Reference:Bin/. Bull. 193: 350-358.(December, 1497) Myogenic Heartbeat in the Primitive Crustacean Triops longicaudatus HIROSHI YAMAGISHI*. HITOSHI ANDOt. AND TOSHIKI MAKIOKA Institute ofBiologicalSciences, University'ofTsiikuha, Tsukiiba, Iharaki 305, Japan Abstract. Pacemaker mechanisms in the heart of the 1973). The cardiac ganglion situated in the heart acts as primitivecrustaceanTriopslongicaudatuswereexamined apacemaker.Neurogenicheartmusclehasnoendogenous electrophysiologically. The heart is tubularand the heart rhythmical properties and is driven by periodic bursting wall consists of a single layer of myocardial cells. No activityofthe cardiac ganglion viaexcitatory neuromus- nervecellswerefoundintheheart,eitherwithmethylene cular junctions. However, some diversity in the pace- blue vital staining or by light microscopy of serial sec- makermechanismofcrustacean heartshasbeenreported tions. The heartbeatsrhythmicallyatafrequencyof 120 recently. Yamagishi (1996) and Yamagishi and Hirose to240beats/min.andeachbeatisassociatedwithaslow (1997) have shown, in the isopodLigia exotica, that the membranepotentialchange intheheartmuscle. Theam- heart ofembryos and earlyjuveniles exhibits myogenic plitude ofthe slow potential varies widely and no spikes heartbeats; i.e.. the activity in the myocardiumarisesen- appearon it. The heart muscle cells are electrically cou- dogenously. Later, as thejuveniles develop, the cardiac pled with each otherand generate synchronous slow po- ganglion initiates its spontaneous bursting activity and tentials. No localized portion of the heart exhibited a beginstoactasaprimarypacemaker,entrainingthemus- frequency that always preceded the others. The muscle cle activity via neuromuscular excitatory junctional po- activity could be phase-shifted by injection of a single tentials.Thistypeoflate-developingneurogenicheartbeat briefcurrent pulse and could be entrained to a loweror is different from that in any otherknown crustacean. higherfrequencybyrepeatedbriefcurrentpulsesinjected Theheartbeatofbranchiopods,oneofthelowerorders into the muscle cell. The frequency of muscle activity within the Crustacea, is said to be myogenic (reviewed could be changedby the injection ofDC current intothe by Krijgsman, 1952;Maynard, 1960).Thisideawaspro- muscle cell, and the change in frequency was linearly posed on the basis of the following two observations. relatedtothe intensity ofthecurrent. When the intensity First, no nerve cells were found in the heart ofDaphnia ofhyperpolarizing DC current exceeded a certain value, (Ingle, cited by Prosser, 1942). Second, the heartbeat of the muscle activity disappeared abruptly, and the heart Daphniuwassuppressedbyexternalapplicationofacetyl- stopped beating completely. These results show clearly cholinetothebody, whichwasthoughttosuppressmyo- that the heartbeat of Triops is myogenic. The heart is genic heartbeats (Baylor, 1942; Bekker and Krijgsman, diffusely myogenic and should be regarded as a single 1951). However, the second observation is not now re- muscle oscillator. gardedasevidenceofamyogenic heartbeat,becauseac- Introduction celerationofthemyogenicheartbeatbyacetylcholinehas The heartbeat of many crustaceans is neurogenic (re- bpeaecnemraekpeorrtmedec(he.agn.,isGmreoefnbberragn,ch1i9o6p5o)d.sTihsusst,illthuenccearrtdaiianc. viewed by Krijgsman, 1952; Maynard. 1960; Prosser, To explore the diversity in the heartbeat pacemaker mechanismsofcrustaceans,weexaminedtheelectrophys- Received 10April 1997:accepted6October 1997. iology of the heart of the primitive crustacean Triops *To whomcorrespondence shouldbe addressed. E-mail: yamagishi longicaudatus (Notostraca, Branchiopoda). The aim was D(Se'nbttiioPslr.tetrsyse,unktTuboAak.dyadocr.ejMspse:dicDaelpaarntdmeDnetntoaflBUinoimvaetrseirtiya,lsYuSsciheinmcae,,BFuancuklytoykuo,f tsoultdsetsehromiwneclwehareltyhetrhatthethheeahretabretabteaits moyfoTgreinoipcs.iTshmeyroe-- Tokyo 113.Japan. genic, and that the heart should be regarded as a single 350 MYOGENIC HEARTBEAT IN TRIOPS 351 muscle oscillator. Some of these observations have ap- peared in abstract form (Yamagishi etat., 1993). Materials and Methods Animals Adult specimensofthe freshwatertadpole shrimp Tri- tomm ops longicaudatus have been collected routinely in June from rice fields in Saitama, Japan. They were kept in a freshwateraquarium in the laboratory, at room tempera- ture, for about 3 weeks. Over a hundred specimens, 15 to26mm inbody length, wereusedfortheexperiments. Morphology Morphological observationsofthe heart were made in dissected animals by vital staining with methylene blue, orby lightmicroscopyinserial sectionsofthe heart. For sections, hearts that had been isolated together with the dorsalbody wallwerefixedinaqueousBouin's solution. Then, thepreparationsweredehydrated in agradedetha- nol-H-butanolseries,embeddedinparaffin,andcuttrans- verselyintoserialsections(5to7//m).Thesectionswere stained for light microscopy with Mayer's hematoxylin and eosin. Preparation ofthe intactheart The tubular heart of Triops is situatedjust under the dorsal body wall in the thoracic region. After the legs were removed, the body was opened by a longitudinal incisionthroughtheventralbodywall.Thedigestiveand genital organs in the thorax were carefully removed to 50pm mexopvoesdebtyhethweoartt.ranTshveersheeacdutasntdhraobudghomtehne bwoedryeaatlseoithree-r (A)FiDgourrseal1.vieSwchoefmtahteicaddurlatwTirnigospso.fatph,eahpeapretndoafgTer;iobps,slboondgyicsaeugdmaetnuts;. end ofthe thorax. Thus, the heart was isolated together ca,carapace;ce.compoundeye.(B)Heartexposedbyremovalofthe with the dorsal body wall to which it was still attached. carapaceandthedorsalbodywall.h.heart. (C)Transversesectionof Tinhetnh,eetxhepehreiamretntparlepcahraatmiboenrwaansdpwlaascefdi,xevdenttoratlhesibdoettuopm, dlthorenagwibnto,uddayicn.atlahlrmioumusegcnhltea;trhyemecta,hnoamrlya;oxc.bawrT,dhibeaoldhyecealrwlta.lla;ndca,sucrarroaupnadcie;ngh,tihsesaurets;Iamr.e by pins through the dorsal body wall. The chamberwas perfused with aerated physiological saline solution bht(ehaHarsoroemtudegb,hoeonau1t9tt6hr6tee)hg,euilaoeannxridplceyhracifdomomertpnhotses.eifvteoUrilnalodlonewrhioonfugtrhTscer.soiemopTpcohsosenidhtiseitaomilnoionnl(seym,Amw/tpa)hhs:e ctosheonerrtdterhedeedciodbnroytdrosipanltlgahceheielnhaegercattarrthwoadimlegl.uh.-sCrcTeolshneitesrctaedalcanltt,ciaeobwnmueitocrfreatoteshalteeodcrhiteesdratoraitdnnecwealanisfghrFtroleMmy- a7N.ad4Cd)l,e,d5.t7o5;ItnhKesCs1oa,mlie5n;ecCaaatseCvsla,,r,itoe2ut;srMocdogonCtcolexn:it,nr1a;(tTiaoTnnXds;TurpSiistgo-mHlaCO)l"*w(1Map.sH wrmaaeygrneoestccaiirclrlitoeasdpceoopuretecaaotnrdd2e0raatconhad2rt3wCerr.eecodridserp.laTyehdeoenxpaerciamtehnotdse Electrophysiology Results recTohredemdewmibtrhanaecopnovteennttiiaolnaolfgtlhaesshecaarptilmluasrcylemiccerlolelweacs- Anatomyandhistologvofthe heart trode filled with 3M KC1 (resistance; 10-30Mil). An- The heart of Triops, a long tubular organ, is situated other microelectrode, for current injection, was also in- under the dorsal surface of the body (Fig. 1A, B). It 352 H. YAMAGISHI ETAL. TTX arrests the beat ofdecapod crustacean hearts by suppressingneuronalspikinginthecardiacganglion(e.g., Tazaki. 1971). However,thespontaneousslowpotentials minentthewhietahrtTTmuXscaltecoonfceTnrtiroaptsiownesreupnototlaf(fTehcMted(Fbiyg.tr2eBa)t.- S\nchronous activity ofthe heartmuscle cells 0.2S Muscleactivitywassimultaneouslyrecordedfromtwo sitesintheheart.Figure3Ashowstwoexamplesinwhich onerecordingsitewasneartheanteriorend(uppertraces), and the other near the posterior end ofthe heart (lower traces). The periodic membrane potential changes were synchronizedamongthemusclecellswithinatimediffer- ence of less than 50ms (Al, 16ms; A2, 12ms). Thus, the whole heart beat almost simultaneously. In the case shown in Figure 3A1. the slow potential recorded from the anteriorregion preceded that recorded Figure2. (A) Electricalactivityoftheheartmuscle(uppertrace) fromtheposteriorregion.ButinthecaseshowninFigure andcontractionoftheheart(lowertrace)recordedsimultaneously.Intra- 3A2,theslowpotentialrecordedfromtheposteriorregion cellular membrane potential was recorded from a muscle cell in the precededthatrecordedfromtheanteriorregion. Nolocal oanfttehreiohreraretg.io(nB)ofTtThXehheaarst,noanedffceocnttorancttiheonmautsaclseiteacitnivtihtey.ceAnrtrraolwrheegaido:n regionofthehearthadactivitythatconsistentlypreceded Perfusingsolutionwaschangedfromnormalsalinetosalinecontaining that ofthe rest ofthe organ. TTX(10-*M). extends from the first to the twelfth thoracic segments and is suspended in the pericardia! cavity. The heart is 6.4 to 8.6mm in length, but less than 1 mm in width in the preparations used. The heart tube bifurcates near its anteriorend and opens at the head regionjust underthe eyes; its posterior end is closed. The heart has 11 ostia on each side, but no defined walled arteries are present. Theheartwalliscomposedofasinglelayerofmyocardial cells (Fig. 1C). Myofibrils are present in the outer half ofthe myocardial cell. No nerve cells were found in the heart. 0.2 s Spontaneous membranepotentialchanges in the heart muscle Electrical activityoftheheartmuscleandcontractions ofthe heart were recorded simultaneously. As shown in Figure2A,eachheartbeatfollowedaperiodicslowdepo- larizingpotentialofthe heart muscle.Thefrequencyand amplitude of the slow potential were not stable, but changed during measurement in the same preparation. 0.2s Thefrequencyandamplitudeoftheslowpotentials,mea- Figure3. (A)Intracellularmuscleactivityrecordedsimultaneously sured about 30min after isolation, were 188.2 32.9/ from two sites in theheart: one nearthe anteriorend (uppertraces), min (mean SD, n = 64) and 17.5 6.3mV (mean andoneneartheposteriorend(lowertraces). Recordings I and2are boSneDt,twheneesn=lot6wh4e)p,ostrleeonswtpieapclot.tievTnehtleiya.lmsNaoxwaissmpiu5km9e.m2peotmebntr3i.aa6nlsemVappotp(eenmateriaeandl sfhfeirramoorummtltadwaniantfeefsreoirucoesurnlttytoptfrrpreaopnosasmtrveaerttriiwsooeronl,sys.tehipe(naBtrro)aetcfIeonodrtudrrfsacrsewaelegplmruaeelrnaatrftsremdouomsffctrlthaheegemfeaisncrastttismv.e(iutypRhpeearecrerktco.tonrrTaidchneeegd) SD, n = 56). andthethird(lowertrace)fragments. MYOGENIC HEARTBEAT IN TR1OPS 353 gradually to the control level (Fig. 4A, middle and right portions). Afterthe stimulation (Fig. 4B), the frequency ofthe slow potential increased conspicuously (270/min) in the anterior region, but was almost unchanged in the posterior region (Bl). Subsequently, the frequency and amplitude ofthe slow potential in both regions changed and the rhythm became irregular (B, 2 and 3); then the rhythm became synchronized as in the control condi- tion (B4). B AAAAAAAAA/vAMAAA Electrical coupling aiming the heart muscle cells 1 VWWWVAMy Twoelectrodes, oneforcurrent injection andtheother forrecording, were inserted into musclecellsatdifferent sites of the heart. In the experiment of Figure 5A, the A 20 1 MW mV , 1s \M/\MA AA/Wl Vwvw\llOmV Figure4. (A)Intracellularmuscleactivityrecordedsimultaneously 1s fromtwosites:neartheanteriorend(uppertrace)andneartheposterior end (lower trace) of the heart. Arrow head: A mechanical stimulus (touching) withasmallglassrodwasappliedtothecentralregionof B theheart. (B)Recordswithafastersweep.Thenumberofeachrecord (mV) correspondstothenumberin(A). 30 20 We nextexaminedmuscle activity incut fragmentsof 10 theheart. Figure3B showsanexampleinwhichtheheart 00)1 oj was cut transversely into four separated fragments, and 15 5 muscleactivitywasrecordedsimultaneouslyfromtwoof them. Activity similar to that found in the intact heart wasrecorded from the twofragments, each with itsown rhythm. Thus, a fragment isolated from any portion of the heart exhibited spontaneous rhythmic activity. Amechanical stimulusappliedtotheheartbytouching orpressingtheheartwallwithasmallglassrodproduced 0.3 0.6 0.9 1.2 1.5 (mm) a transient systolic arrest within a localized region near Distance twhaesstairmreusltaetdedbsyitet.heWhleocnalthaeppcleinctartailonregoifonaomfecthheanhiecaarlt IntFriacgeulrleula5r.muEslcelcetriaccatlivictoyuprleicnogrdeadmosnimgultthaenehoeuasrltymfursocmletwcoellssi.tes(Ai)n stimulus, the rhythmical activities in the anteriorand the the heart. Distancebetween the twoelectrodes wasabout600/zm. A posteriorregions ofthe heart gradually became synchro- hyperpolarizingcurrentpulse.500msinduration,wasinjectedintothe nized. Wethereforeexaminedthetimecourseforachiev- heartmusclethroughoneofthetwoelectrodes,usingabridgecircuit minegntsyinnchFriognuirzeat4ioisneoxfemtphelamruys.clBeefaocrteiviatpipelsi.caTthieonexopfertih-e it(nhuepAp2eel.rec(ttBrra)octeRosen)li.actIipnootntesenhnstiiitpay,loianfnatdnhetahcreruerdsritesentdtanhwceaearstb,e1tb0we0etenwnAeetnihnetAhceluraramenpndltiat2nu0dd0etnohAef stimulus (Fig. 4A, left portion), the slow potentials re- recordingelectrodes. Ahyperpolarizingcurrentpulse(100ms.80nA) corded from the anterior (upper trace) and posterior was injected intothe heart muscle through the currentelectrode, and (lower trace) regions were synchronized at a frequency the resultant electrotonic potential was recorded at various distances ostfim1u7l7a/tmioinn,wtihtehmausticmleedcieflflermeenmcberoafneabsouitn 3b5otmhs.reUgipoonns ewflraeoscmtprltoohdteet.ceduMroerneannatlevolagelacutrerisotdh(em.iScTEhsMcea)laemopafglai5itnumsdteeaesoafucrheeadmciehsntetalsnecceitnrfotrthooemnistcahepmoectuerhnreteainrattl depolarized by more than lOmV, and then recovered wereplotted. 354 H. YAMAGISHI ETAL. twoelectrodes were about 600/jm apart. When a hyper- polarizing current pulse (500ms, 100nA) was injected, the membrane of the muscle cell hyperpolarized (Al). Theamplitudeofthehyperpolarizationincreasedwiththe intensity ofthe current injected (A2. 200nA). The spread of electrotonic potentials was examined withheartpreparationsthathadstoppedbeatingafterper- B +30 fusion for several hours. The electrotonic potential pro- duced by injecting a hyperpolarizing current pulse (100ms,80nA)wasrecordedwhilethedistancebetween +20 the current and recording electrodes, along the ventral longitudinal midlineoftheheart, was varied. Theampli- tude of the hyperpolarization decreased with increasing +10 distance betweenthe twoelectrodes. A semi-logarithmic Stimulationphase(%) tplaontceofbtehtewaemepnlitthuedecuorfrehnytperapnodlatrhiezatrieocnoradgianignsteltehcetrdoidse- 0C)O 1 1 .1 H1*, Jw 10I0 showstheamplitudedecreasinglinearlywiththedistance CO (Fig. 5B). The length constant (\) calculated from the -10 relationship was 0.55 0.08mm (mean SD, n = 5). *: -20 Effects ofcurrentinjection on the muscle activity A brief depolarizing or hyperpolarizing current pulse -30L (50ms,50nA)wasinjectedintotheheartmuscleatvari- Figure6. Effectsonthemuscleactivityofinjectingabriefdepolar- ous phases ofthe rhythmical activity. The inter-peak in- izingcurrentpulse.(A)Eachrecordshowstheintracellularactivityof terval was defined as the time between the peaks oftwo the heart muscle (upper trace) and a monitorofthe stimulus (lower ts(hsletoiwmpueplaoaktteinootnfiatplshh.easTsehl)oewwappshoatsdeeenftiionafledtphaerseactpehpdeliiniegndtetcrhuverarlpeunbltestepwuealensnde etpbrrhnaiadcesef)eo.sdfeT(ptshohtleeiamrhruieelazacritotnir,godniacnnupgdrhraeestlnhetee)ctpocrufuolrdstreeheen(wti5an0estlemerasc-l,tpwre5aoady0kesinnAnite)neasrrevwaraltt.sehdeSaenppeepoalstriteeexrdttihofeartoravendanterdefi.rioinuoiAs-r theonsetofthepulse;itwastakenasapercentageofthe tionsofthe stimulation phaseand the inter-peakinterval. Stimulation precedinginter-peakinterval(controlinter-peakinterval). phaseswere27%(1)and64%(2).(B)Relationshipbetweenphaseshift The resultant phase shift ofsubsequent beat cycles was andstimulationphase(phase-responsecurve).Fiftybriefdepolarizing mapepalsiuerdesdtiamtutlhues;peitawkaosfttahkeetnhiarsdaspleorwcepontteangteiaolfftrhoemcotnh-e porulpsehsasweeraedvaapnpcleie(dat)vwaarsiopulsotstteidmualgaatiinosntpehaacshes.stEimauclhatpihoansephdaeslea.y(+) trol inter-peak interval. As shown in Figure 6A, a depolarizing pulse applied at27%producedaphasedelay (Al),andapulseapplied injectedintotheheart muscle atvariousfrequencies. For at64% producedaphase advance in the subsequentbeat example (Fig. 8), muscle activity at a control frequency cycles (A2). Figure 6B shows the relationship between of 150/mincould be entrainedtoafrequency 17% lower thephase shiftandthestimulationphase(phase-response (Al),or 13%higher(A2).byapplicationofrepeatedbrief curve). Thecurve wasbiphasic at a stimulation phase of depolarizing pulses. Similarly, muscle activity could be approximately40%:astimulusappliedatanearlierphase entrainedto afrequency 19% lower(Bl), or 13% higher pslarhtooedrwunpcheaidnseaFippgrhuoardseuec7edAde,laaayphh(ay+spee).rapaodnlvdaarnaiczseitni(gm-upl).uulIssneacpoapnpltpirleaisdet,dataasat h(By2pW)e,erpotelhxaaarnmiiztnihneegdcpeoufnlftserecostl.sobfyinajpepcltiicnagt,ifoonro1f0sr,edpeepaotleadribzriinegf 36% produced aphase advance, andone applied at 85% orhyperpolarizing DC current ofvarious intensities into produced a phase delay in the subsequent beat cycles. the heart muscle. Figure 9 shows an example. The fre- The phase response curve was biphasic at a stimulation quency ofslow potentials increased slightly (A, +2.1%) phaseofapproximately50%: stimuli appliedatanearlier when depolarizing DC current (10nA) was applied. The phaseproducedaphaseadvance(-),andstimuli applied effectincreased(B, +6.8%;C, +9.6%)withtheintensity atWaelatneerxpthaesxeampirnoedductehdeaefpfhecatsseodneltahye(m+u)sc(Flieg.ac7tBi)v.ity ohfypearpppolliaerdizciunrgrentDC(B,c2ur0rnenAt: C(,D,304n0A)n.A)Bydecconrteraassetd, ofinjectingrepeatedbriefcurrentpulses.Abriefdepolar- (-13.0%) the frequency ofthe slow potentials, and the izingorhyperpolarizingcurrentpulse(50ms,50nA)was decrease was larger (E, -17.1%) as the intensity ofthe MYOGENIC HEARTBEAT IN TRIOPS 355 B +20 - +10 - (f> 356 H. YAMAGISHI ETAL. cardiac ganglion (Anderson and Cooke, 1971). In the myogenic heart of embryos and early juveniles of the isopodLigia,themuscleactivityisnotaffectedbyappli- cationofTTX,exceptfortheTTX-sensitivespikeonthe slowpotential (Yamagishi, 1996; Yamagishi and Hirose, 1997). The ineffectiveness ofTTX on the Triops heart supportstheideathattherhythmicityofthismyocardium is generatedendogenously. The electrical activity of the Triops heart consists of onlyslowpotentials,andtheamplitudeoftheslowpoten- tialchangesgradually duringmeasurement. But no spike potentials everappeared, even aftertermination ofahy- perpolarizing DC current injected into the heart muscle (e.g.. Fig. 8). The heart muscle of Triops, generating membrane potential oscillation, may lack the ability to generate all-or-none membrane potentials. Characteristics ofthe heartas a single muscle oscillator No localized regions of the Triops heart consistently generated potentials that preceded those ofotherregions 10 s (Fig.3A).Moreover,anycutfragmentoftheheartexhib- Figure9. Effectson myocardial activityofinjecting DCcurrent. ited spontaneous muscle activity (Fig. 3B).These results Therecordingelectrodewasinsertedneartheanteriorendoftheheart, suggestthatthe heart ofTriopshas diffuse myogenicity, andthecurrentelectrodeneartheposteriorend.Ineachrecord,intracel- andthatindividualmusclecellsareinherentlyoscillatory. al(up-lp)alriDeaCcdti(cvluiortywreeonrftttwrhaeacseh)eaapraptrlemiuesdshcoflwoenr.(1u0Dpepsp.eorIlntatrreainczseii)tnaygnod(f+mto)hneoirtcuohrryrpoeefnrttpho(elnaAcru)irzrwieannsgt Wmehcehnanitchealcesnttirmaullurse,gitohneoafnttehreiohreaarntdwpaosstaerrrieosrterdegbiyonsa +10(A), +20(B), +30(C), -40(D), -50(E).and-60(F). vital stainingwithmethylene blue orby microscopic ob- +20- servation of serial sections of the heart. Ingle (cited by Prosser, 1942) alsousedvariousnerve-stainingmethods, but failed to find nerve cells in the heart of Daphnia. +10 Furthermore, although electron microscopic methods have been used to study the hearts ofseveral branchio- .60 -40 -20 pods Daphnia (Stein etai. 1966). Lepidurus (Tj0nne- +20 (nA) land et ai, 1980), Brancliinecta, Anemia, Branchipus. and Streptocephahis (0kland et al. 1982) no neural -10 elements have everbeen reported. It is unlikely that the heart ofbranchiopods has acardiac ganglion. -20 Myogenicactivity -30 TheheartbeatofTriopsisassociatedwithperiodicslow depolarizingpotentialsinthemyocardium(Fig.2A).This activitywasnotaffectedbyapplicationofTTX(Fig.2B). In the neurogenic heart ofcrustaceans, the heart muscle -100 Thgaahsnegnlhoieoaenrntd(orogefevntihoeewusesedrahbnyyitmhMamlaiscyintsaytrodap,nsdb1ie9sa6td0ir:nigvPerniofsbstyehrea,ccaa1rr9d7d3ii)aa.cc cmhuasFnciglgeeuraienctti1hv0ei.tsylaoRnwedlpaottthieeonntisinhatleinpfsirbteeyqtuowefentechnyeoctfuhertrheecnhmtaunaspgcpelleioefadc.tfiErvaeiqctyuhewnpaecsrycpeolnfottattgheeed ganglion is removed (reviewed by Krijgsman, 1952) or against the intensity (nA) ofthe depolarizing (+) orhyperpolarizing if TTX is applied, suppressing neuronal spiking in the (-)currentapplied.FromthesamepreparationasinFig.9. MYOGENIC HEARTBEAT IN TRIOPS 357 These responses to external inputs are characteristic of endogenous oscillators in general (e.g.. Pavlidis, 1973). Moreover, these effects on muscle activity could be in- duced by current injection at any site in the heart (Fig. 11). Thus,theheartofTriopscanberegardedasasingle muscle oscillator. Diversity in tliepacemakermechanism ofcrustacean hearts B Manyinvestigationsontheheartbeatpacemakermech- anismofcrustaceans,mainlyofdecapods,haveledtothe generalizationthatcrustaceanheartsareneurogenic,with the cardiac ganglion acting as the dominant pacemaker (reviewedby Krijgsman, 1952; Maynard, 1960; Prosser, 1973). Recently, however, Yamagishi and Hirose (1997) showed that the cardiac pacemaker in the isopod Ligia exoticaistransferredfromtheheartmuscletothecardiac Figure 11. Effects on myocardial activity ofcurrent injection at ganglion during juvenile development. Now we have two sites ofthe heart. Intracellular activity ofthe heart muscle was shownthattheheartbeatofthebranchiopodTriopslongi- erencdor(duepdpesrimturalcteasn)e,ouasnldyoantetwneoarsittehseipnosttheerihoearrte:ndon(elonweearrttrhaeceasn)t.er(iAo)r caudatus is myogenic, and that the heart muscle acts as HyperpolarizingDCcurrent(lOOnA)wasinjectedfor5sthroughthe a diffuse pacemaker. Clearly, the heartbeat pacemaker electrode inserted at the anterior region, using a bridge circuit. (B) mechanismincrustaceansismorediversethanpreviously HyperpolarizingDCcurrent(lOOnA)wasinjectedfor5sthroughthe thought. electrodeinsertedattheposteriorregion,usingabridgecircuit. Acknowledgments We thank Dr. K. Sekiguchi for his kind support beatindependently withtheirownrhythms;subsequently throughout this study. We also thank Dr. K. Oami for their rhythms were gradually resynchronized (Fig. 4). his helpful discussion, and Dr. Darryl Macer for his Thissuggeststhattheheartmusclecellssynchronizetheir reading ofthe manuscript. This workwas supported in activities through interaction. The high sensitivity ofthe partbyaGrant-in-Aid(No.0864057)fromtheMinistry Triopshearttomechanical stimulisuggestssomestretch- ofEducation. Science, Sports and Culture ofJapan to mediatedcontributiontothe synchronization ofthe mus- H.Y. clecells. However,spontaneousactivity wasrapidlysyn- chronized(Fig. 3A).and the heart musclecells appearto Literature Cited beWeleecttrhiecraelfloyrecocuopnlceldud(eFigt.hat5).the heart muscle cells are Andheerasrotno,ftMh.e,laobnsdterI..HMo.inCuonoikxe.umc1r9i7i1.cuntsN.eu./r.aEl.\pa.ctBiivoalt.io5n5:o4f4t9h-e synchronized through electrical interactions, as in the 468. myogenic hearts ofother invertebrate species (reviewed Baylor,E.R.1942. Cardiacpharmacologyofthecladoceran.Daph- by Ebara, 1993). The heartofTriopscan be saidtohave nia. Biol. Bull. 83: 165-172. afundcitfifousnealmsyyongceyntiicum.paTcheemsaekecrhawraictthertihseticpsropoefrttiheeshoefarta Bekgk2ae5t7ri.,onJs.iMn.t,otahnedheBa.rJt.fKunrcitjigosnmoafn.Da1p9h5n1i.u.PJ.hyPshiyoslioogli.ca1l15i:nv2es4t9i-- are very similar to those ofthe myogenic hearts ofem- Ebara,A. 1993. Self-controlofheartrhythm in some invertebrates. bryosandearlyjuvenilesoftheisopodLigin (Yamagishi Pp.1-9inTrendsinComparativeBiocht'mixti'ymillPhysiology1,J. and Hirose, 1997) and of most molluscs (reviewed by Menon.ed.CouncilofScientificResearchIntegration.Trivandrum, HilTlhaendrhWyetlhsmh.of19t6h6e; Imruisscalwae,a1c9t7iv8i;tyJocnoesu,ld19b8e3).phase- GreetIonndbaieac.retgy,lcMh.oliJ.ne1.96C5a.mp.ABcioomcpheemn.diPuhmysiooflr.es1p4o:ns5e1s3-o5f3b9i.valvehearts shiftedbyabriefcurrentpulse (Figs. 6and 7)andcould Hill,R.B.,andJ.H.Welsh.1966. Heart,circulationandbloodcells. be entrained to the frequency of repeated, briefcurrent Pp. 125-174 in PhyxioloK\ofMolluxcu. K.M. WilburandC.M. pulses injected into the muscle cell (Fig. 8). In addition, Yonge.eds.AcademicPress.NewYork. thefrequencyofthemuscleactivitychangedlinearlywith Home, F.R. 1966. Someaspectsofionic regulation in the tadpole the intensity ofthe injected DC current, and the muscle s3h1r6.imp Triops longicaudatus. Comp. Biochem. Physiol. 19: 313 aocftisvtirtoyngwahsypseurppporlaersiszeidngcoDmpClectuerlryendtur(iFniggs.th9e iannjdect1i0o)n. Irismaewcah,anHi.sm19.78P.hvsiCool.mpRaerva.ti5v8e:4ph6y1s-i4o9l8o.gyofthecardiacpacemaker 358 H. YAMAGISHI ETAL Jones,H.I).1983. Thecirculatorysystemofgastropodsandbivalves. Stein. R.J., \\.R. Richter, R.A. Zussman. and G. Brynjolfsson. Pp. 189-2.15inTheMollusca.A.S.M.SaleuddinandC.M.Yonge. 1966. UltrastructuralcharacterizationofDaplmiaheartmuscle.J. eds.AcademicPress.New York. Cell.Biol. 29: 168-170. Krijgsman,B.J.1952. Contractileandpacemakermechanismsofthe Tazaki,K. 1971.Theeffectsoftetrodotoxinontheslowpotentialand heartofarthropods.Biol. Rc\: 27: 320-346. spikesinthecardiacganglionofacrab,Eriocheirjaponicus.Jpn. Maynard,D.M. 1960. Circulationandheartfunction. Pp. 161-226 J. Physio/. 21:529-536. inThePhvsio/ogvofCrustacea 1,T.H.Watermann.ed.Academic Tjonneland, T., B. Midttun, S. Okland, and H.O. Liebich. 1980. Press,NewYork. Heartultrastructure inLepidurusarcticusPallas(Crustacea. Bran- Okland, S., A. Tjenneland. L.N. Larsen, and A. Nylund. 1982. chiopoda,Notostraca). CellTiss.Res.212:203-212. Heart ultrastructure in Branchinecta paludosa. Anemia sa/ina. Yamagishi,H.1996. EndogenousoscillatoryactivityandTTX-sensi- Branchipus shaefferi, and Streptocephalus sp. (Crustacea. Anos- tive spikes of the heart muscle in early juveniles of the isopod traca).Zoomorphology101: 71-81. crustaceanLigiaexotica. Experientia52:583-586. Pavlidis,T. 1973. BiologicalOscillators:TheirMathematicalAnaly- Yamagishi,H.,andE.Hirose.1997. Transferoftheheartpacemaker sis. AcademicPress.NewYork. duringjuveniledevelopmentintheisopodcrustaceanLigiaexotica. Prosser, C.L. 1942. An analysis ofthe action ofacetylcholine of J. Exp.Biol. 200: 2393-2404. hearts,particularlyinarthropods.Biol. Bull. 83: 145164. Yamagishi,H.,H.Ando,andT.Makioka. 1993. Theheartbeatof Prosser,C.L.1973. Circulationofbodyfluids.Pp.822-856inCompara- Triopslongicaudatus(Crustacea.Branchiopoda)ismyogenic.Zoo/. tiveAnimalPhysiology.C.L.Prosser.ed.Saunders.Washington,DC. Sci. 10.Supple.95.