RESEARCHARTICLE Muscle Activity Adaptations to Spinal Tissue Creep in the Presence of Muscle Fatigue JacquesAbboud1☯*,FrançoisNougarou2,MartinDescarreaux3☯ 1 Départementd’Anatomie,UniversitéduQuébecàTrois-Rivières,Québec,Canada,2 Départementde GénieÉlectrique,UniversitéduQuébecàTrois-Rivières,Québec,Canada,3 DépartementdesSciencesde l’ActivitéPhysique,UniversitéduQuébecàTrois-Rivières,Québec,Canada ☯Theseauthorscontributedequallytothiswork. *[email protected] Abstract Aim Theaimofthisstudywastoidentifyadaptationsinmuscleactivitydistributiontospinaltis- suecreepinpresenceofmusclefatigue. OPENACCESS Methods Citation:AbboudJ,NougarouF,DescarreauxM Twenty-threehealthyparticipantsperformedafatiguetaskbeforeandafter30minutesof (2016)MuscleActivityAdaptationstoSpinalTissue passivespinaltissuedeformationinflexion.Rightandlefterectorspinaeactivitywas CreepinthePresenceofMuscleFatigue.PLoSONE recordedusinglarge-arrayssurfaceelectromyography(EMG).Tocharacterizemuscle 11(2):e0149076.doi:10.1371/journal.pone.0149076 activitydistribution,dispersionwasused.Duringthefatiguetask,EMGamplituderoot Editor:FrancescoCappello,UniversityofPalermo, meansquare(RMS),medianfrequencyanddispersioninx-andy-axiswerecompared ITALY beforeandafterspinalcreep. Received:October9,2015 Accepted:January26,2016 Results Published:February11,2016 Importantfatigue-relatedchangesinEMGmedianfrequencywereobservedduringmuscle Copyright:©2016Abboudetal.Thisisanopen fatigue.Medianfrequencyvaluesshowedasignificantmaincreepeffect,withlowermedian accessarticledistributedunderthetermsofthe frequencyvaluesontheleftsideunderthecreepcondition(p(cid:1)0.0001).Asignificantmain CreativeCommonsAttributionLicense,whichpermits creepeffectonRMSvalueswasalsoobservedasRMSvalueswerehigheraftercreep unrestricteduse,distribution,andreproductioninany deformationontherightside(p=0.014);asimilartendency,althoughnotsignificant,was medium,providedtheoriginalauthorandsourceare credited. observedontheleftside(p=0.06).Asignificantcreepeffectsforx-axisdispersionvalues wasobserved,withhigherdispersionvaluesfollowingthedeformationprotocolontheleft DataAvailabilityStatement:Allrelevantdataare withinthepaper. side(p(cid:1)0.001).Regardingy-axisdispersionvalues,asignificantcreepxfatigueinteraction effectwasobservedontheleftside(p=0.016);asimilartendency,althoughnotsignificant, Funding:UniversitéduQuébecàTrois-Rivières ExcellenceFundandtheNaturalSciencesand wasobservedontherightside(p=0.08). EngineeringResearchCouncilofCanada.The fundershadnoroleinstudydesign,datacollection Conclusion andanalysis,decisiontopublish,orpreparationof themanuscript. Combinedmusclefatigueandcreepdeformationofspinaltissuesledtochangesinmuscle activityamplitude,frequencydomainanddistribution. CompetingInterests:Theauthorshavedeclared thatnocompetinginterestsexist. PLOSONE|DOI:10.1371/journal.pone.0149076 February11,2016 1/14 CreepDeformationandTrunkNeuromuscularControl Introduction Spinestabilityisoftendescribedasacomplexmechanisminvolvingthreeessentialcompo- nents:spinalmuscles,passivespinaltissuesandneuromuscularcontrol[1].Undernormalcon- ditions,thesesubsystemsarehighlycoordinatedandoptimizedtoprovideadequatestabilityof thespine.However,intheabsenceofmusclestoprovidespinalstability,compressiveloadsas lowas100Ncanleadtobucklingoftheentirelumbarspine[2].Conversely,whenspinalmus- clesareactivated,individualscanwithholdspinalloadsof4000Nwithoutreportinganypain orundesirableeffects[3].Moreover,ithasbeenhypothesizedthatchangesinmusclerecruit- mentpatterns,suchasmuscleco-contraction,actascompensationforspinalinstabilityresult- ingfrompassiveelementslaxityorreducedneuromuscularcontrol[1,4]. Suchadaptationsinmusclerecruitementpatternscanalsobeobservedwiththeuseof large-arrayssurfaceelectromyography(EMG)undertheinfluenceofmusclefatigue[5]. Indeed,amigrationofmuscleactivityhasbeendescribedduringalowbackmusclefatiguetask [5,6].Moreover,large-arrayssurfaceEMGhasbeenshowntobearelevanttoolintheidentifi- cationofdistinctivemusclerecruitmentstrategiesbetweensympatomaticvsasymptomatic individualsindifferentlowbackregionsthroughdifferentmotortasks[7,8].Zwartsshowed thatlarge-arrayssurfaceEMGoffersuniquespatialinformationtoourknowledgeregarding thedistributionofmuscleactivity,suchasmotorunitactivation.[9]. Ontheotherhand,spinalinstabilityassociatedwithadeformationofpassivespinaltissues, asitoccursinrepetitiveexposuretoprolongeddeeptrunkflexion,hasbeenassociatedwiththe developmentoroccurrenceoflowbackpain(LBP)anddisorders[10–12].Thisassociation couldpartlybeexplainedbythecombinationofgraduallyincreasingcreepintheviscoelastic tissuesanddecreasesinreflexivemuscularactivationthatleavethespinewithdiminishedpro- tectionfrominstability[13].Experimentallyinducedlowbackmusclecreephasbeenusedin severalstudiestofurtherourunderstandingofthepassiveandactivestructurecontributionto spinalstability[14–21].Inthesestudies,active(dynamic)orpassive(static)flexion-extensions ofthetrunkarethemostcommonlyusedprotocolstoinducespinalcreep.Thesesustainedor repeatedmovementsusuallyleadtoanincreaseinthetrunkflexionrangeofmotion[15–18, 22].Indeed,thecreepinthespineligamentsisthoughttoincreasetheintervertebraljointslax- ity,allowingincreasedrelativemotion. Thelaxitydevelopedinthespinefromthecreepintheviscoelastictissuesofligaments, discsandjointcapsulesisrelativelysmall,andcaneasilybecompensatedbymoderateadjust- mentsintheco-contractionlevelsofagonistandantagonistmuscles[23].However,theeffects ofactiveorpassiveprolongeddeepflexionsofthetrunkonlowbackmuscleactivityarenot wellunderstood.Indeed,nochangehasbeenobservedinthetimingofmuscleactivationonset forthelowererectorspinaemusclesfollowingastaticpassivelumbarflexionperiodof10[19] or15minutes[14],whereasonsetlatencyofthesamemusclesincreasedafteronehourofstatic passivelumbarflexion[20].Olsonetal.showedthatnodifferenceexistsregardingonset latencyofthelowererectorspinaemusclesfollowingeitheractiveorpassivetrunkflexion- extensionrepetitions[21].Furthermore,humaninvivostudiesindicatethataprolongedtrunk flexionresultsinahigherparaspinalmusclereflexgain[14],whilerepeatedlyappliedshort- durationcreepreducesspinalreflexresponses[15].Decreasedprotectivemuscularreflexwas showntobethedirectmanifestationofmechanoreceptordesensitizationcausedbylaxityin theviscoelastictissuesofthespine[23].Lastly,thespinalstabilizingsystemactsbyaltering muscleactivationpatternsviathenervoussysteminresponsetotheligamentoustissuemecha- noreceptorafferentsignals.Spinalmuscularactivityisthengeneratedinordertocompensate thedecreasedcontributionofviscoelastictissuesbyimplementingalternativerecruitment strategiessuchastheco-contractionoftrunkmuscles[4,24]. PLOSONE|DOI:10.1371/journal.pone.0149076 February11,2016 2/14 CreepDeformationandTrunkNeuromuscularControl Undertheinfluenceofbackmusclefatigue,asimilarreorganizationofmotorstrategiesis implementedtoperformthefatiguetask.Indeed,manystudieshaveshownadaptationsin recruitmentpatternsduringmusclefatigue[6,8,25].Moreover,lowbackmusclefatigueseems tobeassociatedwithchangesinmotorreflexactivityfollowingunexpectedposturalperturba- tion[26–28].Additionnally,creepdeformationhasbeenshowntoalterpassivestructures, whichareknowntoplayacrucialroleinlowerbackspinalstability[1]. ArjmandandShirazisuggestedthatstaticflexionofthetrunk,whichinducescreepdefor- mationofthepassivestructures,maybeasignificantriskfactorforlowbackdisordersor developmentofmusclefatigue[29]andcanpossiblyincreasethedemandonothertrunkstabi- lizingstructures. Theaimofthisstudywastodescribetheeffectofspinaltissuecreeponmuscleactivitydistri- butioninpresenceofmusclefatigue.BasedonpreviousstudiesshowingthatincreasesinEMG amplitudesignalsareobservedundertheinfluenceoflowbackcreepdeformation,itwashypoth- esizedthatbackmusclerecruitmentstrategies,whicharebelievedtoplayanimportantrolein redistributingstabilizationefforts,willbemodifiedfollowingasofttissuecreepinthespine. MaterialsandMethods Participants Twenty-threehealthyadultparticipantswithouthistoryofLBPwererecruited.Thisgroupwas composedof12womenand11men(mean(SD):age=26.7years(5.1);height=1.70m(0.1); weight=67.7kg(14.2);BMI=23.2kg/m2(3.9)).Exclusioncriteriawere:anyhistoryofacute/ chronicthoracicorlowbackpaininthepast6months,ankylosingspondylitis,trunkneuro- musculardisease,inflammatoryarthritis,scoliosis((cid:3)15°),andpreviousspinalsurgery.The projectreceivedapprovalfromtheUniversity’sethicscommitteeforresearchwithhumans (Comitéd'éthiquedelarechercheavecdesêtreshumains)andallparticipantsgavetheirwrit- teninformedconsentpriortotheirparticipationinthestudy. Experimentalprotocol Eachsubjectparticipatedinoneinitialexperimentationduringwhichtheyperformedamaxi- malvoluntaryisometrictrunkextensioncontraction(MVC),rangeofmotion(ROM)assess- mentanda1-minutefatiguetaskbeforebeingsubmittedtothe30-minutepassivetissue deformationcondition.Aftercreepdeformationwasobtained,theROMassessmentandthe fatiguetaskwereconductedagain.Alltogether,thetwoROMtestswererepeated3timeseach. First,thetrunkanglewasmeasuredbyplacingthedigitalinclinometer(DualerIQPro™Digital Inclinometer,JTECHMedical;USA)ontheL3vertebra.Theparticipantsstooduprightand thentiltedthetrunkforwardasmuchaspossible,withoutbendingtheknees.TheROMwas alsomeasuredbyaskingtheparticipanttositonthefloorandcompletelyrestthesolesoftheir feetagainstthestandardFlex-Tester(BaselineSitn’ReachBox,FabricationEnterprisesInc., USA).Withtheirarmsandfingersinfullextensioninfrontofthem,participantswereaskedto pushthemetalplatethefarthesttheycould,withoutbendingthekneessothatthetrunkleaned forwardasmuchaspossible.Theflexionpositionwasmaintainedfor2secondsbeforepartici- pantswereallowedtosituprightagain. TheMVCprotocolwasperformedpriortothefatigueprotocol.Participantswereaskedto layinapronepositionona45°Romanchair,withtheiliaccrestsalignedwiththechaircush- ionedge.Abeltfixedtothegroundandinstalledoverparticipantsshouldersresistedtheforce. ThefatigueprotocolconsistedofamodifiedversionoftheSorensenendurancetest[30],exe- cutedinthesamepositionastheMVCprotocol.Inordertoquicklyinducemuscularfatigue, participantshadtolifta12.5-kilogramweightplateduringthetask.Theplatewasheldasclose PLOSONE|DOI:10.1371/journal.pone.0149076 February11,2016 3/14 CreepDeformationandTrunkNeuromuscularControl Fig1.Illustrationofthelowbackcreepdeformationprotocol. doi:10.1371/journal.pone.0149076.g001 aspossibletothechestbytheparticipants.Theparticipants’trunkwasmaintainedunsup- portedinahorizontalpositionrelativetothegroundforoneminute.Immediatelyafterthe fatigueprotocol,participantswereaskedtoperformthedeformationprotocol.Perceivedeffort scale(6–20)[31],measuringtheintensityofthefatiguetask,wasratedbyeachparticipantat theendofthefatiguetest. Thelowbackcreepdeformationprotocolstartedwiththeparticipantssittingonabench andthenbendingforward,sothattheirtrunkwassupportedbyatable(Fig1).Participants’ trunkswereflexedbyapproximately75%oftheirrangeoffulltrunkflexion.Theirlegswere alsoflexedby90degreestolimittheoccurrenceofharmstringmusclesstretching.Theymain- tainedthispositionfor30minutes.Immediatelyafter,theROMwasmeasuredagainbythe2 previouslymentionedtests,andthefatiguetaskswereperformedasecondtimeafterwards. Lumbarmuscles’activation(EMG)wasobtainedonlyduringthefatiguetaskandconsequently assessedbeforeandafterthedeformationprotocol. DataAcquisition Rightandlefterectorspinae’activitywasrecordedusingtwolarge-arrayssurfaceEMGmatrices (modelELSCH064;LISiN-OTBioelettronica;Torino,Italy).Thearraygridconsistedof64elec- trodesplacedinan8x8matrix(10mminter-electrodedistance).Thecenterofeachgridwas locatedatL3level(Fig2),andonegroundelectrodewasplacedontheleftulnarprocess.Skin impedancewasreducedbyshavingbodyhair,gentlyexfoliatingtheskinwithfine-gradesandpa- per(RedDotTracePrep,3M;St.Paul,MN,USA)andwipingtheskinwithalcoholswabs.The bipolarEMGsignalswereamplified(64-channelsurfaceEMGamplifier,SEA64,LISiN-OT Bioelettronica;Torino,Italy;–3dBbandwidth10–500Hz)byafactorof2000,sampledat2048 Hzandconvertedtodigitalformbya12bitA/Dconverter.Thedatawerecollectedusingthe OTBioelettronicacustomsoftwareandprocessedbyMatlab(MathWorks;Natick,MA,USA). DataAnalysis TheROMmeasuredinastandingpositionusinganinclinometerwasassessedfollowingthe AmericanMedicalAssociationrecommendations[32].Toestablishtheinitialposition,the PLOSONE|DOI:10.1371/journal.pone.0149076 February11,2016 4/14 CreepDeformationandTrunkNeuromuscularControl Fig2.Representationoftwo64-electrodematricesusedintherecordingoferectorspinaemuscle activity(modelELSCH064;LISiN-OTBioelettronica,Torino,Italy). doi:10.1371/journal.pone.0149076.g002 individualswerestandingwiththeirkneesextendedandtheirweightbalancedonbothfeet (spinewasinaneutralposition).Thepositionofeachparticipantwasverifiedbythesame experimentertolimitmeasurementerrors.TheSitn’Reachtestwasperformedusingthepro- ceduresoutlinedintheAmericanCollegeofSportsMedecine(ACSM)manual[33].Forboth ROMtests,thehighestvaluefromthe3trialswasconsideredforallanalyses. EachbipolarEMGsignalobtainedfrombothmatriceswasdigitallyband-passfilteredinthe frequencybandwidth20-450Hz(2ndorderButterworthfilter).Notchfilterswerealsoapplied toeliminatethe60Hzpowerlineinterferenceanditsharmonics.Asdescribedinaprevious study,dispersionwasobtainedbycalculatingthecenterofgravitydispersionduringtheSoren- sentestofagivensubject[8].Inshort,myoelectricsignalsfromeachelectrodewerenormal- izedwiththebaselineEMGsignalobtainedfromMVCtrials.Eachelectrode-filteredsignalwas thendividedinLwindowsof0.5sforwhichanindividualrootmeansquare(RMS)valuewas computed.Foreachwindow,themeanofallelectrodesRMSwascalculatedandcorrespond thecentroidposition.Tocharacterizemuscleactivitydistribution,thedispersionvariableinx- andy-axis,representingthemuscleactivityrangeofdisplacement(centroid),wasextracted fromthebipolarEMGsignals.Thex-axiscorrespondstothemediolateraldirection,whilethe y-axiscorrespondstothecephalic-caudaldirection.Inordertoconfirmthepresenceofmuscle fatigueinbothconditions(nocreepandcreep),themeannormalizedslopeofthemedianfre- quency(MDF)(meanofthe64electrodesofeachmatrix)wascalculatedusingthesamemeth- odsastheoneusedforRMS.TheFouriertransformfunctionfromMatlabsoftware (MathWorks;Natick,MA,USA)wasusedtocalculatetheMDFvalues.TheMDFwasdefined asthefrequencythatdividedthespectrumintotwoequalareas.Eachsignalswasthendivided in0.5swindowswithoutoverlapforwhichanMDFvaluewascomputed[34].Morespecifi- cally,MDFvalueswereobtainedthrougheachelectrodesignal.TheslopeofMDFwasthencal- culatedforeachelectrode.Finally,avaluerepresentingthemeanslopeofMDFwasobtained. Statisticalanalyses NormalityofdistributionforeverydependentvariablewasassessedusingtheKolmogorov– Smirnovtest,inadditiontovisualinspectionofthedata.Thet-testfordependentsampleswas usedtocompareratesofperceivedeffortattheendofthefatiguetestbeforeandafterthe deformationprotocol.Rangesofmotionmeasuredbythedigitalinclinometerandthe“Sitn’ ReachBox”werealsocomparedbeforeandafterthedeformationprotocolusingthet-testfor dependentsamples.Thet-testfordependentsampleswasalsousedtocomparenormalized PLOSONE|DOI:10.1371/journal.pone.0149076 February11,2016 5/14 CreepDeformationandTrunkNeuromuscularControl MDFslopesbeforeandafterthedeformationprotocol.EMGmusclevariables(meanMDF, meanRMS,dispersioninx-andy-axis)datawerecomparedbetweenthetwoconditions(no creepandcreep)usingatwo-wayrepeated-measureanalysisofvariance(ANOVA)toassess themaineffectsofcreepandfatigue(earlyfatigue:10firstsecondsandlatefatigue:10lastsec- ondsoftheSorensentest).Whennecessary,theTukeyposthoctestwasperformedasthepost hocanalysesforpair-wisecomparisons.Forallstatisticalanalyses,p<0.05wasconsideredto bestatisticallysignificant. Results Fromthe23originalparticipants,threewereexcludedfromEMGanalysesduetohighlevelsof EMGnoiseinrecordings. Impactsofmusclefatigue Importantfatigue-relatedchangesinsEMGtime-frequencywereobservedduringthefatigue protocol.Dependentt-testsrevealednosignificantdifferencebetweenthebefore-deformation condition(ontheleftside:mean=–0.30;SD=0.09andontherightside:mean=–0.29; SD=0.12)andafter-deformationcondition(ontheleftside:mean=–0.29;SD=0.10andon therightside:mean=–0.27;SD=0.19)regardingthenormalizedMDFslopes(p(cid:3)0.05).There wasalsonodifferenceregardingtheratedperceivedeffort(beforedeformation,mean=13.2/ 20;SD=2.9andafterdeformation,mean=13.6/20;SD=3.2)(p>0.05). Creepdeformationeffects Rangeofmotion. RegardingtheROMcomparisonbeforeandaftercreepdeformation, resultsshowedasignificantincreaseinROMafterthedeformationprotocolmeasuredbythe Sitn’ReachBoxtest(p=0.02).However,nodifferencewasfoundregardingROMmeasured bytheinclinometer(p=0.42). MDF. TheANOVArevealedmainsignificantfatigueeffectsonMDFforbothconditions. Asexpected,MDFwaslowerattheendofthefatiguetaskincomparisontoitsbeginningon therightside[F(1,19)=80.73,p(cid:1)0.0001]andtheleftside[F(1,19)=178.51,p(cid:1)0.0001]. Moreover,resultsofMDFvaluesshowedasignificantmaincreepeffect,withlowerMDFval- uesontheleftside[F(1,19)=38.73,p(cid:1)0.0001]underthecreepcondition,butnodifference wasobservedontherightside[F(1,19)=2.37,p=0.14](Fig3B). Fig3. MeanRMS(A)andMDF(B)valuesovertimeontherightandleftsides(RMS:RootMeanSquare; MDF:MedianFrequency).Errorbarsindicatestandarddeviations.$representsamaineffectoffatigue.✦ representsamaineffectofcreep.Posthocresultsareillustratedby*=p<0.01and**=p<0.001. doi:10.1371/journal.pone.0149076.g003 PLOSONE|DOI:10.1371/journal.pone.0149076 February11,2016 6/14 CreepDeformationandTrunkNeuromuscularControl Fig4. Meandispersionvaluesinx-axis(A)andy-axis(B)valuesovertimeontherightandleftsides (DispX:Dispersioninx-axis;DispY:Dispersioniny-axis).Errorbarsindicatestandarddeviations.$ representsamaineffectoffatigue.✦representsamaineffectofcreep.Posthocresultsareillustratedby *=p<0.01. doi:10.1371/journal.pone.0149076.g004 RMS. TheANOVArevealedasignificantmaincreepeffectonmeanRMSvalues,asRMS washigheraftercreepdeformationontherightside[F(1,19)=7.31,p=0.014]andasimilar tendendy,althoughnotsignificant,wasobservedontheleftside[F(1,19)=3.92,p=0.06].The ANOVAalsorevealedasignificantmainfatigueeffectonmeanRMSvalues.RMSvalueswere higherattheendofthefatiguetaskontherightside[F(1,19)=25.70,p(cid:1)0.0001]andtheleft side[F(1,19)=32.20,p(cid:1)0.0001].Finally,theanalysesalsorevealedasignificantinteraction effect(creepxfatigue)ontheright[F(1,19)=7.26,p=0.014]andleftside[F(1,19)=8.93, p=0.008].AsillustratedinFig3A,posthocanalysesrevealedsignificantdifferencesduringthe first10seconds,withhigherRMSvaluesunderthecreepcondition. X-axisdispersion. TheANOVArevealedmainsignificantcreepeffectsforx-axisdisper- sionvalues,withhigherdispersionvaluesfollowingthedeformationprotocolontheleftside[F (1,19)=5.92,p(cid:1)0.001],butnotontherightside[F(1,19)=0.86,p=0.36].Moreover,the ANOVAshowedasignificantmainfatigueeffectonx-axisdispersionvalueswheredispersion wassignificantlyhigherbytheendofthefatigueprotocolontheleftside[F(1,19)=17.0, p(cid:1)0.001],butnotontherightside[F(1,19)=1.43,p=0.25](Fig4A).Reprensatativedataof thedispersionarepresentedinFig5. Y-axisdispersion. TheANOVArevealedmainsignificantfatigueeffectsony-axisdisper- sionvalueswheredispersionwassignificantlyhigherbytheendofthefatigueprotocolonthe rightside[F(1,19)=7.49,p=0.013]andontheleftside[F(1,19)=5.77,p=0.027].Theanaly- sesalsoshowedasignificantcreepxfatigueinteractioneffectontheleftside[F(1,19)=6.95, p=0.016];asimilartendency,althoughnotsignificant,wasobservedontherightside[F(1,19) =3.44,p=0.08](Fig3B).AsillustratedinFig4B,posthocanalysesrevealedhigherdispersion valuesonthey-axisunderthecreepconditionduringthefirst10secondsofthefatiguetask. ReprensatativedataofthedispersionarepresentedinFig5. Discussion Thestudy’smainobjectivewastoidentifymuscleactivityadaptationstospinaltissuecreepin thepresenceofmusclefatigue.Theresultsshowedthatprolongedflexionofthetrunkledto adaptationsinmuscleactivitydistribution.Indeed,highervaluesofamplitudefromlumbar erectorspinaemyoelectricsignals,aswellashigherdispersionvalues,wereobservedinthe presenceofspinaltissuecreep. PLOSONE|DOI:10.1371/journal.pone.0149076 February11,2016 7/14 CreepDeformationandTrunkNeuromuscularControl Fig5.Typicalrepresentationofdispersiondatafromaparticipantontherighterectorspinae.The large-arrayEMGwasenlargedtobetterobserveddispersiondata.Boldblacklinesillustratethemigrationof thecentroidduringtheearly(upperpartofthefigure)andlate(lowerpartofthefigure)musclefatigue.Note theshiftinthedistributionofEMGamplitudetowardthecaudalregionofthelumbarerectorspinae(grey lines). doi:10.1371/journal.pone.0149076.g005 Toconfirmthepresenceofspinaltissuecreep,ROMvalueswerecalculatedbeforeandafter thedeformationprotocol.Althoughlimited,anincreaseinROMwasobservedfollowingspinal tissuecreep.Overall,theincreaseinfullflexionanglemightresultfromthecombinedvisco- elasticelongationofhamstringanderectorspinaemuscles.Despitetheoveralltendency observed,thetwoROMtestsyieldeddifferentresults.Suchdisparitycouldbeexplainedbythe differencesbetweenthetasksandinstruments.Thestandingposition,aspreviouslydescribed, isassociatedtoaco-contractionphenomenonofposteriorandanteriortrunkmuscleswhich couldpossiblyexplainedadecreasedROMinfullflexionofthetrunk.Indeed,anincreasein trunkmuscleactivityhasbeenshowninstandingposturewhencomparedtosittingposture [35].Itisalsopossiblethattheactivationoftheanteriormuscles(rectusabdominis)contrib- utestoanincreasedabilityofthetrunktotravelthroughagreaterrangeoftrunkflexion.Using aninclinometer,insteadofadualinclinometer,providesaglobalevaluationofthelowerlimb andbackantigravitymuscles,whereasadualinclinometershouldbeconsideredtoassessthe specificlumbarspinechangesfollowingcreepdeformation[36]. Inthepresentstudy,participantswereaskedtoperformatrunkextensormusclefatigue taskforoneminute.Thepresenceofanacutelowerbackmusclefatiguephenomenonwas indicatedbyamarkeddecreaseinthemeanMDFslope,whichisconsideredareliableindica- torofmusclefatigue[37],aswellasascoreoftheratedperceivedeffortscalecategorized between“somewhathard”and“hard”.Moreover,similarnegativeslopeswerefoundbefore andafterthedeformationprotocol,andparticipantsratedsimilarperceptionofeffortscoresat theendofthefatiguetask.Theseresults,asawhole,indicatethatparticipantsseemedtobein asimilarstateoffatigueinbothconditions(nocreepandcreep).Ontheotherhand,differ- encesappearedwhenthemeanMDFwasconsidered.Indeed,lowervaluesofmeanMDFwere observedinthepresenceofspinaltissuecreep.Duringearlyfatigue,MDFvaluesaredeter- minedbymusclefibertypedistribution[38].ThefrequencyshifttowardslowerMDF,inthe presenceofmusclefatigue,hasbeenassociatedtochangesinmotorunitrecruitementandsyn- chronisationaswellaschangesinconductionvelocityandmusclefibertypes[39,40].These PLOSONE|DOI:10.1371/journal.pone.0149076 February11,2016 8/14 CreepDeformationandTrunkNeuromuscularControl resultsareinaccordancewiththoseofShinandal.,whoobservedareductioninmedianpower frequencyduringsubmaximalextensioncontractionof15and30%ofparticipants’5-seconds maximalvoluntarycontractions,followingastatictrunkflexion[41].Theseobservationstaken together,couldsuggestthatfollowingspinaltissuecreep,fatigue-relatedphenomenomsare facilitated.Itcanbehypothesizedthatprolongedtrunkflexionleadstopassivetissuedeformar- tionwhichmayincreasetrunkmusclecontributiontospinalstabilizationmechanismsduring fatigue.AnotherstudyconductedbyHowarthetal.foundareductioninmedianpowerfre- quencyafterrepetitiveactivespineflexions;however,thisdifferencewasnotstatisticallysignif- icant[18].Inthisstudy,themedianpowerfrequencywasassessedduringaSorensentest lasting5seconds,whereasrecordingslastedoneminuteinthepresentstudy.Methodological considerationsmightthereforeexplainthedifferencesobservedbetweentheresultsofboth studies. Withregardtomuscleactivationamplitude(RMSvalues),highervalueswereobserved immediatelyfollowingthedeformationprotocol.Itisimportanttonotethatthesecondfatigue taskwasconducted30minutesafterthefirstone,anditisunlikelythattheincreaseinRMS wasassociatedtoaresidualeffectofthefirstfatiguetask.Indeed,Larivièreetal.showedthata restperiodof10to15minutesfollowingabackmusclefatiguetaskisenoughtoallowcomplete backmusclerecovery[42]. RMSvaluesweresimilarinbothconditionsattheendofthefatigueprotocol,withaten- dencytowardshighervaluesafterthedeformationprotocol.Inthepresenceofmusclefatigue, anincreaseofEMGamplitudesignalswasalsoobservedinthepreviousstudy5or10minutes afterperformingliftingtrialsinstaticlumbarfullflexion[16,41].Indeed,theincreasedactivity ofextensormusclessuggeststhatincreasedmuscleactivationisrequiredtogeneratemore activeforcestocompensateforthelossofcontributionofpassivetissuestospinalstability[43]. Moreover,Toosizadehetal.showedthattrunkmuscleactivitymeasuredbyRMSincreasedby 5%followingcreepdeformationinducedbyrepetitiveliftingtasks[44].Giventhatthemoment armsofparaspinalmusclesarerelativelysmall[45],onlysmallincreasesinmuscleforcesare neededtoincreasespinalloadsandcompensateforreducedspinalstability. Itiswellknownthatneurophysiologicalperturbations,suchasmusclefatigueormusculo- skeletalpain,areassociatedwithalteredmusclesrecruitmentdistribution[7,8,46].Thepres- entstudyisthefirstoneinvestigatingmuscleactivitydistributioninthepresenceofspinal tissuecreep.Dispersionofmuscleactivity,representingthemuscleactivityrangeofdisplace- ment,wasusedtoidentifyrecruitmentstrategiesadaptationsduringthefatiguetaskbeforeand afterthedeformationprotocol.Anincreaseindispersionvalueswasobservedthroughoutthe fatiguetask,whichisinaccordancewithpreviousstudies[5,8].Indeed,acaudalandlateral shiftofthemuscleactivitywasobservedinthecurrentstudy.Thisfindingssupportotherstud- iesthatspecificallyreportedacaudalshiftofbackmuscleactivitycentroidduringmuscle fatigueinasymptomaticparticipants[5,6].Thisobservationsuggestsvariationsinthedistribu- tionofmusclefibertypesthroughoutsegmentsoflumbarerectorspinae.Indeed,alarger decreaseinEMGpowerspectralfrequency,aswellasasimultaneousincreaseinEMGampli- tudehavealsobeenshowedtothelowerpartoflumbarmusclesincomparisontoupperpart undertheinfluenceofmusclefatigue[47,48].Moreover,higherdispersionvalueswere observedatthebeginningofthefatiguetaskunderthespinaltissuecreepcondition.Asdis- cussedearlier,adaptationsinrecruitmentstrategies,suchasco-contractionoftrunkmuscles, havebeendescribedaspotentialstrategiestocompensatethedecreasedcontributionofvisco- elastictissues[4,24].Thepresentstudyshowsthatmuscleactivityadaptationscouldalso occurwithinthesamemusclethroughanincreaseinmuscleactivitydistributioninresponse tospinaltissuecreep.Itcanbehypothesizedthatlong-lastingcreepdeformationwillincrease spinalpassivetissuemechanoreceptorsthreshold,leadingtoincreasedmuscleactivityduring PLOSONE|DOI:10.1371/journal.pone.0149076 February11,2016 9/14 CreepDeformationandTrunkNeuromuscularControl staticlumbarextension.Ligamentscontainmechanoreceptorsactingastransducers,sending posturalinformationtothecentralnervoussystem.Therefore,followingaspinaltissuecreep andunderposturalinstability,thecentralnervoussystemrepliesviaanappropriateandcoor- dinatedfeedbackmuscularaction[1,49].Thissuggeststhatspinaltissuecreepyieldsneuro- muscularadaptations(redistributionofmuscleactivity)similartothoseobservedunder musclefatigueormuscularpainconditions.Furthermore,prolongedpassivestretchingofthe musclesmightcauseviscoelasticdeformationandsubsequentfatigue-likechangesofthelum- barerectorspinaemuscles[50,51],whichisconsistentwithourobservationoflowervaluesof MDFinthepresenceofspinaltissuecreep.Reductioninmotorunitactivationandaverage conductionvelocityfollowingpassivestretchinghaveindeedbeendescribed[52,53].Despite theoveralltendencytoobservecreepeffectsinmuscleactivitydistribution,asignificantx-axis dispersiondifferencewasonlyobservedontheleftside.Infact,x-axisdispersionsaremodest withhigherlevelsofvariabilitythany-axisdispersion,andthesignificanteffectobservedon theleftsidemaybeduetoaslightmisalignmentofthearrayswithrespecttothefiberorienta- tionand/ortochangesinlocationoftheinnervationzoneovertimeaspreviouslysuggestedin otherstudies[54]. Dispersionvalues,however,weresimilarattheendofthefatiguetask,whethertherewas spinaltissuecreepornot.Dispersioninx-axisremainedhighafterthedeformationprotocol, whereasdispersioniny-axisdecreasedinpresenceofspinaltissuecreep.Thephysiological mechanismsunderlyingthisphenomenonremainunclear.Itcouldbehypothesizedthatthe centralnervoussystem,whenmusclefatigueandspinaltissuecreeparecombined,strivesto maintainvertebralstabilityusingincreasedmuscleactivation,butlessvariableneuromuscular recruitmentpatterns. Recommendationsforfuturestudies Lowbackmusclemotorunitrecruitmentandadaptationunderspinaltissuecreepconditions shouldbeinvestigatedtodocumentthephysiologicalphenomenonunderlyingchangesin musclerecruitmentstrategies.Additionally,sincetheeffectofcreepdeformationonmuscular stabilizingactivitypartiallyrecoversupto25%followinga10-minuterest[23]orupto50% followinga25-minuterest[22],futurestudiesshouldfocusondocumentingcreepdeformation effectsduringprolongedfatiguingexercises. Limitations Thestudy’slimitationsincludetheparticipants’status(younghealthyadults),whichmaylimit thegeneralizationofresults.ThreeparticipantswerealsoexcludedfromEMGanalysesdueto highlevelsofEMGnoiseinrecordings.Specifically,EMGsignalsfrom2participantscouldnot beusedasthegroundelectrodedisconnectedduringthesecondSorensentest.Theotherpar- ticipantwasnotincludedintheanalysesbecauseEMGarraysfailedtoproperlyrecordEMG signalsduringthefirstSorensentest. ROMresultsshouldbeinterpretedwithcautionsincedifferencesbetweensittingandstand- ingROMassessmentshavebeendescribed.Thiscouldbeexplainedbyvaryingtrunkmuscle recruitmentstrategiesbetweenpositions. TheeffectofcreeponRMSandMDFvariables,andtheinteractionbetweenfatigueand creeponthey-axisdispersiononlyreachedstatisticalsignificanceononesideofthetrunk. Thissuggeststhatthestudymayhavebeenunderpowered.Inthisstudy,thepresenceoflow backmusclefatiguewascharacterizedbyamarkeddecreaseinthemeanMDFslope.Itisalso knownthatMDFchangescanbetriggeredbychangesinintramusculartemperature[55]. IntramusculartemperaturecanalsoinduceanincreaseinthespectralcontentofthesEMG PLOSONE|DOI:10.1371/journal.pone.0149076 February11,2016 10/14
Description: