viruses Review Myeloid C-Type Lectin Receptors in Viral Recognition and Antiviral Immunity JoãoT.MonteiroandBerndLepenies* UniversityofVeterinaryMedicineHannover,ImmunologyUnit&ResearchCenterforEmergingInfectionsand Zoonoses(RIZ),Bünteweg17,30559Hannover,Germany;[email protected] * Correspondence:[email protected];Tel.:+49-511-953-6135 AcademicEditor:BarryR.O’Keefe Received:18November2016;Accepted:17March2017;Published:22March2017 Abstract: Recognitionofviralglycansbypatternrecognitionreceptors(PRRs)ininnateimmunity contributestoantiviralimmuneresponses.C-typelectinreceptors(CLRs)arePRRscapableofsensing glycans present in viral pathogens to activate antiviral immune responses such as phagocytosis, antigenprocessingandpresentation,andsubsequentTcellactivation. TheabilityofCLRstoelicit andshapeadaptiveimmunityplaysacriticalroleintheinhibitionofviralspreadwithinthehost. However,certainvirusesexploitCLRsforviralentryintohosTcellstoavoidimmunerecognition. To block CLR interactions with viral glycoproteins, antiviral strategies may involve the use of multivalentglycancarriersystems. Inthisreview,wedescribetheroleofCLRsinantiviralimmunity andwehighlighttheirdualfunctioninviralclearanceandexploitationbyviralpathogens. Keywords: C-type lectin receptors; glycans; dendritic cells; macrophages; immunomodulation; antiviralimmunity;viralevasion 1. Introduction Theimmunesystemisahostdefensesystemcomposedofcellularandhumoralcomponents withtheabilitytoprotectthehostagainstpathogens,foreignsubstancesandtissuedamage[1]. Itcan besubdividedintoinnateimmunity[2]andadaptiveimmunity[3]. Recognitionofevolutionarily conserved pathogen-derived ligands, so-called pathogen-associated molecular patterns (PAMPs), bythehostinnateimmunesystemismediatedbypatternrecognitionreceptors(PRRs). PRRsare essential to initiate innate responses and also contribute to the induction of adaptive immune responses [4,5]. Major classes of PRRs comprise Toll-like receptors (TLRs) [6], nucleotide-binding oligomerizationdomains(NOD)-likereceptors(NLRs)[7],retinoicacid-induciblegene(RIG)-I-like receptors(RLRs)[8],DNAsensors[9],andC-typelectinreceptors(CLRs)[10]. Myeloid CLRs in innate immunity are glycan-binding receptors that are specialized in the recognition of glycolipids and glycoproteins present on pathogens and also on hosT cells [10–12]. Since numerous pathogens including bacteria, parasites, fungi, and viruses are coated by glycans, glycanrecognitionbyhostCLRsisvitaltoelicitimmuneresponses. CLRsmayimpactimmunityat severallevels,rangingfromphagocytosistotheproductionofeffectorcytokinesandchemokines[13]. Moreover, various CLRs act as endocytic receptors on antigen-presenting cells (APCs), thus are involvedintheuptakeofpathogensforantigenprocessingandpresentation,andsubsequentTcell activation[14]. TheroleofCLRsinviralrecognitioniscomplex. CLRsexpressedbyAPCs,suchasdendritic cells(DCs)andmacrophages,areabletorecognizeandquicklyrespondtoabroadrangeofviruses inordertoshapeantiviralimmuneresponses. However,someviruseshaveevolvedmechanismsto exploitCLRstotriggercellentry,todisruptsignalingpathwaysinthecell,ortoinhibitAPCeffector functions[15]. Viruses2017,9,59;doi:10.3390/v9030059 www.mdpi.com/journal/viruses Viruses2017,9,59 2of22 Inthisreview,wedescribetheintricateinterplaybetweenvirusesandCLRsandhighlightthe roleofCLRsinantiviralimmunityaswellastheirexploitationbyviralpathogensforimmuneevasion. 2. ViralGlycoproteins—EssentialComponentsforViralInteractionswithHosTcells Glycosylation is a highly diverse process that produces an abundant and highly regulated repertoireofcomplexglycansthatarecovalentlyattachedtoproteinsandlipidspresentonthesurface ofhosTcellsandviruses. IncontrasttoDNAandproteinbiosynthesis,thebiosynthesisofglycans isnotatemplate-drivenprocess. Instead,itreliesonanorchestratedactionofglycosyltransferases andglycosidasesthatarepresentintheendoplasmicreticulum(ER)andtheGolginetwork[16,17]. Two major types of glycan structures are linked to proteins: N-linked glycans and O-linked glycans. N-glycosylationischaracterizedbytheattachmentofN-acetylglucosamine(GlcNAc)and mannose residues to the amide nitrogen of an asparagine residue in the context of the conserved motif Asn-X-Ser/Thr. A complex process of trimming and remodeling of the oligosaccharide by glycosyltransferasesandglycosidases,firstintheERandlaterintheGolgiapparatus,finallyleads totheformationofN-glycansoftheoligomannosetype,thecomplextype,orthehybridtype[18]. Allsubtypesshareacommonpentasaccharidecore,wheretheoligomannosetypepossessessolely mannose residues attached to the core, while the complex type has antennae initiated by GlcNAc attached to the pentasaccharide core, and the hybrid type comprises both mannose and GlcNAc attachments [17,19]. O-glycosylation takes place once the protein has transited to the Golgi and carbohydratesarelinkedcovalentlyviaglycosidiclinkagesfromserineorthreonineresidues. Highly branchedglycanstructurescanbeachievedbyO-glycosylationsinceeachmonosaccharidehasseveral hydroxylgroupsforlinkageandcanformglycosidicbondsinanαorβconfiguration[20]. AcommonglycanmodificationatterminalendsofN-andO-linkedglycans,aswellasglycolipids, istheattachmentofacidicsugarstermedsialicacids. Sialicacidsarepresentintheoutermostend ofglycanchainsofallcellsurfaceglycansinhighervertebrates[21]. Inhumans,themostcommon sialic acid is α5-N-acetylneuraminic acid (Neu5Ac) and derivatives of this nine-carbon backbone carbohydrateintodifferentsialicacidvariantscanoccurbychemicalmodifications,suchasacetylation, methylationandsulfation[21,22]. Sialicacidsarenegativelychargedmoleculesthatareinvolvedin celladhesion,signalingeventstoelicitimmuneresponsesandkeyrecognizedstructuresbyseveral virusesandbacteria[23]. Virusesasobligatoryintracellularpathogenshijackandbenefitfromthehostcellglycosylation machinery [24]. Glycosylation of viral surface proteins takes place upon viral replication inside hosT cells and it is often essential to maintain the stability of these proteins and viral particles. Moreover,glycanmoietiesinviralglycoproteinsareresponsibleforadelicateinterplaybetweenviruses andhosTcellsthroughspecificinteractionswithlectinspresentonthesurfaceofhosTcells[24,25]. Particularly,N-linkedhighmannosetypeglycansareoftenessentialforbiologicalfunctionsofviral glycoproteins,suchasstabilityandantigenicity,anditmayalsoimpactbindingofvirusestohostcell receptorsandsubsequentinternalization[26]. Indeed,glycoproteinspresentinenvelopedvirusessuch asthehumanimmunodeficiencyvirus1(HIV-1),Ebolavirus(EBOV),WestNilevirus(WNV),Nipah virus,Newcastlevirus,andSARScoronavirus(SARS-CoV)wereshowntohaveN-linkedglycansthat arecrucialforproteinfolding,viralinfectivity,andimmuneevasion(reviewedin[26]). Forinstance, inhepatitisCvirus(HCV),theglycosylationpatternsofenvelopeglycoproteinshaveadualroleas theycontributetoviralentryintohosTcellsontheonehand,andensureproperproteinfoldingand maturationontheotherhand[27]. Consistently,mutagenesisinglycosylationsitesoftheHCVE1 proteinaffectedtranslocationoftheproteintotheviralsurfaceandthusreducedinfectivity[28]. Althoughviralglycosylationisintrinsicallyconnectedtothehostduetohijackingofthehost glycosylationmachinery,theglycosylationprofilesofvirusesandhosTcellsmaydiffer,sinceviral glycoproteins are often more heavily glycosylated and present different glycan modifications [24]. Thegp120glycoproteinoftheHIV-1enveloperepresentsameaningfulexample,asgp120comprises more than 20 N-linked glycan moieties and is one of the heaviest N-glycosylated proteins in Viruses2017,9,59 3of22 nature. IncontrasttomammalianglycoproteinsthatoftendisplaycomplextypeN-glycans,gp120 predominantlycarriesoligomannoseN-glycansduetoahinderedprocessingofglycanintermediates byERandGolginetworkglycoenzymes[29]. The crucial role of viral glycosylation in the biology of infection has prompted research on glycan-bindingreceptors(so-calledlectins)onhostimmunecellsthatarecapableofrecognizingglycan structuresonvirusesandelicitingimmuneresponses,notablyalectinsuperfamilytermedCLRs. 3. MyeloidC-typeLectinsReceptors—PatternRecognitionReceptorsinInnateImmunity CLRsarecarbohydrate-bindingproteinsthatpossessaC-typelectin-likedomain(CTLD)[30], a conserved structural motif arranged as two protein loops stabilized by two disulfide bridges at the base of each loop [31]. This key structural motif in CLRs is responsible for the recognition of avarietyofligands,ofteninaCa2+-dependentfashionthroughacompactmoduletermedcarbohydrate recognitiondomain(CRD)[12]. AlthoughmostCLRsbindtoglycoconjugates,theymayalsorecognize non-carbohydrate ligands such as cholesterol [32] and uric acid crystals [33]. Specific amino acid motifswithintheCRDconferligandspecificitytoCLRssuchastheEPN(Glu-Pro-Asn)motifandthe QPD(Gln-Pro-Asp)motifthatpredeterminebindingaffinitytowardsmannose/fucoseandgalactose residues, respectively [30]. The CLR superfamily is the largest and most diverse lectin family in animalsandhasbeenclassifiedinto17groups(I-XVII)basedonphylogeny,structural,andfunctional properties [31]. This review focuses on myeloid CLRs that are predominantly expressed by APCs such as monocytes, macrophages, and DCs. APCs have a pivotal role in pathogen uptake and antigenpresentationtonaïveTcellsoneithermajorhistocompatibilitycomplex(MHC)-IorMHC-II molecules[34,35]. Recognitionofpathogen-derivedglycansbyCLRsonAPCscontributescriticallyto theseAPCfunctions[36]. Inaddition,CLRengagementtriggerscytokineandchemokinesecretion, whichisnecessarytoshapeadaptiveimmuneresponses[36]. TherespectivemyeloidCLRsbelongtogroupII,V,andVI,accordingtotheabove-mentioned classification. GroupIIiscomposedoftypeIItransmembraneCLRs,suchasthedendriticcell-specific intercellularadhesionmolecule-3-grabbingnonintegrin(DC-SIGN),andtheDC-immunoreceptor (DCIR), which contain a short cytoplasmic tail, a transmembrane domain, an extracellular stalk region and a Ca2+-dependent CRD [13,31]. Dependent on the length of the stalk region, different oligomerizationstatesmayoccurinmembersofthisgroup. CLRsingroupVinclude,forexample, themyeloidDAP-12associatinglectin(MDL-1)andDectin-1thatpossessashortcytoplasmictail, atransmembranedomainandanextracellularstalkregionfollowedbyasingleCTLDoftenlacking typicalCa2+orcarbohydratesbindingsites[13,31].GroupVICLRsaretypeItransmembranereceptors withanextracellulardomainencompassingaN-terminalricin-likedomain,afibronectintype2domain andeighttotenCTLDs[13,31]. ProminentCLRssuchasthemacrophagemannosereceptor(MMR) andDEC-205belongtothelattergroup. Myeloid CLRs may have intracellular signaling motifs and—based on the presence of these motifs—are classified into four main groups: immunoreceptor tyrosine-based activating motif (ITAM)-bearing CLRs, hemi-ITAM (hemITAM)-bearing CLRs, immunoreceptor tyrosine-based inhibitory motif (ITIM)-bearing CLRs, and a group of CLRs lacking typical signaling motifs (Figure 1) [13,37]. ITAMs consist of YxxL/I tandem repeats and are present in ITAM-bearing adaptorproteinssuchastheFcRγchain. CLRssuchastheDC-associatedC-typelectin(Dectin)-2, DC-immunoactivatingreceptor(DCAR),macrophageinducibleC-typelectin(Mincle),andMDL-1 belong to this group of ITAM-bearing CLRs. An intracellular hemITAM motif (a single YxxL/I sequence) is found in CLRs such as Dectin-1, C-type lectin domain family (CLEC)-2, CLEC-9A, and SIGN-R3. Generally, CLRs that carry a hemITAM motif or are associated with ITAM-bearing adaptorproteinsactivatethespleentyrosinekinase(SYK)[38]. SYKactivationpromptstheformation ofaternarycomplexinvolvingtheadaptorproteinscaspaserecruitmentdomain-containingprotein9 (CARD9),mucosa-associatedlymphoidtissuelymphomatranslocationprotein1(MALT1),andB-cell lymphoma/leukemia10(BCL10),whichtriggerstheactivationofthetranscriptionfactornuclearfactor Viruses 2017, 9, 59 4 of 21 (CARD9), mucosa‐associated lymphoid tissue lymphoma translocation protein 1 (MALT1), and B‐ Viruses2017,9,59 4of22 cell lymphoma/leukemia 10 (BCL10), which triggers the activation of the transcription factor nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF‐κB) [13,38] and other transcription factors ksuapchp aa-lsi gthhte- cnhauicnle-eanrh faancctoerr ooffa catcitviavtaetdedB Tce lclsel(lNs F(N-κFBA)[T1)3 ,a3n8d]a nacdtiovtahteorr trparnostceriinp 1ti o(nAfPa‐c1t)o r[s13su].c hThaes tahcetinvuatciloenar offa ctthoersoef saicgtnivaalitnedg Tcacseclalsd(eNs FiAn TA)PanCds auclttiivmataotrelpyr oleteaidns1 t(oA cPy-t1o)k[1in3e]. pTrhoedauccttivioanti oanndo fTth ceeslel spirginmailningg [c3a6s]c. aIdne csoinntAraPsCt, sITuIltMim‐baetealryinlega CdsLtRosc syutockhi naes pthroed DuCct iiomnmanudnoTrceeclelpptroirm (iDngC[I3R6)], .CInLEcoCn‐t1r2aAst,, IaTnIdM C-bLeEaCri‐n1g2BC mLRays sinuhchibaits ctehlleuDlaCr riemspmounnsoesr etcherpotuogrh( DthCeI rRe)c,rCuLitEmCe-n1t2 oAf ,tyanrodsiCnLe EpCh-o1s2pBhamtaasyeisn, hsuibciht caesl lSurlca rhroemspoolongsyes rtehgriooung 2h dthoemraeicnr‐uciotnmtaeinntinogf tpyhroossipnheaptahsoes p(ShHatPa)s‐e1s ,asnudc hSHasP‐S2r c[1h3o,3m9]o. loTghye rfeoguirotnh 2grdooump aoifn C-cLoRnst aiinncilnugdepsh mosepmhbaetarsse w(iStHhoPu)t- 1knanowdnS HITPA-2M[s1 3o,r3 9IT].IMThs,e sfuocuhr tahs tghreo uMpMoRf,C DLERCs‐i2n0c5l,u adneds mDCem‐SbIGerNsw thitahto aurtek innovwolnveITdA inM esnodroIcTyItMossi,ss, uthchusa scothnetrMibMutRe ,tDo EanCt-i2g0e5n, apnrodcDesCs-iSnIgG aNndth parteasreenitnavtioolnve tdo iTn ecnedllos cy[3t6o]s.i s,CtLhRus ecnongtargibeumteentot abnyt iggelyncparnosc epssriensgenatn dinp rveisreanl tagtliyocnotporTotceeinllss [o36ft]e.nC LleRaednsg atog evmireunst binytegrlnyacalinzsatpiorens iennttoi nAPviCras.l glycoproteinsoftenleadstovirusinternalizationintoAPCs. Figure 1. Recognition of pathogen-associated molecular patterns (PAMPs), damage-associated Figure 1. Recognition of pathogen‐associated molecular patterns (PAMPs), damage‐associated molecular patterns (DAMPs) and signaling motifs of myeloid C-type lectin receptors (CLRs). molecular patterns (DAMPs) and signaling motifs of myeloid C‐type lectin receptors (CLRs). CLRs CLRs expressed by antigen-presenting cells (APCs) are able to recognize PAMPs present on expressed by antigen‐presenting cells (APCs) are able to recognize PAMPs present on pathogens, pathogens, including bacteria, viruses, fungi and parasites; and DAMPs in damaged hosT cells. including bacteria, viruses, fungi and parasites; and DAMPs in damaged host cells. Recognized Recognized ligands cover a vast type of glycan structures, such as fucose, mannose, β-glucan, ligands cover a vast type of glycan structures, such as fucose, mannose, β‐glucan, galactose, GlcNAc, galactose,GlcNAc,butalsonon-glycanligandssuchasmonosodiumurate.UponCLRengagement, but also non‐glycan ligands such as monosodium urate. Upon CLR engagement, a signaling cascade a signaling cascade is initiated through binding of early adaptors and the recruitment of kinases is initiated through binding of early adaptors and the recruitment of kinases or phosphatases. or phosphatases. Myeloid CLRs can be subdivided in four distinct groups according to their Myeloid CLRs can be subdivided in four distinct groups according to their cytoplasmic signaling cytoplasmicsignalingmotifsandearlyadaptors:(A)hemi-immunoreceptortyrosine-basedactivating motifs and early adaptors: (A) hemi‐immunoreceptor tyrosine‐based activating motif (hemITAM)‐ motif(hemITAM)-coupled;(B)ITAM-coupled;(C)immunoreceptortyrosine-basedinhibitorymotif coupled; (B) ITAM‐coupled; (C) immunoreceptor tyrosine‐based inhibitory motif (ITIM)‐coupled; (ITIM)-coupled;and(D)ITAM-ITIMindependentCLRs. and (D) ITAM‐ITIM independent CLRs. Processing of viral proteins in endosomal compartments finally results in the presentation of a ntigen-derivedpeptidesonMHC-IImoleculestonaïveCD4+Tcells(Figure2). Importantly,CLRs Viruses 2017, 9, 59 5 of 21 VirusesP2r0o1c7e,9s,s5in9g of viral proteins in endosomal compartments finally results in the presentatio5nof o22f antigen‐derived peptides on MHC‐II molecules to naïve CD4+ T cells (Figure 2). Importantly, CLRs are also involved in cross‐presentation, thus linking the endocytosis of viral pathogens with the are also involved in cross-presentation, thus linking the endocytosis of viral pathogens with the pprreesseennttaattiioonn ooff vviirraall ppeeppttiiddeess oonn MMHHCC-‐II mmoolleeccuulleess ttoo aaccttiivvaattee CCDD88++ TT cceellllss.. IInn aaddddiittiioonn,, ssiiggnnaalliinngg cascades triggered by CLR/virus interactions induce the expression of co‐stimulatory molecules and cascadestriggeredbyCLR/virusinteractionsinducetheexpressionofco-stimulatorymoleculesand the production of cytokines, therefore contributing to the fate determination of naïve T cells upon theproductionofcytokines, thereforecontributingtothefatedeterminationofnaïveTcellsupon activation [40,41]. Thus, CLRs are at the frontline of innate and adaptive antiviral immune responses. activation[40,41]. Thus,CLRsareatthefrontlineofinnateandadaptiveantiviralimmuneresponses. In the following sections, the role of selected CLRs in viral recognition and antiviral immune Inthefollowingsections,theroleofselectedCLRsinviralrecognitionandantiviralimmuneresponses responses will be described. willbedescribed. FFiigguurree 22.. CCLLRRss pprreesseenntt oonn tthhee ssuurrffaaccee ooff ddeennddrriittiicc cceellllss ((DDCCss)) rreeccooggnniizzee vviirraall aannttiiggeennss ttoo ttrriiggggeerr AAPPCC aaccttiivvaattiioonn aanndd ssuubbsseeqquueenntt TT cceellll ssttiimmuullaattiioonn.. UUppoonn bbiinnddiinngg,, eennddooccyyttoossiiss wwiillll ttaakkee ppllaaccee,, rreessuullttiinngg iinn tthhee iinntteerrnnaalliizzaattiioonn ooff tthhee aannttiiggeennss.. FFuurrtthheerr pprroocceessssiinngg iinn eennddoossoommeess aanndd llyyssoossoommeess rreessuullttss iinn ffrraaggmmeenntteedd ppeeppttiiddeess ththaatta raerleo alodaeddeodn omna jmorahjoisrt ohciosmtopcoatmibpilaittyibciolimtyp cleoxm(MplHexC ()MclaHsCsI)I calnadssM IHI Cancdla sMsHImCo lcelcaussle sI mforoleefcfiuclieens tfoprr iemffiincgieonft CpDri4m+inangd oCf CDD8+4+T acnedll sC,rDe8sp+ eTc ctievlelsly, .reTswpoecstiigvneallys. aTrweroe qsiuginreadlsf oarreT rceeqlulaircetidv afotiro Tn cbeyllD aCctsi.vFaitrisotn,t hbye TD-cCesll. rFeicrestp, ttohre( TTC‐cRe)llr erecocegpntiozer s(TMCHRC) /repceopgtindiezecso mMpHleCx/epse.pSteicdoen cdo,mthpelceoxsetsi.m Suelcaotnordy, tmhoe lceocustliemsuClDat8o0r/yC mDo8l6ecinutleersa CctDw8i0th/CCDD8268 inexteprraecsts weditbhy CthDe2T8 ecxepll.reInssaeddd biyti othne, DTC cselelx. Ipnr easdsdaintidonse, cDreCtes ecyxptorkeisnse asn.dT hseeccroemteb ciyntaotkioinneosf. Tthhees ecosmignbainlsatdioetne romf tihneesset hsiegfnaatelso dfettheermacitnivesa ttehde Tfactee lol.f the activated T cell. 3.1. DC-SIGN 3.1. DC‐SIGN Human DC-SIGN, encoded by the CD209 gene, is composed of a short cytoplasmic tail, atranHsummemanb rDanCe‐SrIeGgiNo,n ,eancfloedxeibdl ebnye cthked oCmDa2i0n9 ingveonlev, eids icnoomlipgoosmeder iozfa tai osnh,oarnt dcaytCopa2l+as-dmeipce tnadile, nat tCraRnDsm[4e2m,4b3r]a.nDe Cre-gSIioGnN, ai sflmexaibinlely neexcpk rdesosmedainb yinivmomlvaetdu rien oorligmoamtuerreizDatCiosn,, bauntdi ta iCsaa2l+s‐odefpoeunnddenint CspReDci a[l4iz2e,4d3]m. DacCro‐SpIhGaNge iss fmouanindlyin epxlparceesnsetad obryl uimngm[a4t4u].reD oCr- SmIGatNureco DntCrisb, ubtuets itto ims aatlsuor aftoiounnda nidn strpaencsialoliczaetdio nmaocfroDpChsagtoess efocuonndd airny plylamcepnhtoa idor olrugnagn s[4w4]h. eDreC‐aSnItGigNe ncopnrtersibenuttaetsi oton mtoaTturcaetlilosnt aakneds ptrlaancselo[4c5a]ti.oInn toefr aDctCios ntob estewcoenendaDryC slyamnpdhToicde lolsrgisanfas cwilihtaetreed abnytigthene ipnrteesreancttiaotniono ftDo CT- ScIeGllNs twakitehs pinlatecrec e[4ll5u].l aIrntaedrhacetsiioonn bmetowleeceunl eD(CICs AanMd) -T3 coenllsth ies Tfaccieliltlatseudr fabcye th[4e3 ]i.nteDraCc-tSioIGn Nof pDreCs‐eSnItGsNli gwanitdh isnpteecricfieclliutylafro radhhigehsiomna nmnoolseecuglley c(aICnAs Man)d‐3f uocno steh-ec oTn taceinlli nsgurgflayccea n[4s3(]e. .gD.,CL‐SeIwGiNs apnrtiegseennsts) [l4ig3a,4n6d]. Tspheecnifeiccikty-r efopre hatigdho mmaaninnoofseD gCly-ScIaGnNs aennda fbulecsosteh‐ecofonrtmaiantiinogn golfytceatnras m(ee.grs.,, Ltheuwsisin acnrteiagseinnsg) t[h43e,4b6in].d Tinhge navecidki‐tryeptoeagtl ydcoomcoaninju goaf teDsCp‐rSeIsGeNnt oennapbaleths otgheen fso[r4m3]a.tNiounm oef roteutsraemnvereslo, ptheudsv iinrucsreeasswinegr ethreep boirnteddintgo abveirdeictoyg tnoi zgelydcboycoDnCju-gSaIGteNs ,pirnecsleundti nogn HpaIVth-o1,gEeBnsO [V4,3H]. CNVu,mdeenroguues evnirvueslo(DpeVd), vciyrtuosmese gwaelorev irreupso(rCteMdV to), bane dreScAoRgnSi-zCeodV b[y4 4D,4C7–‐S4I9G].NT,h ienlcelvuedlinogf DHCI-VS‐I1G, NEBeOxpVr,e sHsiCoVn,d deteenrgmuien evsirvuisru (sDcVap), tucyreto,minedgicaalotevdirbuys (aCmMoVre), eaffincdi eSnAtHRSIV‐C-1oVbi n[4d4in,4g7–b4y9D]. CTsh(ec hleavraecl teorfi zDeCd‐bSyIGaNh igexhpDreCs-sSioIGn Ndeetxeprmreisnseiosn v)icroums pcaapretdurteo, other cell types expressing DC-SIGN in low abundance [50]. Since glycosylation patterns of viral Viruses2017,9,59 6of22 glycoproteins are governed by the glycosylation machinery of the hosT cells in which the virus replicates,thisstronglyaffectstheDC-SIGNabilitytorecognizeandbindtodifferentiallyglycosylated virusessuchasHIV-1andEBOV[51,52]. DC-SIGNmediatescaptureandfurthertransferofHIV-1to Tcells(Figure3)[53,54]. DC-SIGN-mediatedHIV-1infectionoccursinDCsthatthentransportvirions from sites of HIV-1 exposure, such as the mucosal membranes or bloodstream, to CD4+ T cells in lymphoidtissues[55]. DC-SIGNrecognizeshigh-mannoseoligosaccharidesonthegp120moleculeof HIVVir-u1s,esa 2g01l7y, c9o, 5p9r o teinpresentintheouterlayerofthevirusessentialforviralentryintohosTc7e lolfs 2[14 2]. UponDC-SIGNcaptureofHIV-1,mostofthevirionsaretransportedtotheproteasome,assistedbythe In this study, an endocytosis‐defective mutant of L‐SIGN was still capable of facilitating viral interactionofthecytoskeletalphosphoproteinlymphocyte-specificprotein1(LSP1),wherelysosomal infection, highlighting the role of L‐SIGN as an attachment factor for phlebobviruses, whereas degradationtakesplace. FurtherantigenprocessingandpresentationtheninducesprimingofTcells. DC‐SIGN acted as an authentic entry receptor [72]. Another study indicated DC‐SIGN and L‐SIGN Moreover, DC-SIGN engagement by HIV-1 activates a signaling cascade that ultimately triggers as authentic endocytic receptors for influenza A virus (IAV) entry and infection [73]. Sialic acid‐ Raf-1activationtomodulatecytokineresponsesbyNF-κBactivation. However,HIV-1iscapableof deficient Chinese hamster ovary cell lines were resistant to IAV infection, but pH‐ and dynamin‐ exploitingtheDC-SIGNsignalingcascadeinordertoenhancetranscriptionoftheHIV-1genomeby dependent infectivity was restored by expression of DC‐SIGN/L‐SIGN. Upon expression of NF-κB-mediatedexpression[56]. Anotherexploitationmechanismencompassestheabilityofintact endocytosis‐defective DC‐SIGN/L‐SIGN, IAV was still bound by the cells, but susceptibility to DC-SIGN-boundHIV-1virionsofbeingnon-fusogenicallyinternalizedintonon-lysosomalendosomes, infection was clearly reduced [73]. whereCstoalbleilcittiyvealnyd, Li‐nSfIeGcNtiv aintyd oDfCth‐SeIGviNri ownesrere smhoawinni ntot aacctt feoitrhseerv aesr aatltadcahymse[5n7t ]f.acIttoisrsn footre vwirourstehsy otrh at HIaVs -a1udtheegnrtaidc aetnitorny roerceppetrosriss tiennvcoelviends iidne mDeCmsb,raasnew feulslioans.D HCe-nmcee, dthiaetye drevpirreusesnttr atanrsgmetiss sfoior nvitrousCeDs 4+ Tctoel hlsi,jaiscks tcreollnuglalyr fduenpcetinodnesn itn oonrdthere tNo -egvlaydceo simylmatuionne pdreofefinleseosf agnpd1 s2p0re[5a8d] .infection. Figure 3. Human immunodeficiency virus type 1 (HIV‐1) capture and transmission by DCs. Dendritic Figure3.Humanimmunodeficiencyvirustype1(HIV-1)captureandtransmissionbyDCs.Dendritic cell‐specific intercellular adhesion molecule‐3‐grabbing non integrin (DC‐SIGN) present at the surface cell-specificintercellularadhesionmolecule-3-grabbingnonintegrin(DC-SIGN)presentatthesurface of DCs neutralizes HIV‐1 by virion uptake and signalosome‐mediated cytokine production and of DCs neutralizes HIV-1 by virion uptake and signalosome-mediated cytokine production and degradation of virions. Fragmented peptides are loaded on MHC class II molecules for antigen degradation of virions. Fragmented peptides are loaded on MHC class II molecules for antigen presentation to CD4+ T cells in order to prime T cell effector functions and induce an adaptive immune presentation to CD4+ T cells in order to prime T cell effector functions and induce an adaptive response against the virus. DC‐SIGN establishment of a DC‐T‐cell interaction is accomplished immuneresponseagainstthevirus.DC-SIGNestablishmentofaDC-T-cellinteractionisaccomplished through transient binding to intercellular adhesion molecule (ICAM)‐3. However, DC‐SIGN is also through transient binding to intercellular adhesion molecule (ICAM)-3. However, DC-SIGN is exploited by HIV‐1 for evasion of the immune response by maintenance of intact virions in non‐ also exploited by HIV-1 for evasion of the immune response by maintenance of intact virions in lysosomal endosomes. These virions undergo exocytosis and can infect CD4+ T cells in a process called non-lysosomalendosomes.ThesevirionsundergoexocytosisandcaninfectCD4+Tcellsinaprocess trans‐infection. Trans‐infection can also occur without HIV‐1 virion internalization. Additional calledtrans-infection.Trans-infectioncanalsooccurwithoutHIV-1virioninternalization.Additional subversion strategies of HIV‐1 encompass augmented viral replication via the DC‐SIGN signalosome subversionstrategiesofHIV-1encompassaugmentedviralreplicationviatheDC-SIGNsignalosome and triggering of DC apoptosis via apoptosis signal‐regulating kinase 1 (ASK‐1). andtriggeringofDCapoptosisviaapoptosissignal-regulatingkinase1(ASK-1). 3.3. LSECtin Liver and lymph node sinusoidal endothelial cell C‐type lectin (LSECtin, or CLEC4G) is located on chromosome 19p13.3 in humans, together with DC‐SIGN and L‐SIGN [74]. LSECtin shares a 31% and 32% amino acid sequence homology with DC‐SIGN and L‐SIGN, respectively, and is expressed by liver, lymph node and bone marrow sinusoidal endothelial cells, and by Kupffer cells in the liver [74,75]. LSECtin was reported to recognize glycans containing mannose, N‐acetylglucosamine (GlcNAc) and fucose residues [75]. Viruses2017,9,59 7of22 AfterovercomingdegradationinDCs,HIV-1virionscanbetransferredtoCD4+Tcellsthrough the“infectioussynapse”inareplication-independentprocesstermedtrans-infection[59]. Inmature DCs,protectionofHIV-1virionsfromendocytosisoccurstoagreaterextentcomparedtoimmature DCs[60]. HIV-1-boundDC-SIGNalsodampenstheexpressionofCD86andMHC-IImolecules,thus affecting antiviral immune responses and facilitating trans-infection [61]. In a recent study, it was shownthatligationofDC-SIGNbygp120sensitizesDCstoundergoacceleratedapoptosisinresponse to a variety of stimuli, mediated by excessive activation of the pro-apoptotic molecule apoptosis signal-regulatingkinase1(ASK-1)[62]. 3.2. L-SIGN Lymphnode-specificintercellularadhesionmolecule-3-grabbingintegrin(L-SIGN,alsonamed DC-SIGNR)isaCLRsimilartoDC-SIGN,exhibitinga77%aminoacidsequenceidentityandasimilar protein architecture [44]. As DC-SIGN, L-SIGN is a type II transmembrane protein with a short cytoplasmictailinvolvedinsignalingandinternalization,atransmembraneregion,aneckdomain consisting of eight repeat regions of 23 amino acids, and a Ca2+-dependent CRD [63]. Oppositely to DC-SIGN, L-SIGN presents a highly variable and polymorphic neck region, which impacts ligand-binding affinity and specificity for viral pathogens [40,44]. The neck region of L-SIGN is essential for tetramerization, thus increasing the binding avidity to multivalent ligands displayed on pathogen surfaces [44]. L-SIGN expression is restricted to endothelial cells present in lymph nodes,placenta,andliversinusoidalendothelialcells[63]. L-SIGNbindstoN-linkedhigh-mannose oligosaccharides,withabindingpreferenceformannosylatedresidues[44]. IncontrasttoDC-SIGN, L-SIGN does not bind to blood group antigens [44]. L-SIGN is involved in the recognition and capture of glycan structures present on a variety of pathogens, including bacteria, viruses, fungi andparasites[44]. SimilartoDC-SIGN,L-SIGNisalsoexploitedbyseveralviruses,suchasHIV-1, EBOV, HCV, hepatitis B virus (HBV), Sindbis virus, SARS-CoV, and Marburg virus (MARV) for glycoprotein-mediatedattachmentandinternalization[64–70]. Furthermore, WNV, a flavivirus with two viral surface glycoproteins (protein E and prM/M), was shown to bind to L-SIGN with a higher affinity compared to DC-SIGN, resulting in host cell infectivity[71]. Légeretal.dissectedthedifferencesintheinteractionsofphleboviruses,including RiftValleyfevervirus(RVFV),Toscanavirus,andUukuniemiviruswithDC-SIGNandL-SIGN[72]. Inthisstudy,anendocytosis-defectivemutantofL-SIGNwasstillcapableoffacilitatingviralinfection, highlightingtheroleofL-SIGNasanattachmentfactorforphlebobviruses,whereasDC-SIGNactedas anauthenticentryreceptor[72]. AnotherstudyindicatedDC-SIGNandL-SIGNasauthenticendocytic receptorsforinfluenzaAvirus(IAV)entryandinfection[73]. Sialicacid-deficientChinesehamster ovarycelllineswereresistanttoIAVinfection,butpH-anddynamin-dependentinfectivitywasrestored byexpressionofDC-SIGN/L-SIGN.Uponexpressionofendocytosis-defectiveDC-SIGN/L-SIGN,IAV wasstillboundbythecells,butsusceptibilitytoinfectionwasclearlyreduced[73]. Collectively,L-SIGN andDC-SIGNwereshowntoacteitherasattachmentfactorsforvirusesorasauthenticentryreceptors involvedinmembranefusion. Hence,theyrepresenttargetsforvirusestohijackcellularfunctionsin ordertoevadeimmunedefensesandspreadinfection. 3.3. LSECtin LiverandlymphnodesinusoidalendothelialcellC-typelectin(LSECtin,orCLEC4G)islocatedon chromosome19p13.3inhumans,togetherwithDC-SIGNandL-SIGN[74]. LSECtinsharesa31%and 32%aminoacidsequencehomologywithDC-SIGNandL-SIGN,respectively,andisexpressedbyliver, lymphnodeandbonemarrowsinusoidalendothelialcells,andbyKupffercellsintheliver[74,75]. LSECtinwasreportedtorecognizeglycanscontainingmannose,N-acetylglucosamine(GlcNAc)and fucoseresidues[75]. LSECtin was discovered to enhance EBOV and SARS-CoV infection, however, in contrast to DC-SIGNandL-SIGN,didnotimpactHIV-1andHCVinfection[76]. Moreover,viralinteractions Viruses2017,9,59 8of22 withLSECtinwerenotcompetitivelyinhibitedbythemannose-containingpolysaccharidemannan suggesting that this CLR recognizes a more restricted spectrum of viruses presumably in a mannose-independent manner [77]. Similarities between LSECtin and DC-SIGN/L-SIGN in viral recognition range from the expression of this CLR by endothelial cells to the interaction with viral glycoproteins and the subsequent endocytosis of bound ligands [77]. The cytoplasmic domainofLSECtincomprisesatyrosinemotifanddiglutamic-containingmotifsthatmediateEBOV internalizationthroughLSECtin. Thus,LSECtin,suchasDC-SIGN,mightfunctionasavirusuptake receptor[78].However,incontrasttoDC-SIGN/L-SIGN,LSECtin-ligandcomplexesarenotdissociated byalowpHmilieu,indicatingadifferentialintracellulartraffickinguponendocytosis[77]. LSECtinwasdescribedtoregulateintrahepaticTcellimmunityandtolimitliverinjuryinamodel ofinducedexperimentalacutehepatitis[79,80]. UsingLSECtin-deficientmiceinadenovirusinfection and HBV replication as murine models for viral hepatitis, Liu et al. demonstrated that LSECtin facilitatedthereductionofliverinflammationbydelayingvirusclearanceandthatthisprocesscould behijackedbyvirusesasanimmuneevasionmechanism[81]. 3.4. Langerin Langerhans cells (LCs) are a distinct subset of DCs that can be found in the epidermis and oropharyngealmucosaandareeffectiveAPCscapableofinducingTcellresponses[82]. LCsexpress arepertoireofPRRs,includingTLRsandCLRs. TheCLRlangerinisatypeIItransmembraneprotein thathasaproline-richshortintracellularcytoplasmicdomainandanextracellulardomainconsisting ofaneck-regionthatformshomo-trimers[83,84]. AlthoughlangerinisuniquelyexpressedbyLCs in humans, langerin-positive dermal DCs in mice were also identified [85]. Oligomerization into threeidenticalCRDshomo-trimers),enablestoincreaseligandavidityandaffectsthecarbohydrate specificityoflangerin[84]. TheCRDoflangerincontainsanEPNmotifanditwasshownthatlangerin binds to mannose, fucose, and GlcNAc in a Ca2+-dependent manner [84]. Notably, interaction of langerinwithβ-glucanwasrecentlyshown, hencediversifyingtheligandprofileofthisCLR[86]. Amongotherpathogens,langerinrecognizesvirusessuchasHIV-1andmeaslesvirus(MV)[85,87]. LangerinplaysanimportantroleinantiviralresponsesinimmatureLCsbycapturingHIV-1for degradationinBirbeckgranules[85,88]. IncontrasttoDC-SIGNthatcontributestoHIV-1spreadby trans-infectionofTcells,langerinhasaprotectiveroleduringHIV-1infectionbydampeningvirus spread[85,88]. HIV-1infectionofLCsoccurswhenlangerinfunctionisimpairedorincaseofhigh viraltiters. Thus,inhibitionoflangerinenablesHIV-1infectionofLCsandfacilitatesfurthervirus transmissiontoTcells[88,89]. MV,amemberofthegenusMorbillivirusinthefamilyParamyxoviridae,isahighlycontagious virusthatentersthehostviatherespiratorytractandhasatropismforlymphocytesandmyeloidcells. LangerinwasshowntobeareceptorforMV,althoughitdoesnotmediatevirusentryintohosTcells directly. Langerin may rather be involved in immunity to MV as both immature and mature LCs efficientlypresentedMV-derivedantigenstoCD4+Tcells[90]. Recently,langerinwasshowntobean authenticreceptorforbindingandinternalizationofIAVleadingtoincreasedviralinfection[91]. 3.5. DendriticCellImmunoreceptor TheDCimmunoreceptor(DCIR,alsoknownasC-typelectinsuperfamily6,CLECSF6)isatypeII transmembraneproteinthatcontainsanintracellularITIMandcomprisesanunusualsequenceinits CRD,wheretheclassicalEPNmotifismodifiedbysubstitutionoftheasparaginebyaserineresidue resultinginanEPS(Glu-Pro-Ser)motif[92]. HumanDCIRispredominantlyexpressedbycellsofthe myeloidlineage,suchasDCs,macrophages,neutrophils,andmonocytes[93]. Theglycanspecificity ofhumanDCIRincludesfucose-andmannose-containingglycans,asdemonstratedbybindingto mannotrioseandLewisb[94]. TheroleofDCIRinimmunityisnotyetcompletelyunderstood,butit maybeinvolvedintheregulationofDCexpansion[95],antigenprocessing,andantigenpresentation forefficientCD4+andCD8+Tcellpriming[96,97]. KnowledgeaboutDCIRduringinfectionsisstillat Viruses2017,9,59 9of22 itsinfancy;however,ithasbeenreportedthathumanDCIRrecognizesHIV-1[98–100]. MurineDCIR impactstheimmuneresponseduringChikungunyavirus(CHIKV)infection[101],butmayalsobe involvedinimmunepathologyduringparasiteinfections,asshownforcerebralmalaria[102]. HumanDCIRactsasanattachmentfactorforHIV-1onDCsandsurfaceexpressionofDCIRby CD4+ TcellsisinducedbyHIV-1[92,93,98,99]. ThisincreasedexpressionofDCIRbyCD4+ Tcells enhancesHIV-1attachment, viralentry, replicationandtransfer, finallyresultinginahighervirus dissemination[93,99]. CHIKV, an arthropod-borne virus of the Alphavirus genus in the family Togaviridae, causes rheumatic disease in humans characterized by inflammation and damage of musculoskeletal tissues[101]. ConsistentwiththeroleofDCIRasaninhibitoryCLR,DCIR-/- miceexhibitedmore severediseasecomparedtowild-typecontrolmicefollowingCHIKVinfection. Diseaseexacerbation inDCIR-/-miceincludedamorerapidandmoresevereonsetofvirus-inducededemaandenhanced weightloss,increasedinflammationanddamageinboththefasciaoftheinoculatedfootandtheankle joint,aswellasanalteredcytokineresponse[101]. Thisstudysuggestsaprotectiveroleformurine DCIRinlimitingCHIKV-inducedinflammation. 3.6. MDL-1 The myeloid DAP-12-associating lectin (MDL-1, also known as CLEC5A) is a type II transmembranereceptorthatismainlyexpressedbymonocytes,macrophagesandneutrophils,but not by monocyte-derived DCs [103,104]. The short cytoplasmic domain of MDL-1 interacts with theITAM-bearingtransmembraneadaptorDAP-12(12-kDaDNAX-activatingprotein), leadingto phosphorylationandsubsequentsignalingviatheSykkinase[38,103,105]. MDL-1doesnotpossess afullsetofCa2+-coordinatingandcarbohydrate-bindingsitesandexhibitsahomodimericstructureat thecellsurface[106,107]. Glycanbindingspecificitystillremainsunknown[106]. Uptonow,MDL-1 was shown to recognize several viral pathogens, including DV [108], Japanese encephalitis virus (JEV)[109],andinfluenzaviruses[110]. DV, a mosquito-borne virus of the family Flaviviridae, is the causative agent of dengue fever. InfectionswithDVmayleadtothedevelopmentofdenguehemorrhagicfeveranddengueshock syndrome[111]. MDL-1wasshowntobindtoDVandtoactivateasignalingcascadeaccompanied bythereleaseofpro-inflammatorycytokines[108,112]contributingtopathophysiologicalchanges in DV-infected patients [113]. Upon DV recognition by MDL-1, DAP-12 becomes phosphorylated leadingtoSykactivation.Subsequentinductionofthepro-inflammatorycytokinesIL-1βandIL-18and activationoftheNLRP3(NACHT,LRRandPYDdomains-containingprotein3)inflammasomeand caspase-1triggercelldeath(pyroptosis)[114].Moreover,DVactivatesnuclearfactor(erythroid-derived 2)-like 2 (Nrf2) in murine mononuclear phagocytes to enhance tumor necrosis factor (TNF)-α productionthroughupregulationofMDL-1[115]. Antibody-mediatedMDL-1blockadeattenuated theproductionofpro-inflammatorycytokinesbyDV-infectedmacrophages,suggestingthatMDL-1 targetingcanbeameanstoamelioratetissuedamage[108]. MDL-1isalsoessentialinosteoclastogenesisandboneremodelinguponassociationwithboth DAP-12 and DAP-10 in bone marrow-derived osteoclasts [116]. Osteoclasts are multinucleated gianT cells that differentiate from macrophages and are involved in bone remodeling [116]. DVinfectionofosteoclastswasrecentlyshowntoupregulateosteolyticactivity[117]. Attenuationof DV-inducedosteolyticactivitywasobservedinMDL-1-/- miceand,consistently,administrationof aMDL-1antagonistinwild-typemicealsoinhibitedDV-activatedosteolyticactivity[117]. JEVwasshowntobindtoMDL-1andtoinduceDAP-12phosphorylationinmacrophagesas well. Antibody-mediatedMDL-1blockadeinhibitedJEV-inducedpro-inflammatorycytokinerelease from microglia and prevented bystander damage to neuronal cells. In addition, treatment with ananti-MDL-1antibodyreducedtheinfiltrationofJEV-harboringleukocytesintothecentralnervous system, attenuated neuroinflammation, and decreased JEV-induced lethality in mice [109]. Thus, Viruses2017,9,59 10of22 MDL-1playsacriticalroleinthepathogenesisofJapaneseencephalitisandmayrepresentapromising targetforthedevelopmentofnewtreatments[109]. In a recent study, MDL-1 was demonstrated to interact with the hemagglutinin (HA) protein of influenza viruses [110]. Two modes of interaction can take place between IAV and lectins: calcium-dependentbindingoflectinstotheviralglycoproteins,andbindingofviralHAtosialylated carbohydratesonthelectin(thisbindingmodemainlyoccursinsolublelectins)[25].SinceMDL-1does notcomprisethecanonicalsetofcalciumcoordinatingandcarbohydratebindingsites,ligandbinding mayoccurinaCa2+-independentfashion[106].InadditiontoidentifyingMDL-1asanIAV-recognizing lectin, this study highlighted that antibody-mediated MDL-1 blockade or MDL-1 silencing led to decreased levels of pro-inflammatory cytokines produced by human macrophages. Consistently, MDL-1-/- mice exhibited reduced levels of pro-inflammatory cytokines, decreased immune cell infiltration in the lungs and improved survival compared to wild-type mice indicating a crucial roleforMDL-1ininflammatoryresponses,thuscontributingtoinfluenzapathogenicity[110]. 3.7. MacrophageMannoseReceptor TheMMRisaCLRexpressedbymonocyte-derivedDCs,dermalDCs,macrophages,andhepatic endothelialcells. Itisinvolvedininnateimmunitybyrecognitionofglycanstructuresonpathogensas wellinhomeostasisbyclearanceofthepituitaryhormoneslutropinandthyrotropin[118]. MMRis capable of recognizing mannose, fucose, and GlcNAc residues that are abundant on the envelope glycoproteinsofvariousviruses.MMRcomprehendsanN-terminalcysteine-richdomain,afibronectin type II domain, and eight CRDs that bind and release ligands at the low pH environment within endolysosomesinaCa2+-dependentmanner.MMRcandimerize;atcellsurfacesthereisanequilibrium between the monomeric and dimeric form [119]. MMR interacts with a wide range of pathogens, includingvirusessuchasHIV-1,butalsobindstofungi,bacteria,andparasites[118]. TheMMRis involvedinthephagocytosisofpathogensandisinternalizedintotheendosomalsystemuponligand bindingviaclathrin-coatedvesicles[120]. MMRwasshowntobindtotheHIVenvelopeproteingp120initsdimericformviahighmannose oligosaccharides[119,121]. MMRplaysasubstantialroleinthebindingandtransmissionofHIV-1by macrophagesasdemonstratedbyinhibitionwithmannan,mannose,ethylenediaminetetraaceticacid (EDTA),andsolublemannose-bindinglectin[119,121]. Indeed,macrophageswereabletomediate transmissionofboundHIVtoco-culturedTcells,andthistransmissioncouldbeblockedbyinhibitors ofMMRbinding. BesidesHIV-1,MMRalsorecognizesenvelopeglycoproteinsofothervirusesincludingtheDV envelope(E)glycoprotein. ItwasshownthatMMRboundtomosquitoandhumancell-producedDV antigenviaitsCRDswhichwasabrogatedbydeglycosylationoftheDVenvelopeglycoprotein[122]. DV infection of human macrophages was efficiently blocked by anti-MR antibodies indicating afunctionalroleforMMRinDVinfection. Inaddition, MMRtogetherwiththeCLRmacrophage galactose-type lectin (MGL; see below) contributes to endocytic uptake of influenza virus into macrophages [123]. MMR bound to influenza virus via its CRDs in a Ca2+-dependent manner. CompetitiveinhibitionofMMRusingmultivalentligandsledtoreducedinfluenzavirusinfection of macrophages. Interestingly, influenza virus also bound to sialic acid residues present on the MMR suggesting that MMR may act as a secondary receptor or co-receptor for infection of macrophages[123,124]. AnothervirusrecognizedbyMMRisHBV.MMRwasshowntobeinvolved in HBV surface antigen (HBsAg) recognition and uptake by DCs. Since HBsAg-positive DC were frequentlyfoundintheliverofHBVpatients,MMR-mediatedinteractionbetweenHBsAgandDCs mayoccurintheliverasthemainsiteofHBVinfection[125]. 3.8. MacrophageGalactose-TypeLectin TheCLRMacrophagegalactoseC-typelectin,MGL,isexpressedbymonocyte-derivedimmature DCsandmacrophages. MGLisatypeIItransmembraneproteinwithaligandspecifityforgalactose
Description: