Multivariate Interpolation Decoding Beyond the Guruswami-Sudan Radius Farzad Parvaresh Department of Electrical Engineering University of California San Diego [email protected] Alexander Vardy Department of Electrical Engineering Department of Computer Science Department of Mathematics University of California San Diego [email protected] 1 Reed-Solomon codes Millions of error-correcting codes are decoded every minute, using efficient algorithms implemented in custom VLSI circuits . About 75% of these circuits decode Reed-Solomon codes. I.S.Reed and G.Solomon, Polynomial codes over certain finite fields, Journal Society Indust. Appl. Math. 8, pp.300-304, June 1960. 2 Construction of Reed-Solomon codes k n We describe the code via its encoder mapping : . q q (cid:0) (cid:1) (cid:2)(cid:3) (cid:1) Fix integers k n q and n distinct x , x , . . . x . Then 1 2 n q (cid:4) (cid:4) (cid:5) (cid:1) u , u , . . . , u k information symbols 0 1 k 1 (cid:6) k 1 f X u u X u X (cid:6) u (cid:10)(cid:9) 0 1 (cid:12) (cid:12) (cid:12) k 1 (cid:11) (cid:11) (cid:11) (cid:6) (cid:7) (cid:8) c f x , c f x , , c f x 1 u 1 2 u 2 n u n (cid:9) (cid:9) (cid:12) (cid:12) (cid:12) (cid:9) (cid:7) (cid:8) (cid:7) (cid:8) (cid:7) (cid:8) c , c , . . . , c n codeword symbols 1 2 n (cid:7) (cid:8) Thus Reed-Solomon codes are linear. They have rate R k n (cid:9) (cid:13) and distance d n k 1, which is the best possible (MDS). (cid:9) (cid:14) (cid:11) 3 Brief history of Reed-Solomon decoding Invented by Reed and Solomon, 1959 Peterson-Gorenstein-Zierler, 1960 (cid:15) (cid:16) (cid:16) t 1 R (cid:16) (cid:16) (cid:16) (cid:19) n 2 (cid:17) (cid:16) Berlekamp, 1968 and Massey, 1969(cid:16) (cid:16) (cid:16) (cid:16) (cid:18) Almost 30 years! t (cid:15) 1 R Sudan, 1997 and Guruswami-Sudan, 1999 n (cid:20) (cid:17) (cid:18) Algebraic soft-decision decoding 4 The breakthrough: interpolation decoding The 2002 Nevanlinna Prize went to M. Sudan with the citation “... in the theory of error-correcting codes, Sudan’s work showed that certain coding methods could correct many more errors than was previously thought possible.” d e t c e Sudan r r o c s r o r Guruswami−Sudan r e f o n o i t c a r F Berlekamp−Massey M.Sudan, Decoding of Reed-Solomon codes beyond the error correction bound, Journal of Complexity, 12, pp.180–193, 1997. V.Guruswami and M.Sudan, Improved decoding of Reed-Solomon and algebraic- geometric codes, IEEE Transactions on Information Theory, 45, pp.1755–1764, 1999. 5 Key idea: bivariate interpolation Suppose that a codeword f x , f x , . . . , f x of a Reed-Solomon code 1 2 n RS n, k was transmitte(cid:21) d(cid:22) an(cid:23)d a(cid:22) vec(cid:23) tor y (cid:22), y (cid:23),(cid:24). . . , y n was received. q 1 2 n q (cid:26)(cid:25) (cid:27) (cid:22) (cid:23) (cid:22) (cid:23) Conventional decoding: construct a univariate polynomial of degree k (cid:28) (cid:28) (cid:28) (cid:28) (cid:28) (cid:28) (cid:28) (cid:28) (cid:28) (cid:28) (cid:28) (cid:28) (cid:28) (cid:28) (cid:28) (cid:28) (cid:28) (cid:28) (cid:28) (cid:28) (cid:28) (cid:29) that passes through as many as possible of the received points y , y , . . . , y . 1 2 n 1 R corrects up to n(cid:31) errors 2 (cid:30) Guruswami-Sudan decoding: first construct a nonzero bivariate polynomial X, Y of the least (cid:28) (cid:28) (cid:28) (cid:28) (cid:28) (cid:28) (cid:28) (cid:28) (cid:28) (cid:28) (cid:28) (cid:28) (cid:28) (cid:28) (cid:28) (cid:28) (cid:28) (cid:28) ! (cid:22) (cid:23) 1, k 1 -weighted degree that passes through all the (cid:6) (cid:22) (cid:23) points x , y , x , y , . . . , x , y with prescribed 1 1 2 2 n n (cid:22) (cid:23) (cid:22) (cid:23) (cid:22) (cid:23) multiplicities; then find all polynomials f X of deg- (cid:22) (cid:23) ree k such that X, f X 0. (cid:29) ! (cid:21) (cid:22) (cid:23) (cid:24)#" corrects up to n 1 R errors (cid:6) $ (cid:30) 6 Multivariate interpolation decoding What if... we try to interpolate not in one dimension (con- ventional decoding) and not in two dimensions (Guruswami- Sudan decoding), but in three or more dimensions? x x x x x x 1 2 n 1 2 n % % % % % % & ) & ) evalu’( ation of f X evalu(’ ation of g X * + * + y y y z z z 1 2 n 1 2 n % % % % % % Trivariate interpolation decoding: construct a trivariate polynomial X, Y, Z of least 1, k 1, k 1 -weighted degree that passes through all the (cid:6) (cid:6) ! (cid:22) (cid:23) (cid:22) (cid:23) n points x , y , z , x , y , z , . . . , x , y , z with prescribed multiplicities; 1 1 1 2 2 2 n n n (cid:22) (cid:23) (cid:22) (cid:23) (cid:22) (cid:23) then find all f X , g X of degree k such that X, f X , g X 0. (cid:22) (cid:23) (cid:22) (cid:23) (cid:29) ! (cid:21) (cid:22) (cid:23) (cid:22) (cid:23) "(cid:24) How many errors does this correct? 7 Review: derivation of the GS bound Y Interpolating through the n points D -1 k ¥ ¥ ¥ x , y , x , y , . . . , x , y 1 1 2 2 n n ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ (cid:7) (cid:8) (cid:7) (cid:8) (cid:7) (cid:8) ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ each with multiplicity m, imposes ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ D m m 1 n (cid:11) linear constraints (cid:7) (cid:8) 2 (cid:229) i j on the coefficients of the polynomial X, Y q X Y . i,j i,j (cid:9) , (cid:7) (cid:8) To guarantee that X, Y exists, the number of its coeffici- , (cid:7) (cid:8) ents must be greater than the number of constraints. Hence its 1, k 1 -weighted degree must satisfy: (cid:14) (cid:7) (cid:8) 2 m m 1 - n (cid:11) n k 1 m m 1 (cid:7) (cid:8) (cid:14) 2 k . 1 2 - / (cid:11) (cid:7) (cid:8) (cid:7) (cid:8) (cid:14) (cid:7) (cid:8) 8 Review: derivation of the GS bound def Let P X X, f X and let t be the number of errors, (cid:9) that(cid:7) is(cid:8) the n,um0 ber (cid:7)of (cid:8)p1 ositions j such that y f x . Then j j (cid:9) 2 (cid:7) (cid:8) deg P X deg X, Y n k 1 m m 1 43 1,k 1 3 (cid:6) (cid:7) (cid:8) (cid:31) ! (cid:22) (cid:23) (cid:22) (cid:23) (cid:22) 5 (cid:23) # zeros of P X m #x such that x , f x 0 m n t 3 j j 3 j 3 (cid:6) (cid:7) (cid:8) ! (cid:21) (cid:22) (cid:23) (cid:24) (cid:22) (cid:23) (cid:30) It follows by the fundamental theorem of algebra that P X 0 76 (cid:7) (cid:8) is the all-zero polynomial, provided: m n t n k 1 m m 1 (cid:14) (cid:14) . (cid:11) (cid:7) (cid:8) (cid:7) (cid:8) (cid:7) (cid:8) Equivalently: 8 1 : m t 8 n n R 1 : <= n 1 R (cid:9) GS 8 (cid:14) (cid:11) m : (cid:20) (cid:14) 9 ; 9 Derivation of the three-dimensional bound D Interpolating through the n points k 1 Z x , y , z , . . . , x , y , z 1 1 1 n n n (cid:7) (cid:8) (cid:7) (cid:8) each with multiplicity m, imposes m m 1 m 2 D n (cid:11) (cid:11) constraints (cid:7) (cid:8) (cid:7) (cid:8) k 1 6 D X on the coefficients of the polynomial Y (cid:229) i j l X, Y, Z q X Y Z . To guarantee that X, Y, Z ex- i,j,l i,j,l (cid:9) , , (cid:7) (cid:8) (cid:7) (cid:8) ists, the number of coefficients must be greater than the num- ber of constraints. Hence its weighted degree must satisfy: 3 m m 1 m 2 3 2 > n 5 5 n k 1 m m 1 m 2 6 k ? 1 2 (cid:22) (cid:23) (cid:22) 6 (cid:23) - / (cid:14) (cid:11) (cid:11) (cid:7) (cid:8) (cid:7) (cid:8) (cid:7) (cid:8) (cid:6) (cid:22) (cid:23) 10
Description: