ebook img

Murray Klamkin Problems PDF

68 Pages·2005·0.375 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Murray Klamkin Problems

A T O M ASTE F ATHEMATICS A T O M (cid:19) IME{ { N LES ATHEMATIQUES Volume / Tome VII THE MURRAY KLAMKIN PROBLEMS CANADIAN COLLECTION | Part 1. Edited by Andy Liu University of Alberta and Bruce Shawyer Memorial University of Newfoundland Published by the Canadian Mathematical Society, Ottawa, Ontario and produced by the CMS ATOM O(cid:14)ce, St. John’s, NL Publi(cid:19)e par la Soci(cid:19)et(cid:19)emath(cid:19)ematique du Canada, Ottawa (Ontario) et produit par le Bureau ATOM de la SMC, St. John’s, NL Printed in Canada by / imprim(cid:19)e au Canada par The University of Toronto Press Incorporated ISBN 0-919558-16-X All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information or retrieval system now known or to be invented, without permission in writing from the publisher: The Canadian MathematicalSociety,577KingEdwardAvenue,P.O.Box450,StationA,Ottawa, Ontario K1N 6N5, Canada, except so far as may be allowed by law. Tous droits r(cid:19)eserv(cid:19)es. Aucune partie de cet ouvrage ne peut ^etre reproduiteouutilis(cid:19)eeparquelque proc(cid:19)ed(cid:19)eouquelquefac(cid:24)onquece soit,ycompris les m(cid:19)ethodes(cid:19)electroniques ou m(cid:19)ecaniques, les enregistrements ou les syst(cid:18)emes de mise en m(cid:19)emoire et d’information, sans l’accord pr(cid:19)ealable (cid:19)ecrit de l’(cid:19)editeur, la Soci(cid:19)et(cid:19)emath(cid:19)ematiquedu Canada, 577,rue King-Edward,C.P. 450,succursaleA, Ottawa (Ontario) K1N 6N5, Canada, sauf dans les limites prescrites par la loi. c 2005 (cid:13) Canadian Mathematical Society / Soci(cid:19)et(cid:19)e math(cid:19)ematique du Canada A T O M ASTE F ATHEMATICS A T O M (cid:19) IME{ { N LES ATHEMATIQUES Volume / Tome VII THE MURRAY KLAMKIN PROBLEMS CANADIAN COLLECTION | Part 1. Edited by Andy Liu University of Alberta and Bruce Shawyer Memorial University of Newfoundland The ATOM series The booklets in the series, A Taste of Mathematics, are published by the Canadian Mathematical Society (CMS). They are designed as enrichment materials for high school students with an interest in and aptitude for mathematics. Some booklets in the series will also cover the materials useful for mathematical competitions at national and international levels. La collection ATOM Publi(cid:19)es par la Soci(cid:19)et(cid:19)e math(cid:19)ematique du Canada (SMC), les livrets de la collection Aime-t-on les math(cid:19)ematiques (ATOM) sont destin(cid:19)es au perfectionnement des (cid:19)etudiants du cycle secondaire qui manifestent un int(cid:19)er^et et des aptitudes pour les math(cid:19)ematiques. Certains livrets de la collection ATOM servent (cid:19)egalement de mat(cid:19)eriel de pr(cid:19)eparation aux concours de math(cid:19)ematiques sur l’(cid:19)echiquier national et international. Editorial Board / Conseil de r(cid:19)edaction Editor-in-Chief / R(cid:19)edacteur-en-chef Bruce Shawyer MemorialUniversityofNewfoundland /Universit(cid:19)eMemorialdeTerre-Neuve Associate Editors / R(cid:19)edacteurs associ(cid:19)es Edward J. Barbeau UniversityofToronto/Universit(cid:19)edeToronto Malgorzata Dubiel SimonFraserUniversity/Universit(cid:19)eSimonFraser Joseph Khoury UniversityofOttawa/Universit(cid:19)ed’Ottawa Antony Thompson DalhousieUniversity/Universit(cid:19)eDalhousie Managing Editor / R(cid:19)edacteur-g(cid:19)erant Graham P. Wright UniversityofOttawa/Universit(cid:19)ed’Ottawa iv Table of Contents Preface 1 1 Quickies 2 2 Combinatorics and Number Theory 27 3 Functions and Polynomials 39 4 Expressions and Identities 51 v QUICKIES Murray Klamkin was famous for his Quickies, problems that had quick and neat solutions. We present all the Quickies published in CRUX MATHEMATICORUM, with some slight editing by Bruce Shawyer. PROBLEMS AND SOLUTIONS The problems have been selected by Andy Liu and arranged into sets according to topic. ThesolutionsareaspublishedinCRUXMATHEMATICORUM,withsome slight editing by Bruce Shawyer. Solutions from pre-LATEX editions were coded by students at Memorial University of Newfoundland, funded by the Canadian Mathematical Society. Special thanks are due to Karelyn Davis, Alyson Ford, Don Hender, Shawna Gammon, Paul Marshall, Shannon Sullivan and Rebecca White. These problems exhibit the special talents of Murray Klamkin. They cover a very wide range of topics, and show a great deal of insight into what is possible in there areas. They demonstrate that Murray Klamin was a problem setter par excellence. We are very greatful to have known him and to have been inspired by him. Problemnumbersandreferencesareto[year:pagenumber]areasinCRUX ? MATHEMATICORUM. When a problem numberis followedbyastar , this means that the problem was proposed without a solution. Andy Liu Bruce Shawyer Department of Mathematics Department of Mathematics University of Alberta Memorial University of Newfoundland Edmonton St. John’s Alberta Newfoundland and Labrador 1 Problems posed by Murray Klamkin. Unlessotherwisestated, theseproblemswereproposedbyMurrayKlamkinalone. Quickies Part 1 1|54 Combinatorics and Number Theory Part 1 429, 1456, 2054, 1863, 1027, 969, 1561, 2034, 1752, 1434. Vectors and Matrices Part 4 1200, 1721, 1482, 1693, 2005, 398, 1314, 3024, 1207, 1242. Functions and Polynomials Part 1 299, 254, 1423, 2014, 1110, 1283. Expressionsand Identities. Part 1 1304, 287, 1594, 1522, 830, 1996, 1362. Numerical Approximations Part 4 1003, 1213, 1371. Algebraic Inequalities. Part 2 347, 1642, 2615, 1703, 1734, 1445, 2064, 2095, 2044, 1652, 1742, 1674, 1774, 323, 805, 1394, 2734, 2839, 1662. Trigonometric Inequalities. Part 3 1414, 908, 1352, 1712, 1542, 1613, 1503, 2084, 1332, 1801, 1271, 1060, 958, 1962. Geometric Inequalities. Part 4 1165, 1473, 1574, 1764, 1296, 506, 1131, 1985, 1945. The Triangle. Part 3 1872, 1605, 1385, 2848, 210, 1076, 1532, 2618. Cevian Lines. Part 4 2614, 548, 485, 2613, 1621, 1631. Central Symmetry. Part 3 1062, 1348, 1513. Conic Sections. Part 2 2616, 1975, 1935, 1405, 520. Solid Geometry. Part 2 375, 1784, 1553, 1581, 330, 478, 2617, 1261. Higher Dimensions. Part 2 2651, 224, 1086, 1465, 2733, 2024, 1793. Calculus. Part 4 1178, 1494, 1322, 1147, 273. Problems dedicated to Murray Klamkin Part 4 1241, 2619, 2620, 2621 Klamkin Problems of September 2005 Part 4 K{01 through K{15 2 1 Quickies 1 . Determine the extreme values of r =h +r =h +r =h +r =h where h , h , 1 1 2 2 3 3 4 4 1 2 h , h are the four altitudes of a given tetrahedron T and r , r , r , r are the 3 4 1 2 3 4 correspondingsigned perpendicular distances from any point in the space of T to the faces. 2 . Determine the minimum value of the product P =(1+x +y )(1+x +y ):::(1+x +y ) 1 1 2 2 n n where x ;y 0, and x x :::x =y y :::y =an. i i 1 2 n 1 2 n (cid:21) 3. Prove that if F(x;y;z) is a concave function of x, y, z, then F(x;y;z) 2 is (cid:0) f g a convex function of x, y, z. 4 . If a, b, c are sides of a given triangle of perimeter p, determine the maximum values of (i) (a b)2+(b c)2+(c a)2; (cid:0) (cid:0) (cid:0) (ii) a b + b c + c a; j (cid:0) j j (cid:0) j j (cid:0) j (iii) a b b c + b c c a + c a a b: j (cid:0) jj (cid:0) j j (cid:0) jj (cid:0) j j (cid:0) jj (cid:0) j 5 . IfA, B,C arethreedihedralanglesofatrihedralangle,showthatsinA,sinB, sinC satisfy the triangle inequality. 6 . Are there any integral solutions (x;y;z) of the Diophantine equation (x y z)3 =27xyz (cid:0) (cid:0) other than ( a;a;a) or such that xyz =0? (cid:0) 7 . Does the Diophantine equation (x y z)(x y+z)(x+y z)=8xyz (cid:0) (cid:0) (cid:0) (cid:0) have an in(cid:12)nite number of relatively prime solutions? 8 . It is an easy result using calculus that if a polynomial P(x) is divisible by its derivative P (x), then P(x) must be of the form a(x r)n. Starting from the 0 (cid:0) known result that P (x) 1 0 = P(x) x r i (cid:0) X where the sum is over all the zeros r of P(x) counting multiplicities, give a i non-calculus proof of the above result. 9 . Solve the simultaneous equations x2(y+z)=1; y2(z+x)=8; z2(x+y)=13: 3 10 . Determine the area of a triangle of sides a, b, c and semiperimeter s if a b c (s b)(s c)= ; (s c)(s a)= ; (s a)(s b)= ; (cid:0) (cid:0) h (cid:0) (cid:0) k (cid:0) (cid:0) l where h, k, l are consistent given constants. 11 . Provethat 3(x2y+y2z+z2x)(xy2+yz2+zx2) xyz(x+y+z)2 (cid:21) where x, y, z 0. (cid:21) 12 . Determine all integral solutions of the Diophantine equation (x8+y8+z8)=2(x16+y16+z16): 13 . Determine all the roots of the quintic equation 31x5+165x4+310x3+330x2+155x+33=0: 14 . If F(x) and G(x) are polynomials with integer coe(cid:14)cients such that F(k)=G(k) is an integer for k =1, 2, 3, :::, prove that G(x) divides F(x). 15 . GiventhatABCDEF isaskewhexagonsuchthateachpairofoppositesides are equal and parallel. Provethat the midpoints of the six sides are coplanar. 16 . If a, b, c, d are the lengths of sides of a quadrilateral, show that pa pb pc pd ; ; ; ; (4+pa) (4+pb) (4+pc) (4+pd) are possible lengths of sides of another quadrilateral. 17 . Determine the maximum value of the sum of the cosines of the six dihedral angles of a tetrahedron. 18 . Which is larger (p32 1)1=3 or 3 1=9 3 2=9+ 3 4=9? (cid:0) (cid:0) p p p 19 . Provethat a b c b c a 1 1 1 3 min + + ; + + (a+b+c) + + (cid:2) b c a a b c (cid:21) a b c (cid:26) (cid:27) (cid:18) (cid:19) where a, b, c are sides of a triangle. 20. Let ! =ei(cid:25)=13. Express 1 as a polynomial in ! with integral coe(cid:14)cients. 1 ! (cid:0) 21 . Determine all integral solutions of the simultaneous Diophantine equations x2+y2+z2 =2w2 and x4+y4+z4 =2w4. 4 22 . Prove that if the line joining the incentre to the centroid of a triangle is parallel to one of the sides of the triangle, then the sides are in arithmetic progressionand, conversely, if the sides of a triangle are in arithmetic progression then the line joining the incentre to the centroid is parallel to one of the sides of the triangle. 23 . Determine integral solutions of the Diophantine equation x y y z z w w x (cid:0) + (cid:0) + (cid:0) + (cid:0) =0 x+y y+z z+w w+x (joint problem with Emeric Deutsch, Polytechnic University of Brooklyn). 24 . For x, y, z >0, prove that 1 1 x (i) 1+ 1+ , (x+1) (cid:21) x(x+2) (cid:26) (cid:27) (ii) [(x+y)(x+z)]x[(y+z)(y+x)]y[(z+x)(z+y)]z [4xy]x[4yz]y[4zx]z. (cid:21) 25 . If ABCD is a quadrilateral inscribed in a circle, prove that the four lines joining each vertex to the nine point centre of the triangle formed by the other three vertices are concurrent. 26 . How many six digit perfect squares are there each having the property that if each digit is increased by one, the resulting number is also a perfect square? 27 . LetV W ,i=1,2,3,4,denotefourceviansofatetrahedronV V V V which i i 1 2 3 4 are concurrent at an interior point P of the tetrahedron. Prove that PW +PW +PW +PW maxV W longest edge: 1 2 3 4 i i (cid:20) (cid:20) 28 . Determine the radius r of a circle inscribed in a given quadrilateral if the lengths of successive tangents from the vertices of the quadrilateral to the circle are a, a, b, b, c, c, d, d, respectively. 29. Determine the four roots of the equation x4+16x 12=0. (cid:0) 30 . Prove that the smallest regular n{gon which can be inscribed in a given regular n{gon is one whose vertices are the mid-points of the sides of the given regular n{gon. 31. If 311995 divides a2+b2, prove that 311996 divides ab. 32 . Determine the minimum value of S = (a+1)2+2(b 2)2+(c+3)2+ (b+1)2+2(c 2)2+(d+3)2) + (cid:0) (cid:0) p (c+1)2+2(d 2)2+(a+3)2+p (d+1)2+2(a 2)2+(b+3)2 (cid:0) (cid:0) p p where a, b, c, d are any real numbers. 33 . A set of 500 real numbers is such that any number in the set is greaterthan one-(cid:12)fth the sum of all the other numbers in the set. Determine the least number of negative numbers in the set.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.