthetreatmentvariableandY istheoutcomevariable.Incase thereisathirdvariableZ (calledconfoundingvariable),whichin￿uencesbothX andY,theobservedassociation betweenX andY mightbespuriousanda￿ributedsolelytoZ.￿us,inordertoconductavalidcausalinference analysisitisnecessarytocontrolanyconfoundingvariables. AccordingtoRubin’sframework,causalinferenceanalysiscanbeconductedbycomparingpotentialoutcomes [40].Tounderstandthis,letusconsiderU asasetofunits(e.g.,thesamplesofthevariable)thataredenotedbyu. Whenu hasbeenexposedtothetreatmentsX [0,1]togivetheoutputvaluesasY0(u)andY1(u)respectively. 2 Now,theaveragee￿ectofthetreatmentforallunitsu U canbeestimatedasE Y (u) Y (u) . 1 0 2 { � } However,thefundamentalproblemofcausalinferenceisthatwecannotobservebothY andY forthesame 0 1 unit. ￿erefore,weusethewidelyusedmatchingdesignapproach[39,47]accordingtowhichtheimpactof atreatmentvariableX onanoutcomevariableY canbeassessedbycomparingsamplesorunitswithsimilar valuesofZ (i.e.,theobservedconfoundingvariables).Forexample,ifwewanttoassesstheimpactofatreatment X onthestresslevel(i.e.,Y)andweconsiderthetimethattheyspendathomeasaconfoundingvariable(i.e., Z),wecancomparetheirstresslevelsonlyfortheobservationswhentheusershavespentsimilaramountof timeathome(i.e.,thedistancebetweenZ valuesisclosetozero).Here,thesimilaritybetweenZ valuescanbe computedbyusinganydistancemeasuresuchastheEuclideandistance. PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. MyTraces • 1:7 ￿epurposeofusingthematchingdesignisto￿ndthe“mostsimilar”pairsofunitsandthencomputethe treatmente￿ect.Tounderstandthis,letusdenotewithU andV thesetsofunitsthathavereceivedatreatment0 and1,respectively.Matchingdesigna￿emptsto￿ndanoptimalsetofpairedunits(u,�) P,withu U and 2 2 � V suchthatthedistancebetweenpairedunitsontheirconfoundingvariablesisminimum.￿en,theaverage 2 treatmente￿ect(ATE)isestimatedasfollows: E Y (u) Y (�) (1) { 0 � 1 }(u,�)2P Notethatseveralapproachesfor￿ndingoptimalpairsofunitshavebeenproposed[50].Adetailedreviewof suchapproachesisoutofthescopeofthisstudy. Althoughthetreatmentvariableisgenerallysupposedtobebinary,thetraditionalmatchingframeworkhas beenextendedtosupportalsocontinuousvaluesfortreatmentvariables[23].Inthiscase,unitscannotbesplitto treatedandcontrolgroups;instead,everyunitofthestudycanbematchedtoanyother. ￿en,theobjective oftheappliedmatchingmethodistomatchunitswithminimumdi￿erenceoftheirconfoundingvariablesand maximumdi￿erenceoftheirtreatmentvalues.A￿ercreatingasetP ofmatchedunits,theaveragetreatment e￿ectisestimatedas: Y(u) Y(�) E � (2) X(u) X(�) (u,�) P ⇢ � � 2 Inthisstudy,wewillapplythematchingdesignframeworkforcontinuoustreatments[23]inordertoanalyze: (1) theimpactofphoneusageonparticipants’emotionalstate.Inthiscase,thetreatmentvariableisoneof thephoneinteractionmetricspresentedinTable1andtheoutcomevariableisoneofthethreeemotional state-basedmetrics.Sinceacausallinkcannotexistbetweentwouncorrelatedvariablesandthetreatment needstoprecedetemporallytheoutcomevariable,weconductthisanalysisonlyonvariablesforwhicha statisticallysigni￿cantcorrelationbetweenemotionalstateandprevioushour’sphoneinteractionmetrichas beenobserved. (2) theimpactofparticipants’emotionalstateontheirinteractionwiththeirsmartphone.Inthiscase,the treatmentvariableisoneofthreeemotionalstate-basedmetricsandtheoutcomevariableisoneofthe phoneinteractionmetrics.Similarly,weconductthisanalysisonlyonvariablesforwhichastatistically signi￿cantcorrelationbetweenemotionalstateandnexthour’sphoneinteractionmetrichasbeenobserved. Aseparatecausalitystudyisconductedforeachpairofvariables.Itisworthnotingthatdistinguishingcause frome￿ectisanopenissueincausalityanalysis. Withrespecttothisspeci￿ctypeofstudy, understanding whetherthereportedmoodprecedestemporallytheexaminedactivityisveryhard.Forthisreason,inourwork, weusethelastreportedemotionalstateasconfoundingvariable.￿us,thisallowsustotestiftheemotionalstate oftheindividualpriortotheobservedactivityin￿uencestheoutcomevariable(forexamplephoneusage)ornot. However,theemotionalstatemaychangea￿erbeingreportedandbeforetheobservedactivity.Unfortunately, insuchcasesthetemporalprecedencecannotbecaptured.Atthesametime,aspreviousstudiessuggest,the emotionsdonot￿uctuatefrequently[9],thereforewebelievethatthisissuewillnotsigni￿cantlyimpactour study.Finally,giventhelimitedamountofdataperindividual,itisonlypossibletoperformacausalityanalysis acrossusers. Itisalsoworthnotingthataccordingtotheresultspresentedin[55],themethodusedforcausalityanalysis performsbe￿erthanotherexistinglinearmethods,suchaslinearregression.Moreover,wecannotapplyANOVA methodssincetheirkeyassumptionssuchaslinearityandnormalitydonotholdforourdataset.Forexample, variablessuchasnoti￿cationresponsetimeandappusageareveryskewed. PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. 1:8 • A.Mehrotraet.al. Fig.2. DependenciesofPhoneUsageTimeandHappinesswiththemetricsofourstudy.Thelinesindicatetheassociation andthereforenodirectionisreported.Thetreatmentandoutcomevariablesareshownintheboxeswithboldlines. 2.3.2 ConfoundingVariables. Acrucialstepofouranalysisistheselectionofconfoundingvariables.￿ere areseveralfactorsthatcouldin￿uencebothusers’emotionalstateandsomeofthephoneinteractionmetrics thathavebeenpreviouslydiscussed.Forinstance,inordertoexaminetheimpactofusinggameapplicationson theuser’semotionalstatewemayneedtocontrolothertypesofapplicationsthatwereusedinthesameperiod. ￿eamountoftimethatusersspendplayingmobilephonegamesmaycorrelatewiththeamountoftimethey spendusingotherapplicationsduetothefactthattheyarefeelingboredatthatmomentandwantstokilltime byusingdi￿erentapplications. ￿us,anobservedchangeintheuser’semotionalstatemaybein￿uencedby theuseofanotherapplicationratherthanagameapplication.Furthermore,users’contextmodalitiessuchas locationandactivitymayalsoin￿uencetheiremotion[54]. Weapplythemethodologydescribedin[54,55]inordertoselectanappropriatesetofconfoundingvariables. Morespeci￿cally,weexaminethecorrelationsofallthepreviouslypresentedmetricswiththetreatmentand outcomevariablesofeachstudy.Metricsthatcorrelatewithboththetreatmentandtheoutcomevariableswill beincludedinthesetofconfoundingvariables.Moreover,theexaminedvariablesmaybeautocorrelated.For example,aparticipantwhoisexperiencingastressfulsituationwillprobablyreporthighstresslevelsonmultiple consecutivetimes.Hence,theprevioususerbehavior(i.e.interactionwiththephone,activityandlocation)and emotionalstateshouldbeexaminedaspossibleconfoundingvariables.Weconductpartialautocorrelationtests forthetreatmentandoutcomevariablesinordertodiscoverdependencieswiththeirpreviousvalues.Wealso examinethecorrelationofthetreatmentandoutcomevariableswithlaggedvaluesoftheconfoundingvariables conditionaltothesorterlaggedcorrelatedvalues.Forexample,inFigure2wedepictthedependenciesofthe treatmentvariablePhoneUsageTimeandtheoutcomevariableHappinesswithourmetrics.Wefoundthatonly Locationcorrelateswiththeexaminedvariables(i.e.,bothPhoneUsageTimeandHappiness).Wealsofoundthat ourvariables(PhoneUsageTimeandHappinesslevel)attimet correlatewiththeprecedingvalues(i.e.,variables attimet 1).However,theydonotcorrelatewithprecedingvaluesofLocation,butconditionaltothecurrent � Location(i.e.,Locationattimet).Hence,thesetofconfoundingvariableswillincludeonlytheLocationandthe one-laggedvaluesofPhoneUsageTimeandHappinessvariables. Sincemobilephoneusagepa￿ernsmayvarysigni￿cantlyfordi￿erentuserswerequirethematchedsamplesto belongtothesameuser.Moreover,thephoneusagemaydependonthesamplingtime.Forexample,mostusers willprobablyusetheirphonelessintheearlymorning(e.g.,4:00am)comparedtoa￿ernoonhours.Consequently, wecannotderivevalidconclusionsifwecomparesamplesofdi￿erenttimeintervals.￿us,wesplitadayinto four time intervals: early morning (00:00-06:00), morning (06:00-12:00), a￿ernoon (12:00-18:00) and evening (18:00-24:00)andweallowsamplestobematchedonlyiftheyarereportedduringthesametimeinterval.￿en, weapplyoptimalmatching[31]inorderto￿ndoptimalpairsofsamples.Weuseasdistancemetricbetween PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. MyTraces • 1:9 DataType Features Noti￿cation Arrivaltime,seentimeandremovaltime,alerttype(sound,vibrateand￿ashing LED),user’sresponse(clickordismiss),senderapplicationnameandnoti￿cation title. Context Physicalactivityandlocation. Communication Time,typeandsender/recipientofcallsandSMSs. PhoneUsage Lock/unlockevent,singleclick,longclick,scrollsandusagetimeofallforeground applications(includinghomescreen). Table2. Classesofdatausedforcomputingphoneinteractionmetricsandcontext-basedfeatures. samplestheMahalanobisdistance[26]weightedbythedi￿erenceonthetreatmentvariablevaluesasdescribed in[23].A￿er￿ndingtheoptimalpairs,weuseEquation2inordertoestimatetheaveragetreatmente￿ect.If thereisnoe￿ect,ATEshouldbeclosetozero.Weusethet-testtoexamineiftheobservedvalueissigni￿cantly di￿erentfromzero. Finally,weshouldstressthatourstudycontrolsonlyfortheobservedconfoundingvariables(i.e.,themetrics describedinSection2.1.3)andcouldbebiasedincaseofmissingconfounders. ￿isisaknownlimitationof all causality studies based on observational data. Although several unobserved factors could in￿uence user emotional state, bias could be induced only by those factors that in￿uence also users interaction with their phones.Byincludingalargenumberofmetricsinourstudyandbycontrollingalsoforthepreviousvaluesof emotionalstateandphoneusage,weminimizethisbias.However,thepossibilitythatunobservedfactorscould in￿uencethevalidityofourresultscannotbeeliminated.￿us,thecausalanalysispresentedinthispapershows thepotentialcausale￿ectintheabsenceofotherconfoundersandinanycaseitprovidesevidenceofstrong dependencybetweenvariables. 2.3.3 EvaluationoftheCausalityFramework. Asdiscussedearlier,itisworthunderliningthatthefocusofour studyisnotonthedesignofanewcausalityframework.Infact,weadoptthecausalityframeworkpresented byTsapelietal.in[55],inwhichtheauthorsproposeacausalinferencemethodfortime-seriesdatabasedon matching-designtechniquesthatdoesnotrequireanyassumptionsaboutthefunctionalformoftherelationships amongthevariables.￿emethodisextensivelyevaluatedonsyntheticdatainscenarioswithbothlinearand non-lineardependenciesandwithvaryingnumberofconfoundingvariables. Accordingtoresultspresented in[55]thismethodismoree￿ectiveonavoidingfalsepositiveconclusionsthanexistingapproaches.Furthermore, thismethodhasalreadybeenappliedtomobilesensingdatainordertostudytheimpactofdailyactivitieson stress[54]. 3 DATACOLLECTION 3.1 Overview Inordertostudythein￿uenceofemotionalstatesontheuser’smobileinteractionbehavior,weconductedan in-the-wild study.Morespeci￿cally,wedevelopedanAndroidappcalledMyTraces(showninFigure1)thatruns inthebackgroundtounobtrusivelyandcontinuouslycollectusers’mobilephoneinteractionlogsandthecontext information(aslistedinTable2). ￿eMyTracesapplicationreliesontheAndroid’sNoti￿cationListenerService[1]tologinteractionwith noti￿cations.ItusesGoogle’sActivityRecognitionAPI[4]toobtaintheinformationabouttheuser’sphysical activityclassi￿edaswalking,bicycling,commutingonvehicleorstill.Moreover,theapplicationsamplesGPS datainanadaptivesensingfashionasdescribedin[10].InordertoclustertheGPSdataweapplytheclustering algorithmpresentedin[54]. Foreachclusteredlocationweassignoneofthefollowinglabels: home,workor PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. 1:10 • A.Mehrotraet.al. other.Weassignthehomelabeltotheplacewhereauserspendsthemajorityofthenighthours(de￿nedasthe timeintervalbetween20:00to08:00).Weconsiderworkplaceasthesecondmostsigni￿cantplace(i.e.,theplace whereusersspendmostoftheirtimeapartfromhome).Allotherplacesarelabeledasother. Toacquirethedataabouttheuser’semotionalstates(activeness,happinessandstresslevel)throughoutthe day,werelyontheexperiencesamplingmethod(ESM)[13]. AsshowninFigure1.b,userscanregistertheir moodthroughaslidingbar.￿isbarusesa5point-basedLikertscalewhere1indicatesthelowestleveland5the highestlevel.Everydayamoodquestionnaireistriggeredatfourrandomtimesineverythreehourtimewindow between8.00amand11.00pmbyusingthephone’stime(i.e.,localtimezones).Wechosethistimewindowso thattheparticipantsdonotfeelannoyedbybeingaskedtorespondtothesurveysearlyinthemorningandlate atnight. Incaseaquestionnaireisdismissedornotrespondedtowithin30minutesfromitsarrivaltime,the applicationtriggersanotheralerta￿er30minutes. Sincethehighervaluesofactivenessandhappinesslevelsindicateapositiveemotion,wemeasuredthestress levelaccordingtoanegativescalethatmeanslowervaluewouldindicatehighlevelofstress.￿iswaywemake thescaleofallemotionalstatesconsistent(i.e.,thelowervaluesrefertonegativeemotionandhighervalues tothepositiveemotion). ￿erefore,wereversethescalebysubtractingeachresponsevaluefrom6. So,iffor exampletheresponseis5(i.e.,verylowstress),wesubtractitfrom6torescaleitto1.￿us,withthereversed scalethelowervaluewillrefertolowerstresslevelandthehighervaluewouldindicatehigherstresslevel. Itisworthnotingthatuserswereaskedtoreporttheiremotionalstatesduringthepasthour(seeFigure1.b) ratherattheinstanceofrespondingtoanESM.Asdiscussedearlier,weemploythisapproachofusingsucha longerperiodforqueryingemotionalstatesbecausepreviouspsychologicalstudieshaveshownthatemotions persistforafewhours[8,9]. Additionally, we also collected data about weather at users’ location during the day at hourly basis. ￿is dataconsistsoffeaturessuchastemperatureandhumidity.InordertoobtainthisdatawerelyontheWeather Underground’sHistoryAPI2.ItisworthnotingthatweusetheHistoryAPIbecausethisdatawascollecteda￿er thedatacollectionfrommobilephones. 3.1.1 RecruitmentoftheParticipants. ￿eMyTracesapplicationwaspublishedonGooglePlayStoreandhas beenavailabletothegeneralpublicforfreesince4thJanuary2016.Itwasadvertisedthroughdi￿erentchannels: academicmailinglists,Twi￿er,FacebookandReddit. Inordertoa￿ractmoreparticipantsforourstudy,we commi￿edtogiveincentivestotheparticipantsforreplyingtothequestionnairesforaminimumof30days.We commi￿edtoselect(throughalo￿ery)onewinnerofaMoto360Smartwatchand20winnersofanAmazon voucher. Inordertoensureprivacycompliance,theMyTracesapplicationgoesthroughatwo-leveluseragreement toaccesstheuser’scriticaldata. Firstly, theuserhastogiveexplicitpermissionasrequiredbytheAndroid operatingsystemforcapturingapplicationusage,noti￿cationsanduser’sinteractionwithmobilephone(suchas clicks,long-clicksandscrolls).Secondly,theapplicationshowsalistofinformationthatiscollectedandasks foruser’sconsent.Furthermore,thestudywasperformedinaccordancewithourinstitution’sethicalresearch procedureandtheconsentformitselfforthedatacollectionwasreviewedbyourinstitution’sEthicsReview Board. 3.2 Dataset Weconsiderthedatacollectedfrom4thJanuary2016to1stJuly2016.Inthisperiodtheapplicationwasinstalled by104users.However,manyusersdidnotactivelyrespondtothemoodquestionnairesandsomeuninstalled theapplicationa￿erafewdays.￿erefore,weselectedasubsetofthedatafortheanalysisbyconsideringonly theuserswhorantheapplicationforatleast20daysandrespondedtoatleast50%ofthemoodquestionnairesin 2www.wunderground.com/weather/api/d/docs?d=data/history PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017.

Description:
ABHINAV MEHROTRA, University College London, UK. FANI TSAPELI, University Abhinav Mehrotra, Fani Tsapeli, Robert Hendley, and Mirco Musolesi. 2017. MyTraces: . rhythm (i.e., it corresponds to activity in brain cells that regulate organisms' sleep-wake cycle), whereas tense arousal does not
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.