ebook img

Muscle Activity Adaptations to Spinal Tissue Creep in the Presence of Muscle Fatigue PDF

14 Pages·2016·0.39 MB·French
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Muscle Activity Adaptations to Spinal Tissue Creep in the Presence of Muscle Fatigue

RESEARCHARTICLE Muscle Activity Adaptations to Spinal Tissue Creep in the Presence of Muscle Fatigue JacquesAbboud1☯*,FrançoisNougarou2,MartinDescarreaux3☯ 1 Départementd’Anatomie,UniversitéduQuébecàTrois-Rivières,Québec,Canada,2 Départementde GénieÉlectrique,UniversitéduQuébecàTrois-Rivières,Québec,Canada,3 DépartementdesSciencesde l’ActivitéPhysique,UniversitéduQuébecàTrois-Rivières,Québec,Canada ☯Theseauthorscontributedequallytothiswork. *[email protected] Abstract Aim Theaimofthisstudywastoidentifyadaptationsinmuscleactivitydistributiontospinaltis- suecreepinpresenceofmusclefatigue. OPENACCESS Methods Citation:AbboudJ,NougarouF,DescarreauxM Twenty-threehealthyparticipantsperformedafatiguetaskbeforeandafter30minutesof (2016)MuscleActivityAdaptationstoSpinalTissue passivespinaltissuedeformationinflexion.Rightandlefterectorspinaeactivitywas CreepinthePresenceofMuscleFatigue.PLoSONE recordedusinglarge-arrayssurfaceelectromyography(EMG).Tocharacterizemuscle 11(2):e0149076.doi:10.1371/journal.pone.0149076 activitydistribution,dispersionwasused.Duringthefatiguetask,EMGamplituderoot Editor:FrancescoCappello,UniversityofPalermo, meansquare(RMS),medianfrequencyanddispersioninx-andy-axiswerecompared ITALY beforeandafterspinalcreep. Received:October9,2015 Accepted:January26,2016 Results Published:February11,2016 Importantfatigue-relatedchangesinEMGmedianfrequencywereobservedduringmuscle Copyright:©2016Abboudetal.Thisisanopen fatigue.Medianfrequencyvaluesshowedasignificantmaincreepeffect,withlowermedian accessarticledistributedunderthetermsofthe frequencyvaluesontheleftsideunderthecreepcondition(p(cid:1)0.0001).Asignificantmain CreativeCommonsAttributionLicense,whichpermits creepeffectonRMSvalueswasalsoobservedasRMSvalueswerehigheraftercreep unrestricteduse,distribution,andreproductioninany deformationontherightside(p=0.014);asimilartendency,althoughnotsignificant,was medium,providedtheoriginalauthorandsourceare credited. observedontheleftside(p=0.06).Asignificantcreepeffectsforx-axisdispersionvalues wasobserved,withhigherdispersionvaluesfollowingthedeformationprotocolontheleft DataAvailabilityStatement:Allrelevantdataare withinthepaper. side(p(cid:1)0.001).Regardingy-axisdispersionvalues,asignificantcreepxfatigueinteraction effectwasobservedontheleftside(p=0.016);asimilartendency,althoughnotsignificant, Funding:UniversitéduQuébecàTrois-Rivières ExcellenceFundandtheNaturalSciencesand wasobservedontherightside(p=0.08). EngineeringResearchCouncilofCanada.The fundershadnoroleinstudydesign,datacollection Conclusion andanalysis,decisiontopublish,orpreparationof themanuscript. Combinedmusclefatigueandcreepdeformationofspinaltissuesledtochangesinmuscle activityamplitude,frequencydomainanddistribution. CompetingInterests:Theauthorshavedeclared thatnocompetinginterestsexist. PLOSONE|DOI:10.1371/journal.pone.0149076 February11,2016 1/14 CreepDeformationandTrunkNeuromuscularControl Introduction Spinestabilityisoftendescribedasacomplexmechanisminvolvingthreeessentialcompo- nents:spinalmuscles,passivespinaltissuesandneuromuscularcontrol[1].Undernormalcon- ditions,thesesubsystemsarehighlycoordinatedandoptimizedtoprovideadequatestabilityof thespine.However,intheabsenceofmusclestoprovidespinalstability,compressiveloadsas lowas100Ncanleadtobucklingoftheentirelumbarspine[2].Conversely,whenspinalmus- clesareactivated,individualscanwithholdspinalloadsof4000Nwithoutreportinganypain orundesirableeffects[3].Moreover,ithasbeenhypothesizedthatchangesinmusclerecruit- mentpatterns,suchasmuscleco-contraction,actascompensationforspinalinstabilityresult- ingfrompassiveelementslaxityorreducedneuromuscularcontrol[1,4]. Suchadaptationsinmusclerecruitementpatternscanalsobeobservedwiththeuseof large-arrayssurfaceelectromyography(EMG)undertheinfluenceofmusclefatigue[5]. Indeed,amigrationofmuscleactivityhasbeendescribedduringalowbackmusclefatiguetask [5,6].Moreover,large-arrayssurfaceEMGhasbeenshowntobearelevanttoolintheidentifi- cationofdistinctivemusclerecruitmentstrategiesbetweensympatomaticvsasymptomatic individualsindifferentlowbackregionsthroughdifferentmotortasks[7,8].Zwartsshowed thatlarge-arrayssurfaceEMGoffersuniquespatialinformationtoourknowledgeregarding thedistributionofmuscleactivity,suchasmotorunitactivation.[9]. Ontheotherhand,spinalinstabilityassociatedwithadeformationofpassivespinaltissues, asitoccursinrepetitiveexposuretoprolongeddeeptrunkflexion,hasbeenassociatedwiththe developmentoroccurrenceoflowbackpain(LBP)anddisorders[10–12].Thisassociation couldpartlybeexplainedbythecombinationofgraduallyincreasingcreepintheviscoelastic tissuesanddecreasesinreflexivemuscularactivationthatleavethespinewithdiminishedpro- tectionfrominstability[13].Experimentallyinducedlowbackmusclecreephasbeenusedin severalstudiestofurtherourunderstandingofthepassiveandactivestructurecontributionto spinalstability[14–21].Inthesestudies,active(dynamic)orpassive(static)flexion-extensions ofthetrunkarethemostcommonlyusedprotocolstoinducespinalcreep.Thesesustainedor repeatedmovementsusuallyleadtoanincreaseinthetrunkflexionrangeofmotion[15–18, 22].Indeed,thecreepinthespineligamentsisthoughttoincreasetheintervertebraljointslax- ity,allowingincreasedrelativemotion. Thelaxitydevelopedinthespinefromthecreepintheviscoelastictissuesofligaments, discsandjointcapsulesisrelativelysmall,andcaneasilybecompensatedbymoderateadjust- mentsintheco-contractionlevelsofagonistandantagonistmuscles[23].However,theeffects ofactiveorpassiveprolongeddeepflexionsofthetrunkonlowbackmuscleactivityarenot wellunderstood.Indeed,nochangehasbeenobservedinthetimingofmuscleactivationonset forthelowererectorspinaemusclesfollowingastaticpassivelumbarflexionperiodof10[19] or15minutes[14],whereasonsetlatencyofthesamemusclesincreasedafteronehourofstatic passivelumbarflexion[20].Olsonetal.showedthatnodifferenceexistsregardingonset latencyofthelowererectorspinaemusclesfollowingeitheractiveorpassivetrunkflexion- extensionrepetitions[21].Furthermore,humaninvivostudiesindicatethataprolongedtrunk flexionresultsinahigherparaspinalmusclereflexgain[14],whilerepeatedlyappliedshort- durationcreepreducesspinalreflexresponses[15].Decreasedprotectivemuscularreflexwas showntobethedirectmanifestationofmechanoreceptordesensitizationcausedbylaxityin theviscoelastictissuesofthespine[23].Lastly,thespinalstabilizingsystemactsbyaltering muscleactivationpatternsviathenervoussysteminresponsetotheligamentoustissuemecha- noreceptorafferentsignals.Spinalmuscularactivityisthengeneratedinordertocompensate thedecreasedcontributionofviscoelastictissuesbyimplementingalternativerecruitment strategiessuchastheco-contractionoftrunkmuscles[4,24]. PLOSONE|DOI:10.1371/journal.pone.0149076 February11,2016 2/14 CreepDeformationandTrunkNeuromuscularControl Undertheinfluenceofbackmusclefatigue,asimilarreorganizationofmotorstrategiesis implementedtoperformthefatiguetask.Indeed,manystudieshaveshownadaptationsin recruitmentpatternsduringmusclefatigue[6,8,25].Moreover,lowbackmusclefatigueseems tobeassociatedwithchangesinmotorreflexactivityfollowingunexpectedposturalperturba- tion[26–28].Additionnally,creepdeformationhasbeenshowntoalterpassivestructures, whichareknowntoplayacrucialroleinlowerbackspinalstability[1]. ArjmandandShirazisuggestedthatstaticflexionofthetrunk,whichinducescreepdefor- mationofthepassivestructures,maybeasignificantriskfactorforlowbackdisordersor developmentofmusclefatigue[29]andcanpossiblyincreasethedemandonothertrunkstabi- lizingstructures. Theaimofthisstudywastodescribetheeffectofspinaltissuecreeponmuscleactivitydistri- butioninpresenceofmusclefatigue.BasedonpreviousstudiesshowingthatincreasesinEMG amplitudesignalsareobservedundertheinfluenceoflowbackcreepdeformation,itwashypoth- esizedthatbackmusclerecruitmentstrategies,whicharebelievedtoplayanimportantrolein redistributingstabilizationefforts,willbemodifiedfollowingasofttissuecreepinthespine. MaterialsandMethods Participants Twenty-threehealthyadultparticipantswithouthistoryofLBPwererecruited.Thisgroupwas composedof12womenand11men(mean(SD):age=26.7years(5.1);height=1.70m(0.1); weight=67.7kg(14.2);BMI=23.2kg/m2(3.9)).Exclusioncriteriawere:anyhistoryofacute/ chronicthoracicorlowbackpaininthepast6months,ankylosingspondylitis,trunkneuro- musculardisease,inflammatoryarthritis,scoliosis((cid:3)15°),andpreviousspinalsurgery.The projectreceivedapprovalfromtheUniversity’sethicscommitteeforresearchwithhumans (Comitéd'éthiquedelarechercheavecdesêtreshumains)andallparticipantsgavetheirwrit- teninformedconsentpriortotheirparticipationinthestudy. Experimentalprotocol Eachsubjectparticipatedinoneinitialexperimentationduringwhichtheyperformedamaxi- malvoluntaryisometrictrunkextensioncontraction(MVC),rangeofmotion(ROM)assess- mentanda1-minutefatiguetaskbeforebeingsubmittedtothe30-minutepassivetissue deformationcondition.Aftercreepdeformationwasobtained,theROMassessmentandthe fatiguetaskwereconductedagain.Alltogether,thetwoROMtestswererepeated3timeseach. First,thetrunkanglewasmeasuredbyplacingthedigitalinclinometer(DualerIQPro™Digital Inclinometer,JTECHMedical;USA)ontheL3vertebra.Theparticipantsstooduprightand thentiltedthetrunkforwardasmuchaspossible,withoutbendingtheknees.TheROMwas alsomeasuredbyaskingtheparticipanttositonthefloorandcompletelyrestthesolesoftheir feetagainstthestandardFlex-Tester(BaselineSitn’ReachBox,FabricationEnterprisesInc., USA).Withtheirarmsandfingersinfullextensioninfrontofthem,participantswereaskedto pushthemetalplatethefarthesttheycould,withoutbendingthekneessothatthetrunkleaned forwardasmuchaspossible.Theflexionpositionwasmaintainedfor2secondsbeforepartici- pantswereallowedtosituprightagain. TheMVCprotocolwasperformedpriortothefatigueprotocol.Participantswereaskedto layinapronepositionona45°Romanchair,withtheiliaccrestsalignedwiththechaircush- ionedge.Abeltfixedtothegroundandinstalledoverparticipantsshouldersresistedtheforce. ThefatigueprotocolconsistedofamodifiedversionoftheSorensenendurancetest[30],exe- cutedinthesamepositionastheMVCprotocol.Inordertoquicklyinducemuscularfatigue, participantshadtolifta12.5-kilogramweightplateduringthetask.Theplatewasheldasclose PLOSONE|DOI:10.1371/journal.pone.0149076 February11,2016 3/14 CreepDeformationandTrunkNeuromuscularControl Fig1.Illustrationofthelowbackcreepdeformationprotocol. doi:10.1371/journal.pone.0149076.g001 aspossibletothechestbytheparticipants.Theparticipants’trunkwasmaintainedunsup- portedinahorizontalpositionrelativetothegroundforoneminute.Immediatelyafterthe fatigueprotocol,participantswereaskedtoperformthedeformationprotocol.Perceivedeffort scale(6–20)[31],measuringtheintensityofthefatiguetask,wasratedbyeachparticipantat theendofthefatiguetest. Thelowbackcreepdeformationprotocolstartedwiththeparticipantssittingonabench andthenbendingforward,sothattheirtrunkwassupportedbyatable(Fig1).Participants’ trunkswereflexedbyapproximately75%oftheirrangeoffulltrunkflexion.Theirlegswere alsoflexedby90degreestolimittheoccurrenceofharmstringmusclesstretching.Theymain- tainedthispositionfor30minutes.Immediatelyafter,theROMwasmeasuredagainbythe2 previouslymentionedtests,andthefatiguetaskswereperformedasecondtimeafterwards. Lumbarmuscles’activation(EMG)wasobtainedonlyduringthefatiguetaskandconsequently assessedbeforeandafterthedeformationprotocol. DataAcquisition Rightandlefterectorspinae’activitywasrecordedusingtwolarge-arrayssurfaceEMGmatrices (modelELSCH064;LISiN-OTBioelettronica;Torino,Italy).Thearraygridconsistedof64elec- trodesplacedinan8x8matrix(10mminter-electrodedistance).Thecenterofeachgridwas locatedatL3level(Fig2),andonegroundelectrodewasplacedontheleftulnarprocess.Skin impedancewasreducedbyshavingbodyhair,gentlyexfoliatingtheskinwithfine-gradesandpa- per(RedDotTracePrep,3M;St.Paul,MN,USA)andwipingtheskinwithalcoholswabs.The bipolarEMGsignalswereamplified(64-channelsurfaceEMGamplifier,SEA64,LISiN-OT Bioelettronica;Torino,Italy;–3dBbandwidth10–500Hz)byafactorof2000,sampledat2048 Hzandconvertedtodigitalformbya12bitA/Dconverter.Thedatawerecollectedusingthe OTBioelettronicacustomsoftwareandprocessedbyMatlab(MathWorks;Natick,MA,USA). DataAnalysis TheROMmeasuredinastandingpositionusinganinclinometerwasassessedfollowingthe AmericanMedicalAssociationrecommendations[32].Toestablishtheinitialposition,the PLOSONE|DOI:10.1371/journal.pone.0149076 February11,2016 4/14 CreepDeformationandTrunkNeuromuscularControl Fig2.Representationoftwo64-electrodematricesusedintherecordingoferectorspinaemuscle activity(modelELSCH064;LISiN-OTBioelettronica,Torino,Italy). doi:10.1371/journal.pone.0149076.g002 individualswerestandingwiththeirkneesextendedandtheirweightbalancedonbothfeet (spinewasinaneutralposition).Thepositionofeachparticipantwasverifiedbythesame experimentertolimitmeasurementerrors.TheSitn’Reachtestwasperformedusingthepro- ceduresoutlinedintheAmericanCollegeofSportsMedecine(ACSM)manual[33].Forboth ROMtests,thehighestvaluefromthe3trialswasconsideredforallanalyses. EachbipolarEMGsignalobtainedfrombothmatriceswasdigitallyband-passfilteredinthe frequencybandwidth20-450Hz(2ndorderButterworthfilter).Notchfilterswerealsoapplied toeliminatethe60Hzpowerlineinterferenceanditsharmonics.Asdescribedinaprevious study,dispersionwasobtainedbycalculatingthecenterofgravitydispersionduringtheSoren- sentestofagivensubject[8].Inshort,myoelectricsignalsfromeachelectrodewerenormal- izedwiththebaselineEMGsignalobtainedfromMVCtrials.Eachelectrode-filteredsignalwas thendividedinLwindowsof0.5sforwhichanindividualrootmeansquare(RMS)valuewas computed.Foreachwindow,themeanofallelectrodesRMSwascalculatedandcorrespond thecentroidposition.Tocharacterizemuscleactivitydistribution,thedispersionvariableinx- andy-axis,representingthemuscleactivityrangeofdisplacement(centroid),wasextracted fromthebipolarEMGsignals.Thex-axiscorrespondstothemediolateraldirection,whilethe y-axiscorrespondstothecephalic-caudaldirection.Inordertoconfirmthepresenceofmuscle fatigueinbothconditions(nocreepandcreep),themeannormalizedslopeofthemedianfre- quency(MDF)(meanofthe64electrodesofeachmatrix)wascalculatedusingthesamemeth- odsastheoneusedforRMS.TheFouriertransformfunctionfromMatlabsoftware (MathWorks;Natick,MA,USA)wasusedtocalculatetheMDFvalues.TheMDFwasdefined asthefrequencythatdividedthespectrumintotwoequalareas.Eachsignalswasthendivided in0.5swindowswithoutoverlapforwhichanMDFvaluewascomputed[34].Morespecifi- cally,MDFvalueswereobtainedthrougheachelectrodesignal.TheslopeofMDFwasthencal- culatedforeachelectrode.Finally,avaluerepresentingthemeanslopeofMDFwasobtained. Statisticalanalyses NormalityofdistributionforeverydependentvariablewasassessedusingtheKolmogorov– Smirnovtest,inadditiontovisualinspectionofthedata.Thet-testfordependentsampleswas usedtocompareratesofperceivedeffortattheendofthefatiguetestbeforeandafterthe deformationprotocol.Rangesofmotionmeasuredbythedigitalinclinometerandthe“Sitn’ ReachBox”werealsocomparedbeforeandafterthedeformationprotocolusingthet-testfor dependentsamples.Thet-testfordependentsampleswasalsousedtocomparenormalized PLOSONE|DOI:10.1371/journal.pone.0149076 February11,2016 5/14 CreepDeformationandTrunkNeuromuscularControl MDFslopesbeforeandafterthedeformationprotocol.EMGmusclevariables(meanMDF, meanRMS,dispersioninx-andy-axis)datawerecomparedbetweenthetwoconditions(no creepandcreep)usingatwo-wayrepeated-measureanalysisofvariance(ANOVA)toassess themaineffectsofcreepandfatigue(earlyfatigue:10firstsecondsandlatefatigue:10lastsec- ondsoftheSorensentest).Whennecessary,theTukeyposthoctestwasperformedasthepost hocanalysesforpair-wisecomparisons.Forallstatisticalanalyses,p<0.05wasconsideredto bestatisticallysignificant. Results Fromthe23originalparticipants,threewereexcludedfromEMGanalysesduetohighlevelsof EMGnoiseinrecordings. Impactsofmusclefatigue Importantfatigue-relatedchangesinsEMGtime-frequencywereobservedduringthefatigue protocol.Dependentt-testsrevealednosignificantdifferencebetweenthebefore-deformation condition(ontheleftside:mean=–0.30;SD=0.09andontherightside:mean=–0.29; SD=0.12)andafter-deformationcondition(ontheleftside:mean=–0.29;SD=0.10andon therightside:mean=–0.27;SD=0.19)regardingthenormalizedMDFslopes(p(cid:3)0.05).There wasalsonodifferenceregardingtheratedperceivedeffort(beforedeformation,mean=13.2/ 20;SD=2.9andafterdeformation,mean=13.6/20;SD=3.2)(p>0.05). Creepdeformationeffects Rangeofmotion. RegardingtheROMcomparisonbeforeandaftercreepdeformation, resultsshowedasignificantincreaseinROMafterthedeformationprotocolmeasuredbythe Sitn’ReachBoxtest(p=0.02).However,nodifferencewasfoundregardingROMmeasured bytheinclinometer(p=0.42). MDF. TheANOVArevealedmainsignificantfatigueeffectsonMDFforbothconditions. Asexpected,MDFwaslowerattheendofthefatiguetaskincomparisontoitsbeginningon therightside[F(1,19)=80.73,p(cid:1)0.0001]andtheleftside[F(1,19)=178.51,p(cid:1)0.0001]. Moreover,resultsofMDFvaluesshowedasignificantmaincreepeffect,withlowerMDFval- uesontheleftside[F(1,19)=38.73,p(cid:1)0.0001]underthecreepcondition,butnodifference wasobservedontherightside[F(1,19)=2.37,p=0.14](Fig3B). Fig3. MeanRMS(A)andMDF(B)valuesovertimeontherightandleftsides(RMS:RootMeanSquare; MDF:MedianFrequency).Errorbarsindicatestandarddeviations.$representsamaineffectoffatigue.✦ representsamaineffectofcreep.Posthocresultsareillustratedby*=p<0.01and**=p<0.001. doi:10.1371/journal.pone.0149076.g003 PLOSONE|DOI:10.1371/journal.pone.0149076 February11,2016 6/14 CreepDeformationandTrunkNeuromuscularControl Fig4. Meandispersionvaluesinx-axis(A)andy-axis(B)valuesovertimeontherightandleftsides (DispX:Dispersioninx-axis;DispY:Dispersioniny-axis).Errorbarsindicatestandarddeviations.$ representsamaineffectoffatigue.✦representsamaineffectofcreep.Posthocresultsareillustratedby *=p<0.01. doi:10.1371/journal.pone.0149076.g004 RMS. TheANOVArevealedasignificantmaincreepeffectonmeanRMSvalues,asRMS washigheraftercreepdeformationontherightside[F(1,19)=7.31,p=0.014]andasimilar tendendy,althoughnotsignificant,wasobservedontheleftside[F(1,19)=3.92,p=0.06].The ANOVAalsorevealedasignificantmainfatigueeffectonmeanRMSvalues.RMSvalueswere higherattheendofthefatiguetaskontherightside[F(1,19)=25.70,p(cid:1)0.0001]andtheleft side[F(1,19)=32.20,p(cid:1)0.0001].Finally,theanalysesalsorevealedasignificantinteraction effect(creepxfatigue)ontheright[F(1,19)=7.26,p=0.014]andleftside[F(1,19)=8.93, p=0.008].AsillustratedinFig3A,posthocanalysesrevealedsignificantdifferencesduringthe first10seconds,withhigherRMSvaluesunderthecreepcondition. X-axisdispersion. TheANOVArevealedmainsignificantcreepeffectsforx-axisdisper- sionvalues,withhigherdispersionvaluesfollowingthedeformationprotocolontheleftside[F (1,19)=5.92,p(cid:1)0.001],butnotontherightside[F(1,19)=0.86,p=0.36].Moreover,the ANOVAshowedasignificantmainfatigueeffectonx-axisdispersionvalueswheredispersion wassignificantlyhigherbytheendofthefatigueprotocolontheleftside[F(1,19)=17.0, p(cid:1)0.001],butnotontherightside[F(1,19)=1.43,p=0.25](Fig4A).Reprensatativedataof thedispersionarepresentedinFig5. Y-axisdispersion. TheANOVArevealedmainsignificantfatigueeffectsony-axisdisper- sionvalueswheredispersionwassignificantlyhigherbytheendofthefatigueprotocolonthe rightside[F(1,19)=7.49,p=0.013]andontheleftside[F(1,19)=5.77,p=0.027].Theanaly- sesalsoshowedasignificantcreepxfatigueinteractioneffectontheleftside[F(1,19)=6.95, p=0.016];asimilartendency,althoughnotsignificant,wasobservedontherightside[F(1,19) =3.44,p=0.08](Fig3B).AsillustratedinFig4B,posthocanalysesrevealedhigherdispersion valuesonthey-axisunderthecreepconditionduringthefirst10secondsofthefatiguetask. ReprensatativedataofthedispersionarepresentedinFig5. Discussion Thestudy’smainobjectivewastoidentifymuscleactivityadaptationstospinaltissuecreepin thepresenceofmusclefatigue.Theresultsshowedthatprolongedflexionofthetrunkledto adaptationsinmuscleactivitydistribution.Indeed,highervaluesofamplitudefromlumbar erectorspinaemyoelectricsignals,aswellashigherdispersionvalues,wereobservedinthe presenceofspinaltissuecreep. PLOSONE|DOI:10.1371/journal.pone.0149076 February11,2016 7/14 CreepDeformationandTrunkNeuromuscularControl Fig5.Typicalrepresentationofdispersiondatafromaparticipantontherighterectorspinae.The large-arrayEMGwasenlargedtobetterobserveddispersiondata.Boldblacklinesillustratethemigrationof thecentroidduringtheearly(upperpartofthefigure)andlate(lowerpartofthefigure)musclefatigue.Note theshiftinthedistributionofEMGamplitudetowardthecaudalregionofthelumbarerectorspinae(grey lines). doi:10.1371/journal.pone.0149076.g005 Toconfirmthepresenceofspinaltissuecreep,ROMvalueswerecalculatedbeforeandafter thedeformationprotocol.Althoughlimited,anincreaseinROMwasobservedfollowingspinal tissuecreep.Overall,theincreaseinfullflexionanglemightresultfromthecombinedvisco- elasticelongationofhamstringanderectorspinaemuscles.Despitetheoveralltendency observed,thetwoROMtestsyieldeddifferentresults.Suchdisparitycouldbeexplainedbythe differencesbetweenthetasksandinstruments.Thestandingposition,aspreviouslydescribed, isassociatedtoaco-contractionphenomenonofposteriorandanteriortrunkmuscleswhich couldpossiblyexplainedadecreasedROMinfullflexionofthetrunk.Indeed,anincreasein trunkmuscleactivityhasbeenshowninstandingposturewhencomparedtosittingposture [35].Itisalsopossiblethattheactivationoftheanteriormuscles(rectusabdominis)contrib- utestoanincreasedabilityofthetrunktotravelthroughagreaterrangeoftrunkflexion.Using aninclinometer,insteadofadualinclinometer,providesaglobalevaluationofthelowerlimb andbackantigravitymuscles,whereasadualinclinometershouldbeconsideredtoassessthe specificlumbarspinechangesfollowingcreepdeformation[36]. Inthepresentstudy,participantswereaskedtoperformatrunkextensormusclefatigue taskforoneminute.Thepresenceofanacutelowerbackmusclefatiguephenomenonwas indicatedbyamarkeddecreaseinthemeanMDFslope,whichisconsideredareliableindica- torofmusclefatigue[37],aswellasascoreoftheratedperceivedeffortscalecategorized between“somewhathard”and“hard”.Moreover,similarnegativeslopeswerefoundbefore andafterthedeformationprotocol,andparticipantsratedsimilarperceptionofeffortscoresat theendofthefatiguetask.Theseresults,asawhole,indicatethatparticipantsseemedtobein asimilarstateoffatigueinbothconditions(nocreepandcreep).Ontheotherhand,differ- encesappearedwhenthemeanMDFwasconsidered.Indeed,lowervaluesofmeanMDFwere observedinthepresenceofspinaltissuecreep.Duringearlyfatigue,MDFvaluesaredeter- minedbymusclefibertypedistribution[38].ThefrequencyshifttowardslowerMDF,inthe presenceofmusclefatigue,hasbeenassociatedtochangesinmotorunitrecruitementandsyn- chronisationaswellaschangesinconductionvelocityandmusclefibertypes[39,40].These PLOSONE|DOI:10.1371/journal.pone.0149076 February11,2016 8/14 CreepDeformationandTrunkNeuromuscularControl resultsareinaccordancewiththoseofShinandal.,whoobservedareductioninmedianpower frequencyduringsubmaximalextensioncontractionof15and30%ofparticipants’5-seconds maximalvoluntarycontractions,followingastatictrunkflexion[41].Theseobservationstaken together,couldsuggestthatfollowingspinaltissuecreep,fatigue-relatedphenomenomsare facilitated.Itcanbehypothesizedthatprolongedtrunkflexionleadstopassivetissuedeformar- tionwhichmayincreasetrunkmusclecontributiontospinalstabilizationmechanismsduring fatigue.AnotherstudyconductedbyHowarthetal.foundareductioninmedianpowerfre- quencyafterrepetitiveactivespineflexions;however,thisdifferencewasnotstatisticallysignif- icant[18].Inthisstudy,themedianpowerfrequencywasassessedduringaSorensentest lasting5seconds,whereasrecordingslastedoneminuteinthepresentstudy.Methodological considerationsmightthereforeexplainthedifferencesobservedbetweentheresultsofboth studies. Withregardtomuscleactivationamplitude(RMSvalues),highervalueswereobserved immediatelyfollowingthedeformationprotocol.Itisimportanttonotethatthesecondfatigue taskwasconducted30minutesafterthefirstone,anditisunlikelythattheincreaseinRMS wasassociatedtoaresidualeffectofthefirstfatiguetask.Indeed,Larivièreetal.showedthata restperiodof10to15minutesfollowingabackmusclefatiguetaskisenoughtoallowcomplete backmusclerecovery[42]. RMSvaluesweresimilarinbothconditionsattheendofthefatigueprotocol,withaten- dencytowardshighervaluesafterthedeformationprotocol.Inthepresenceofmusclefatigue, anincreaseofEMGamplitudesignalswasalsoobservedinthepreviousstudy5or10minutes afterperformingliftingtrialsinstaticlumbarfullflexion[16,41].Indeed,theincreasedactivity ofextensormusclessuggeststhatincreasedmuscleactivationisrequiredtogeneratemore activeforcestocompensateforthelossofcontributionofpassivetissuestospinalstability[43]. Moreover,Toosizadehetal.showedthattrunkmuscleactivitymeasuredbyRMSincreasedby 5%followingcreepdeformationinducedbyrepetitiveliftingtasks[44].Giventhatthemoment armsofparaspinalmusclesarerelativelysmall[45],onlysmallincreasesinmuscleforcesare neededtoincreasespinalloadsandcompensateforreducedspinalstability. Itiswellknownthatneurophysiologicalperturbations,suchasmusclefatigueormusculo- skeletalpain,areassociatedwithalteredmusclesrecruitmentdistribution[7,8,46].Thepres- entstudyisthefirstoneinvestigatingmuscleactivitydistributioninthepresenceofspinal tissuecreep.Dispersionofmuscleactivity,representingthemuscleactivityrangeofdisplace- ment,wasusedtoidentifyrecruitmentstrategiesadaptationsduringthefatiguetaskbeforeand afterthedeformationprotocol.Anincreaseindispersionvalueswasobservedthroughoutthe fatiguetask,whichisinaccordancewithpreviousstudies[5,8].Indeed,acaudalandlateral shiftofthemuscleactivitywasobservedinthecurrentstudy.Thisfindingssupportotherstud- iesthatspecificallyreportedacaudalshiftofbackmuscleactivitycentroidduringmuscle fatigueinasymptomaticparticipants[5,6].Thisobservationsuggestsvariationsinthedistribu- tionofmusclefibertypesthroughoutsegmentsoflumbarerectorspinae.Indeed,alarger decreaseinEMGpowerspectralfrequency,aswellasasimultaneousincreaseinEMGampli- tudehavealsobeenshowedtothelowerpartoflumbarmusclesincomparisontoupperpart undertheinfluenceofmusclefatigue[47,48].Moreover,higherdispersionvalueswere observedatthebeginningofthefatiguetaskunderthespinaltissuecreepcondition.Asdis- cussedearlier,adaptationsinrecruitmentstrategies,suchasco-contractionoftrunkmuscles, havebeendescribedaspotentialstrategiestocompensatethedecreasedcontributionofvisco- elastictissues[4,24].Thepresentstudyshowsthatmuscleactivityadaptationscouldalso occurwithinthesamemusclethroughanincreaseinmuscleactivitydistributioninresponse tospinaltissuecreep.Itcanbehypothesizedthatlong-lastingcreepdeformationwillincrease spinalpassivetissuemechanoreceptorsthreshold,leadingtoincreasedmuscleactivityduring PLOSONE|DOI:10.1371/journal.pone.0149076 February11,2016 9/14 CreepDeformationandTrunkNeuromuscularControl staticlumbarextension.Ligamentscontainmechanoreceptorsactingastransducers,sending posturalinformationtothecentralnervoussystem.Therefore,followingaspinaltissuecreep andunderposturalinstability,thecentralnervoussystemrepliesviaanappropriateandcoor- dinatedfeedbackmuscularaction[1,49].Thissuggeststhatspinaltissuecreepyieldsneuro- muscularadaptations(redistributionofmuscleactivity)similartothoseobservedunder musclefatigueormuscularpainconditions.Furthermore,prolongedpassivestretchingofthe musclesmightcauseviscoelasticdeformationandsubsequentfatigue-likechangesofthelum- barerectorspinaemuscles[50,51],whichisconsistentwithourobservationoflowervaluesof MDFinthepresenceofspinaltissuecreep.Reductioninmotorunitactivationandaverage conductionvelocityfollowingpassivestretchinghaveindeedbeendescribed[52,53].Despite theoveralltendencytoobservecreepeffectsinmuscleactivitydistribution,asignificantx-axis dispersiondifferencewasonlyobservedontheleftside.Infact,x-axisdispersionsaremodest withhigherlevelsofvariabilitythany-axisdispersion,andthesignificanteffectobservedon theleftsidemaybeduetoaslightmisalignmentofthearrayswithrespecttothefiberorienta- tionand/ortochangesinlocationoftheinnervationzoneovertimeaspreviouslysuggestedin otherstudies[54]. Dispersionvalues,however,weresimilarattheendofthefatiguetask,whethertherewas spinaltissuecreepornot.Dispersioninx-axisremainedhighafterthedeformationprotocol, whereasdispersioniny-axisdecreasedinpresenceofspinaltissuecreep.Thephysiological mechanismsunderlyingthisphenomenonremainunclear.Itcouldbehypothesizedthatthe centralnervoussystem,whenmusclefatigueandspinaltissuecreeparecombined,strivesto maintainvertebralstabilityusingincreasedmuscleactivation,butlessvariableneuromuscular recruitmentpatterns. Recommendationsforfuturestudies Lowbackmusclemotorunitrecruitmentandadaptationunderspinaltissuecreepconditions shouldbeinvestigatedtodocumentthephysiologicalphenomenonunderlyingchangesin musclerecruitmentstrategies.Additionally,sincetheeffectofcreepdeformationonmuscular stabilizingactivitypartiallyrecoversupto25%followinga10-minuterest[23]orupto50% followinga25-minuterest[22],futurestudiesshouldfocusondocumentingcreepdeformation effectsduringprolongedfatiguingexercises. Limitations Thestudy’slimitationsincludetheparticipants’status(younghealthyadults),whichmaylimit thegeneralizationofresults.ThreeparticipantswerealsoexcludedfromEMGanalysesdueto highlevelsofEMGnoiseinrecordings.Specifically,EMGsignalsfrom2participantscouldnot beusedasthegroundelectrodedisconnectedduringthesecondSorensentest.Theotherpar- ticipantwasnotincludedintheanalysesbecauseEMGarraysfailedtoproperlyrecordEMG signalsduringthefirstSorensentest. ROMresultsshouldbeinterpretedwithcautionsincedifferencesbetweensittingandstand- ingROMassessmentshavebeendescribed.Thiscouldbeexplainedbyvaryingtrunkmuscle recruitmentstrategiesbetweenpositions. TheeffectofcreeponRMSandMDFvariables,andtheinteractionbetweenfatigueand creeponthey-axisdispersiononlyreachedstatisticalsignificanceononesideofthetrunk. Thissuggeststhatthestudymayhavebeenunderpowered.Inthisstudy,thepresenceoflow backmusclefatiguewascharacterizedbyamarkeddecreaseinthemeanMDFslope.Itisalso knownthatMDFchangescanbetriggeredbychangesinintramusculartemperature[55]. IntramusculartemperaturecanalsoinduceanincreaseinthespectralcontentofthesEMG PLOSONE|DOI:10.1371/journal.pone.0149076 February11,2016 10/14

Description:
Génie Électrique, Université du Québec à Trois-Rivières, Québec, Canada, 3 Département des Sciences de l'Activité Physique, Université du Québec à .. and back antigravity muscles, whereas a dual inclinometer should be considered to assess the specific lumbar spine changes following cree
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.