ebook img

Multivariate central limit theorems for Rademacher functionals with applications PDF

0.28 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multivariate central limit theorems for Rademacher functionals with applications

Multivariate central limit theorems for Rademacher functionals with applications Kai Krokowski and Christoph Thäle† ∗ 7 1 0 Abstract 2 n Quantitativemultivariatecentrallimittheoremsforgeneralfunctionalsofpossiblynon-symmetricand a non-homogeneous infinite Rademacher sequences are proved by combining discrete Malliavin calculus J withthesmartpathmethodfornormalapproximation. Inparticular,adiscretemultivariatesecond-order 5 Poincaréinequalityisdeveloped. Asafirstapplication,thenormalapproximationofvectorsofsubgraph 2 counting statisticsintheErdo˝s-Rényirandomgraphisconsidered. Inthis context, wefurtherspecialize tothenormalapproximationofvectorsofvertexdegrees.Inasecondapplicationweproveaquantitative ] multivariatecentrallimittheoremforvectorsofintrinsicvolumesinducedbyrandomcubicalcomplexes. R P Keywords. DiscreteMalliavin calculus, intrinsicvolume, multivariate central limittheorem, smartpath . h method,subgraphcount,randomgraph,randomcubicalcomplex,vertexdegree t MSC.Primary60F05;Secondary05C80,60C05,60D05,60H07. a m [ 1 Introduction 1 v SupposethatX =(Xk)k NisaRademachersequence,thatis,asequenceofindependentrandomvariables 5 satisfying, for all k N∈, P(X = 1) = p and P(X = 1) = q = 1 p for some p (0,1). Further, k k k k k k 6 fixadimensionpara∈meterd NandletF = F (X),...−,F = F (X)be−drandomvariabl∈esdependingon 3 ∈ 1 1 d d possibly infinite many members of the Rademacher sequence X. We shall referto such random variables 7 0 as Rademacher functionals in what follows. The goal of this paper is to derive handy conditions under . which the random vector F = (F ,...,F ) consisting of d Rademacher functionals is close in distribution 1 1 d 0 toad-dimensionalGaussianrandomvector. Inourpaperthedistributionalclosenesswillbemeasuredby 7 meansofamultivariateprobabilitymetricbasedonfourtimespartiallydifferentiabletestfunctions. Wewill 1 providetwoversionsofsucharesult. OneisinthespiritoftheMalliavin-Steinmethodandexpressesthe v: distributionalclosenessintermsofso-calleddiscreteMalliavinoperators. Thesecondoneisamultivariate i discretesecond-orderPoincaréinequality,aboundwhichonlyinvolvesthefirst-andsecond-orderdiscrete X Malliavin derivatives of the Rademacher functionals F ,...,F , or, more precisely, their moments up to 1 d r orderfour. Moreformally,ifF = F(X)isaRademacherfunctional,thediscreteMalliavinderivativeD Fin a k directionk ∈ N is definedas DkF = √pkqk(Fk+−Fk−), where Fk± is the Rademacherfunctional for which the kth coordinate X of the Rademacher sequence X is conditioned to be 1. The second-order discrete k derivative is iteratively given by DkDℓF for k,ℓ N. Such a bound is part±icularlyattractive for concrete ∈ applicationsasdemonstratedinthepresenttext. Letusdescribethepurposeandthecontentofourpaperinsomemoredetail. (i) First of all, our aim is to provide a multivariate quantitative central limit theorem for vectors of RademacherfunctionalsbybringingtogetherthediscreteMalliavincalculusofvariationswiththeso- calledsmart-pathmethodfornormalapproximation. Thisleadstoalimittheoreminthespiritofthe Mallavin-Steinmethod andgeneralizesanearlierresultfrom[9], wherethe underlyingRademacher sequence hasbeenassumedtobehomogeneous andsymmetric, meaningthat p = q = 1/2forall k k k Ninabovenotation. ∈ ∗RuhrUniversityBochum,FacultyofMathematics,NA3/28,D-44780Bochum,Germany.E-mail:[email protected] †RuhrUniversityBochum,FacultyofMathematics,NA3/68,D-44780Bochum,Germany.E-mail:[email protected] 1 (ii) Fromthisresult,afurtheraimofthistextistodevelopadiscretemultivariatesecond-orderPoincaré inequality,thatis,aboundforthemultivariatenormalapproximationthatonlyinvolvesthefirst-and second-orderdiscreteMalliavinderivatives,or,moreprecisely,itsmomentsuptoorderfour. Sucha resultcanberegardedasthemultivariateanalogueofthemaintheoremobtainedin[10]. (iii) Finally, we want todemonstrate the flexibility and applicabilityof our discretemultivariate second- orderPoincaréinequalitybymeansofexamplesfromthetheoryofrandomgraphsandrandomtopol- ogy. First,wearegoingtoprovideaboundoforderO(n 1)forthemultivariatenormalapproximation − ofavectorofsubgraphcountsintheclassicalErdo˝s-Rényirandomgraph.Thisgeneralizes(inadiffer- entprobabilitymetric)aresultofReinertandRöllin[18],wherevectorsofthenumberofedges,2-stars andtriangleshavebeenconsidered,andaddsarateofconvergencetotherelatedcentrallimittheorem in the paperof Janson andNowicki [6]. Moreover, for the same modelwe also providea multivari- atecentrallimittheoremfortherandomvectorofvertexdegreeswitharateofconvergenceoforder O(n 1/2). ThiscanbeseenasaversionoftheresultofGoldsteinandRinott[4]andisthemultivariate − analogueofarelatedBerry-EsseenboundprovedbyGoldstein[3]andKrokowski,Reichenbachsand Thäle [10]. Second, we consider the vector of intrinsic volumes determined by different models of random cubical complexes in Rd and derive bounds of orderO(n d/2) on the error in their normal − approximation.ThisconstitutesamultivariateextensionofthecentrallimittheoremprovidedbyWer- manandWright[20]andisinline with recentdevelopmentsinthe activefieldof randomtopology, see[1,2,7,11]aswellasthereferencescitedtherein. Our results continue a recentline of researchconcerning limit theorems for Rademacher functionals. The field has been opened by Nourdin, Peccati and Reinert [12], who proved first limit theorems for a class of smooth probabilitymetrics. Later, Krokowski, Reichenbachs andThäle [9, 10] considered Berry-Esseen boundsandprovidedafirstunivariatediscretesecond-orderPoincaréinequality. Zheng[21]hasobtained arefinedboundfortheWassersteindistanceandalsoprovedalmostsurecentrallimittheorems. Moreover, Privault and Torrisi [16] as well as Krokowski [8] also derived bounds for the Poisson approximation of Rademacherfunctionals. This text is organized as follows. In Section 2 we briefly recall the basis of discrete Malliavin calculus in order to keep the paper reasonably self-contained. A first quantitative multivariate central limit theorem for functionals of a possibly non-symmetric and non-homogeneous infinte Rademacher sequence based on the discrete Malliavin-Stein method is presented in Section 3.1, while Section 3.2 contains the discrete multivariate second-order Poincaré inequality. The applications to subgraph and vertex degree counts in theErdo˝s-Rényirandomgraphandtotheintrinsicvolumesofrandomcubicalcomplexesarediscussedin thefinalSection4. 2 Discrete Malliavin calculus Inthissectionwe brieflyrecallthe basisof discreteMalliavincalculus. We refertothe monograph [15] as wellastothepapers[9,10,12]fordetails,proofsandfurtherreferences. Rademacher sequences. Let p := (pk)k N be a sequence of success probabilities 0 < pk < 1 and put q := (qk)k N with qk := 1 pk. Furthe∈rmore, let (Ω, ,P) be the following probability space: Ω := 1,+1 N∈, := power( −1,+1 ) N, where power( )Fdenotes the power set of the argumentset, and ⊗ a{P−s:e=quen}∞kc=e1(oFpfkiδn+d1e+peqnkdδe−n1{t)−rwanitdhoδm}±1vabreiianbgletshedeufinniet-dmoan·ss(DΩi,rac,Pm)ebaysuXre(aωt)±:1=. ωWe, fleotrXeve:=ry(kXk)kN∈Nanbde N F k k ∈ ω := (ωk)k N Ω. We refer to such a sequence X as (possibly non-symmetric and non-homogeneous infinite) Rad∈ema∈chersequence. We also definethe standardizedsequenceY := (Yk)k N byputtingYk := h(Voamr(oXgek)n)e−o1u/s2(aXnkd−syEm[mXke]t)ri=cR(a2d√empkaqckh)e−r1(sXeqku−enpcke,+thqakt)ifso,rifepve=ryqk ∈=N1/.2,Nfoortealtlhka∈t YNk .= Xk, iff X is a k k ∈ Discretemultiplestochasticintegralsandchaosdecomposition. Letusdenotebyκthecountingmeasure on N. We put ℓ2(N) n := L2(Nn, (N) n,κ n) for every n N and referto the elements of thatspace ⊗ ⊗ ⊗ P ∈ 2 as kernels. Let ℓ2(N) n denote the subset of ℓ2(N) n consisting of symmetric kernels and let ℓ2(N) n ◦ ⊗ 0 ⊗ be the subset of kernels vanishing on diagonals, that is, vanishing on the complement of the set ∆ := n (i ,...,i ) Nn :i =i forj = k . Wethenputℓ2(N) n :=ℓ2(N) n ℓ2(N) n. { 1 n ∈ j 6 k 6 } 0 ◦ ◦ ∩ 0 ⊗ Forn Nand f ℓ2(N) n,wedefinethediscretemultiplestochasticintegralofordernof f by ∈ ∈ 0 ◦ J (f):= ∑ f(i ,...,i )Y ... Y = ∑ f(i ,...,i )Y ... Y n 1 n i1· · in 1 n i1· · in (i1,...,in)∈Nn (i1,...,in)∈∆n =n! ∑ f(i ,...,i )Y ... Y . 1 n i1· · in 1≤i1<...<in<∞ Inaddition,weputℓ2(N) 0 :=Rand J (c):=c,foreveryc R. ⊗ 0 ∈ ItisanimportantfactthateveryF L2(Ω)admitsadecompositionoftheform ∈ ∞ F =E[F]+ ∑ J (f ) (1) n n n=1 withuniquelydeterminedkernels f ℓ2(N) n. n ∈ 0 ◦ DiscreteMalliavinderivative. Foreveryω = (ω ,ω ,...) Ωandk Nwedefinethetwosequences 1 2 ωk byputting ωk := (ω ,...,ω , 1,ω ,...). Furtherm∈ore,foreve∈ry F L1(Ω), ω Ω and k N let±Fk±(ω):= F(ω±k ). For1suchankF−1th±edisckr+e1teMalliavinderivativeisdefined∈byDF:=(D∈kF)k Nwit∈h ± ∈ DkF :=√pkqk(Fk+−Fk−), k ∈N. (2) Notethatitimmediatelyfollowsfrom(2)that,foreveryk N,D FisindependentofX . Inthefollowing k k ∈ westateaproductformulaforthediscreteMailliavinderivative.IfF,G L1(Ω),then ∈ X D (FG)= (D F)G+F(D G) k (D F)(D G), k N. (3) k k k k k − √p q ∈ k k For m N let us further define the iterated discrete Malliavin derivative of order m of F by DmF := ∈ (Dkm1,...,kmF)k1,...,km∈N with Dkm1,...,kmF := Dkm(Dkm1−,..1.,km 1F),foreveryk1,...,km ∈ N,where D0F := F. Given F L2(Ω) with chaos representation F = E[F]+∑−∞ J (f ) as in (1) and m N, we will say that F ∈ n=1 n n ∈ ∈ dom(Dm),providedthat ∞ n! E[ DmF 2 ] = ∑ n! f 2 < ∞. k kℓ2(N)⊗m n=m(n−m)! k nkℓ2(N)⊗n If F dom(D) with chaos decomposition (1), D F can be P-almost surely be identified with the random k ∈ variablegivenby ∞ D F = ∑ nJ (f ( ,k)), k n 1 n − · n=1 where f ( ,k)standsforthekernel f withoneofitsvariablesfixedtobek (whichoneisirrelevant,since n n · thekernelsaresymmetric). Discretedivergence. Wewillnowdefinethe discretedivergenceoperatorδ anditsdomaindom(δ). Let ∑fn∞∈ Jℓ20(N(f)◦(n−,1k⊗))ℓfo2(rNev)e,rfyork evNer.yFnor∈sucNh,ua,nwdecsoanystihdaetruthedsoemqu(eδn),ceifu := (uk)k∈N given by uk := n=1 n−1 n · ∈ ∈ ∞ ∑ n!kfn1∆nk2ℓ2(N)⊗n < ∞, n=1 e 3 where f denotesthecanonicalsymmetrizationof f . Foru dom(δ),thediscretedivergenceoperatorδis n n ∈ thendefinedby e ∞ δ(u) := ∑ Jn(fn1∆n). n=1 e One can interpret δ as the operator that is adjoint to the discrete Malliavin derivative. Namely, if F ∈ dom(D)andu dom(δ),then ∈ E[Fδ(u)]=E[hDF,uiℓ2(N)]. (4) DiscreteOrnstein-Uhlenbeckoperatoranditsinverse. Next,wedefinethediscreteOrnstein-Uhlenbeck operator L and its (pseudo-)inverse L 1. Given F L2(Ω), again with chaos representation F = E[F]+ − ∑∞ J (f )asabove,wesaythatF dom(L),if ∈ n=1 n n ∈ ∞ ∑ n2n! f 2 <∞. k nkℓ2(N)⊗n n=1 ForF dom(L),thediscreteOrnstein-UhlenbeckoperatorListhendefinedby ∈ ∞ LF := ∑ nJ (f ). n n − n=1 ForcentredF L2(Ω),its(pseudo-)inverseisgivenasfollows: ∈ ∞ 1 L−1F := ∑ Jn(fn). − n n=1 Discrete Ornstein-Uhlenbecksemigroup. Finally, we introduce the semigroup associated with the dis- creteOrnstein-UhlenbeckoperatorL. ThediscreteOrnstein-Uhlenbecksemigroup(P) isdefinedby t t 0 ≥ ∞ PtF :=E[F]+ ∑ e−ntJn(fn), t 0. ≥ n=1 The process associated with the discrete Ornstein-Uhlenbeck semigroup is given as follows. For every ekx∈poNne,nletitaXllyk∗ dbeistarnibiuntdeedpreannddeonmtcvoapryiaobfleXskw. iFthurmtheearnm1o,rew,hleetre(ZZk)kis∈NindbeepaensedqeunetnocfeXofainnddeXpen,fdoernetvaenrdy k k k∗ k ∈N. Foreveryrealt ≥0,letXt :=(Xkt)k∈N with Xkt := Xk∗1{Zk≤t}+Xk1{Zk>t}, k ∈N. Then, (Xt) is the discrete Ornstein-Uhlenbeck process associated with the Ornstein-Uhlenbeck semi- t 0 group (P) ≥ . The relation of Ornstein-Uhlenbeck semigroup and process is exhibited in the following t t 0 formula,kn≥ownasMehler’sformula. IfF L2(Ω),thenitP-almostsurelyholdsthat ∈ PF =E[F(Xt) X], t 0. (5) t | ≥ Integrationby parts, integratedMehler’s formula and Poincaré inequality. We notice that the discrete Malliavin operators D, δ and L are related by the identity L = δD. Moreover, the following discrete − integrationbypartsformulaisvalid. IfF,G dom(D),then ∈ E[(F−E[F])G]=E[h−DL−1(F−E[F]),DGiℓ2(N)]. (6) Indeed,therelationL= δDandtheadjointnessofDandδin(4)yield − E[(F−E[F])G]=E[LL−1(F−E[F])G]=E[−δDL−1(F−E[F])G]=E[h−DL−1(F−E[F]),DGiℓ2(N)]. 4 Thefollowing identitycanbe seenasanintegratedversionof Mehler’sformula. If m,k ,...,k N and 1 m F dom(Dm)withE[F] =0,thenitP-almostsurelyholdsthat ∈ ∈ ∞ −Dkm1,...,kmL−1F =Z0 e−mtPtDkm1,...,kmFdt. (7) Fromthis,onecanimmediatelydeducethefollowingimportantinequality. Ifm,k ,...,k N,α 1and 1 m F dom(Dm)withE[F] =0,then ∈ ≥ ∈ E[|Dkm1,...,kmL−1F|α] ≤E[|Dkm1,...,kmF|α]. (8) Finally,letusrecalladiscreteversionoftheclassicalPoincaréinequality. ForeveryF L1(Ω),itholdsthat ∈ Var(F) E[ DF 2 ]. (9) ≤ k kℓ2(N) 3 Multivariate central limit theorems 3.1 Adiscrete Malliavin-Stein bound Inthefollowing,wewillproveaboundontheerrorinthemultivariatenormalapproximationofvectorsof generalfunctionalsofpossiblynon-symmetricandnon-homogeneousinfiniteRademachersequences. This way we generalize Theorem 5.1 in [9], where only functionals of symmetric Rademacher sequences have beenconsidered. The proof proceedsalong the lines of [9], butthere area number of subtletiesarising in the more general case here that were not present before. In particular, in the non-symmetric case a new summandinthe errorboundbecomesvisibleasfurtherdiscussedinRemark3.2below. Tomakethisand otherphenomenatransparent,weincludethefulldetails. ThedistancebetweenthelawofavectorofRademacherfunctionalsandamultivariatenormaldistribution willbemeasuredbytheso-calledd -distancethatisdefinedasfollows. Fixd Nandletn = 1,...,d. For 4 anntimespartiallydifferentiablefunctiong :Rd Rweput ∈ → ∂k M (g):= max g k 1≤i1,...,ik≤d(cid:13)∂xi1...∂xik (cid:13)∞ (cid:13) (cid:13) foreveryk =1,...,n,where ∞denotesthesuprem(cid:13)umnormofth(cid:13)eargumentfunction. Thed4-distance betweenthedistributionsoftkw·okRd-valuedrandomvectorsXandYisdefinedby d (X,Y) :=sup E[g(X)] E[g(Y)] , 4 | − | g where the supremum is running over all four times partially differentiable functions g : Rd R with → boundedpartialderivativesfulfilling M (g),M (g),M (g),M (g) 1. 1 2 3 4 ≤ Theorem 3.1. Fix d N and let F ,...,F be Rademacher functionals with F dom(D), E[F] = 0 and E[ (pq) 1/4DF 4 ∈] < ∞, for eve1ry i = d1,...,d. Define F := (F ,...,F ) aind∈let N := (N ,.i..,N ) be a k − ikℓ4(N) 1 d 1 d centred Gaussian random vectorwith symmetric and positivesemidefinite covariancematrix Σ := (Σ )d . Fur- ij i,j=1 ther,let 1 d A1 := 2 ∑ E[|Σij−hDFj,−DL−1Fiiℓ2(N)|], i,j=1 1 p q d 2 d A2 := E | − | ∑ DFj ,∑ DL−1Fi , 4 √pq | | |− | ℓ2(N) hD (cid:16)j=1 (cid:17) i=1 E i 5 1 d 3 d A3 := E ∑ DFj ,∑ DL−1Fi . 24 pq | | |− | ℓ2(N) j=1 i=1 hD (cid:16) (cid:17) E i Then, d (F,N) A +A +A . 4 1 2 3 ≤ 5 Remark 3.2. A comparison of Theorem 3.1 with Theorem 5.1 in [9] shows that the extension to vectors of general functionals of possibly non-symmetric and non-homogeneous infinite Rademacher sequences comesatthecostsofanadditionalsummandinthebound,namely p q d 2 d E | − | ∑ DFj ,∑ DL−1Fi . √pq | | |− | ℓ2(N) hD (cid:16)j=1 (cid:17) i=1 E i However,resortingtothecasewheretheunderlyingRademachersequenceissymmetric,i.e.,if p = q = k k 1/2,foreveryk N,thisadditionalsummandvanishesandourboundinTheorem3.1coincideswiththe ∈ onefrom[9]withanimprovementbyafactor1/2ontheconstantinfrontofthethirdterm. The proof of Theorem 3.1 relies on two multivariate integration by parts formulae, a Gaussian one and an approximate one from Malliavin calculus which combines (6) with a multivariate chain rule for the discrete gradient operator. We start by recalling the multivariate Gaussian integration by parts formula fromEquation(A.41)in[19]. Lemma 3.3. Fix d N and let N := (N ,...,N ) be a centred Gaussian random vector with symmetric and positivesemidefinite ∈covariance matrix Σ :=1(Σ )d d . Furthermore, let g : Rd R be a partially differentiable ij i,j=1 → functionwithboundedpartialderivativesandE[ Ng(N) ] <∞,foreveryi =1,...,d. Then,foreveryi =1,...,d, i | | d ∂ E[Ng(N)]= ∑Σ E g(N) . i ij ∂x j=1 h j i Thefollowinglemmacontainsamultivariatechainruleforthediscretegradientoperator,whichisagener- alizationofProposition2.1in[16]tothed-dimensionalcase. AlsonotethatitnotonlygeneralizesLemma 5.1in[9]tothecasewheretheunderlyingRademachersequenceisnon-symmetricandnon-homogeneous, but also improves on the constants in the bound for the remainder term. For these reasons, we include a detailedproof. Lemma3.4. LetFbearandomvectorofRademacherfunctionalsasinTheorem3.1. Furthermore,let f : Rd R beathricepartiallydifferentiablefunction. Then,foreveryk N, → ∈ d ∂ X d ∂2 ∂2 Dkf(F) = ∑ ∂x f(F)DkFi− 4√pkq ∑ ∂x ∂x f(F+k )+ ∂x ∂x f(F−k ) (DkFi)(DkFj)+Rk(F) (10) i=1 i k k i,j=1 i j i j (cid:16) (cid:17) withF±k := (F1)±k ,...,(Fd)±k andaremaindertermRk(F)thatfulfils (cid:0) (cid:1) 5 d ∂3 Rk(F)≤ 12pkqk i,j∑,ℓ=1(cid:13)∂xi∂xj∂xℓ f(cid:13)∞|(DkFi)(DkFj)(DkFℓ)| (11) (cid:13) (cid:13) foreveryk N. (cid:13) (cid:13) ∈ Proof. Fixk Nandobservethat ∈ Dkf(F)= √pkqk(f(F+k )− f(F−k ))= √pkqk(f(F+k )− f(F))−√pkqk(f(F−k )− f(F)). (12) Now,aTaylorseriesexpansionof f atFyieldsthat,foreveryx:=(x ,...,x ) Rd, 1 d ∈ d ∂ 1 d ∂2 f(x) f(F) = ∑ f(F)(x F)+ ∑ f(F)(x F)(x F) − ∂x i− i 2 ∂x ∂x i− i j− j i=1 i i,j=1 i j 1 d ∂3 + 6i,j∑,ℓ=1∂xi∂xj∂xℓ f(F+θ(x−F))(xi−Fi)(xj−Fj)(xℓ−Fℓ) 6 wwaityh,istofmoleloθw:=sfrθo(mx,(F1)2)∈th(0a,t,1f)o.rBeyvreer-ywkritinNg,eachofthequantities f(F+k )− f(F)and f(F−k )− f(F)inthis ∈ d ∂ 1 d ∂2 D f(F) =√p q ∑ f(F)((F)+ F)+ √p q ∑ f(F)((F)+ F)((F)+ F) k k k ∂x i k − i 2 k k ∂x ∂x i k − i j k − j i=1 i i,j=1 i j d ∂ +R1(F,F+k )−√pkqk ∑ ∂x f(F)((Fi)−k −Fi) i=1 i 1 d ∂2 − 2√pkqk ∑ ∂x ∂x f(F)((Fi)−k −Fi)((Fj)−k −Fj)−R2(F,F−k ) i,j=1 i j d ∂ 1 d ∂2 = ∑ ∂x f(F)DkFi+ 2√pkqk ∑ ∂x ∂x f(F)(((Fi)+k −Fi)((Fj)+k −Fj)−((Fi)−k −Fi)((Fj)−k −Fj)) i=1 i i,j=1 i j +R1(F,F+k )−R2(F,F−k ), (13) wherefromtheidentities 1 Fk+−F =(Fk+−Fk−)1{Xk=−1} = √pkqk(DkF)1{Xk=−1} (14) and 1 Fk−−F = (Fk−−Fk+)1{Xk=+1} =−√pkqk(DkF)1{Xk=+1} (15) itfollowsthat,foreveryk N, ∈ 1 d ∂3 |R1(F,F+k )| ≤ 6√pkqki,j∑,ℓ=1(cid:13)∂xi∂xj∂xℓ f(cid:13)∞|((Fi)+k −Fi)((Fj)+k −Fj)((Fℓ)+k −Fℓ)| (cid:13) (cid:13) 1 d (cid:13) ∂3 (cid:13) = 6pkqk i,j∑,ℓ=1(cid:13)∂xi∂xj∂xℓ f(cid:13)∞|(DkFi)(DkFj)(DkFℓ)|1{Xk=−1} (16) (cid:13) (cid:13) (cid:13) (cid:13) and 1 d ∂3 |R2(F,F−k )| ≤ 6√pkqki,j∑,ℓ=1(cid:13)∂xi∂xj∂xℓ f(cid:13)∞|((Fi)−k −Fi)((Fj)−k −Fj)((Fℓ)−k −Fℓ)| (cid:13) (cid:13) 1 d (cid:13) ∂3 (cid:13) = 6pkqk i,j∑,ℓ=1(cid:13)∂xi∂xj∂xℓ f(cid:13)∞|(DkFi)(DkFj)(DkFℓ)|1{Xk=+1} . (17) (cid:13) (cid:13) Again,byvirtueof(14)and(15),forev(cid:13)eryk N,t(cid:13)hesecondsummandontherighthandsideof(13)can ∈ berewrittenas 1 d ∂2 2√pkqk ∑ ∂x ∂x f(F)(((Fi)+k −Fi)((Fj)+k −Fj)−((Fi)−k −Fi)((Fj)−k −Fj)) i,j=1 i j 1 d ∂2 = ∑ f(F)(D F)(D F)(1 1 ) 2√pkqk i,j=1∂xi∂xj k i k j {Xk=−1}− {Xk=+1} X d ∂2 = k ∑ f(F)(D F)(D F). (18) −2√p q ∂x ∂x k i k j k k i,j=1 i j 7 AnotherTaylorseriesexpansionof ∂x∂i∂2xjf atF+k andF−k ,respectively,yieldsthat,foreveryi,j,k ∈N, ∂2 ∂2 d ∂3 ∂xi∂xj f(F) = ∂xi∂xj f(F+k )+ℓ∑=1∂xℓ∂xi∂xj f(F+k +θ1(F−F+k ))(Fℓ−(Fℓ)+k ) and ∂2 ∂2 d ∂3 ∂xi∂xj f(F) = ∂xi∂xj f(F−k )+ℓ∑=1∂xℓ∂xi∂xj f(F−k +θ2(F−F−k ))(Fℓ−(Fℓ)−k ), whereθ1 := θ1(F,F+k )∈ (0,1)andθ2 :=θ2(F,F−k ) ∈ (0,1).Thisaddsupto ∂2 1 ∂2 ∂2 1 d ∂3 ∂xi∂xj f(F) = 2(cid:16)∂xi∂xj f(F+k )+ ∂xi∂xj f(F−k )(cid:17)+ 2 ℓ∑=1∂xℓ∂xi∂xj f(F+k +θ1(F−F+k ))(Fℓ−(Fℓ)+k ) 1 d ∂3 + 2 ℓ∑=1∂xℓ∂xi∂xj f(F−k +θ2(F−F−k ))(Fℓ−(Fℓ)−k ) foreveryi,j,k N,andthus,itfollowsfrom(18)thatforeveryk N ∈ ∈ 1 d ∂2 2√pkqk ∑ ∂x ∂x f(F)(((Fi)+k −Fi)((Fj)+k −Fj)−((Fi)−k −Fi)((Fj)−k −Fj)) i,j=1 i j X d ∂2 ∂2 = −4√pkq ∑ ∂x ∂x f(F+k )+ ∂x ∂x f(F−k ) (DkFi)(DkFj)−R3(F,F+k )−R4(F,F−k ), (19) k k i,j=1(cid:16) i j i j (cid:17) wherebythefactthat X 1foreveryk Nandanotherapplicationof(14)and(15)itholdsthat | k| ≤ ∈ 1 d ∂3 |R3(F,F+k )| ≤ 4√pkqk i,j∑,ℓ=1(cid:13)∂xi∂xj∂xℓ f(cid:13)∞|(DkFj)(DkFℓ)((Fi)+k −Fi)| (cid:13) (cid:13) 1 d (cid:13) ∂3 (cid:13) = 4pkqk i,j∑,ℓ=1(cid:13)∂xi∂xj∂xℓ f(cid:13)∞|(DkFi)(DkFj)(DkFℓ)|1{Xk=−1} (20) (cid:13) (cid:13) (cid:13) (cid:13) and 1 d ∂3 |R4(F,F−k )| ≤ 4√pkqk i,j∑,ℓ=1(cid:13)∂xi∂xj∂xℓ f(cid:13)∞|(DkFj)(DkFℓ)((Fi)−k −Fi)| (cid:13) (cid:13) 1 d (cid:13) ∂3 (cid:13) = 4pkqk i,j∑,ℓ=1(cid:13)∂xi∂xj∂xℓ f(cid:13)∞|(DkFi)(DkFj)(DkFℓ)|1{Xk=+1} . (21) (cid:13) (cid:13) Combining(13)and(19)finallyyieldsthat(cid:13)foreveryk (cid:13)N ∈ d ∂ X d ∂2 ∂2 Dkf(F)= ∑ ∂x f(F)DkFi− 4√pkq ∑ ∂x ∂x f(F+k )+ ∂x ∂x f(F−k ) (DkFi)(DkFj) i=1 i k k i,j=1 i j i j (cid:16) (cid:17) +R1(F,F+k )−R2(F,F−k )−R3(F,F+k )−R4(F,F−k ), wherebecauseof(16),(17),(20)and(21)wehavethat 5 d ∂3 |R1(F,F+k )|+|R2(F,F−k )|+|R3(F,F+k )|+|R4(F,F−k )| ≤ 12pkqk i,j∑,ℓ=1(cid:13)∂xi∂xj∂xℓ f(cid:13)∞|(DkFi)(DkFj)(DkFℓ)|. (cid:13) (cid:13) (cid:13) (cid:13) Theproofisthuscomplete. 8 Letusnowturntothealreadyannouncedmultivariateapproximateintegrationbypartsformula. Thenext resultnot only generalizesLemma 5.2 in [9] to the case in which the underlying Rademacher sequence is allowedtobenon-symmetricandnon-homogeneous, butalsoimprovestheconstantsintheboundforthe remainder term. We emphasize that Lemma 3.5 is the first instance where the additional boundary term discussedinRemark3.2showsup. Lemma3.5. LetFbeavectorofRademacherfunctionalsasinTheorem3.1. Furthermore,let f :Rd Rbeathrice → partiallydifferentiablefunctionwithboundedpartialderivatives. Then,foreveryi =1,...,d, d ∂ E[Fif(F)]= ∑E ∂x f(F)hDFj,−DL−1Fiiℓ2(N) +E[hR(F),−DL−1Fiiℓ2(N)] j=1 h j i witharemainderR(F)thatsatisfiestheestimate 1 p q d 2 |E[hR(F),−DL−1Fiiℓ2(N)]| ≤ 2M2(f)E |√−pq| ∑|DFj| ,|−DL−1Fi| ℓ2(N) j=1 hD (cid:16) (cid:17) E i (22) 5 1 d 3 + M3(f)E ∑ DFj , DL−1Fi . 12 pq | | |− | ℓ2(N) j=1 hD (cid:16) (cid:17) E i Proof. Fixi =1,...,d.Bytheintegrationbypartsformula(6)wehavethat E[Fif(F)] =E[hDf(F),−DL−1Fiiℓ2(N)]. (23) Here, we implicitly used the fact that f(F) dom(D), which can be verified as follows. At first, by the meanvaluetheoremitholdsthatforeveryk∈ N ∈ d ∂ |Dkf(F)| = √pkqk|f(F+k )− f(F−k )| = √pkqk ∑ ∂x f(F−k +θ(F+k −F−k ))((Fi)+k −(Fi)−k ) (cid:12)i=1 i (cid:12) d (cid:12) d (cid:12) (cid:12) (cid:12) ≤ √pkqkM1(f)∑|(Fi)+k −(Fi)−k | = M1(f)∑|DkFi|, i=1 i=1 whereθ (0,1).Thus,anapplicationoftheCauchy-Schwarzinequalityyieldsthat ∈ ∞ ∞ d 2 ∞ d E[ Df(F) 2 ] =E ∑(D f(F))2 (M (f))2E ∑ ∑ D F d(M (f))2E ∑ ∑(D F)2 k kℓ2(N) k ≤ 1 | k i| ≤ 1 k i hk=1 i hk=1(cid:16)i=1 (cid:17) i hk=1i=1 i d = d(M (f))2∑E[ DF 2 ] (24) 1 k ikℓ2(N) i=1 andfinitenessoftherighthandsidein(24)followsfromtheassumptionsthat,foreveryi =1,...,d, ∂ f is ∂xi boundedandF dom(D).Now,byplugging(10)into(23)weimmediatelyget i ∈ d ∂ E[Fif(F)]= ∑E ∂x f(F)hDFj,−DL−1Fiiℓ2(N) j=1 h j i d X ∂2 ∂2 −j,∑ℓ=1EhD4√pq(cid:16)∂xj∂xℓ f(F+)+ ∂xj∂xℓ f(F−)(cid:17)(DFj)(DFℓ),−DL−1FiEℓ2(N)i +E[hR1(F),−DL−1Fiiℓ2(N)] (25) withF+ :=(F+k )k N andF− :=(F−k )k NaswellasaremainderR1(F)whichby(11)fulfilstheestimate ∈ ∈ 5 1 d 3 |E[hR1(F),−DL−1Fiiℓ2(N)]| ≤ 12M3(f)E pq ∑|DFj| ,|−DL−1Fi| ℓ2(N) . (26) hD (cid:16)j=1 (cid:17) E i 9 Asaconsequence,weonlyneedtofurtherboundthesecondtermin(25). ByvirtueoftheCauchy-Schwarz inequalityand(8)weseethat,foreveryj,ℓ N, ∈ ∞ X ∂2 ∂2 Ehk∑=1(cid:12)4√pkkqk(cid:16)∂xj∂xℓ f(F+k )+ ∂xj∂xℓ f(F−k )(cid:17)(DkFj)(DkFℓ)(−DkL−1Fi)(cid:12)i (cid:12) ∞ (cid:12) 1M(cid:12)2(f)E ∑ 1 (DkFj)(DkFℓ)( DkL−1Fi) (cid:12) ≤ 2 √p q | − | hk=1 k k i ∞ ∞ 1 1 1/2 1/2 ≤ 2M2(f) E ∑ p q (DkFj)2(DkFℓ)2 E ∑(DkL−1Fi)2 (cid:16) hk=1 k k i(cid:17) (cid:16) hk=1 i(cid:17) ∞ ∞ ∞ 1 1 1/4 1 1/4 1/2 M2(f) E ∑ (DkFj)4 E ∑ (DkFℓ)4 E ∑(DkFi)2 ≤ 2 p q p q (cid:16) hk=1 k k i(cid:17) (cid:16) hk=1 k k i(cid:17) (cid:16) hk=1 i(cid:17) 1 = 2M2(f)(E[k(pq)−1/4DFjk4ℓ4(N)])1/4(E[k(pq)−1/4DFℓk4ℓ4(N)])1/4(E[kDFik2ℓ2(N)])1/2 andfinitenessofthisexpressionfollowsfromtheassumptionsthatFi ∈dom(D)andk(pq)−1/4DFikℓ2(N) < ∞foreveryi =1,...,d. Thus,anexchangeofexpectationandsummationisvalidduetotheFubini-Tonelli theorem,andthe independenceof Xk and (∂x∂j∂2xℓ f(F+k )+ ∂x∂j∂2xℓf(F−k ))(DkFj)(DkFℓ)(−DkL−1Fi), forevery k N,yieldsthat,foreveryj,ℓ N, ∈ ∈ X ∂2 ∂2 E 4√pq ∂xj∂xℓ f(F+)+ ∂xj∂xℓ f(F−) (DFj)(DFℓ),−DL−1Fi ℓ2(N) hD (cid:16) (cid:17) E i ∞ p q ∂2 ∂2 =k∑=14√k−pkqkkEh(cid:16)∂xj∂xℓ f(F+k )+ ∂xj∂xℓ f(F−k )(cid:17)(DkFj)(DkFℓ)(−DkL−1Fi)i p q ∂2 ∂2 =E 4√−pq ∂xj∂xℓ f(F+)+ ∂xj∂xℓ f(F−) (DFj)(DFℓ),−DL−1Fi ℓ2(N) . (27) hD (cid:16) (cid:17) E i Byplugging(27)into(25)wethenget d ∂ E[Fif(F)]= ∑E ∂x f(F)hDFj,−DL−1Fiiℓ2(N) +E[hR1(F),−DL−1Fiiℓ2(N)] j=1 h j i −E[hR2(F),−DL−1Fiiℓ2(N)] (28) witharemainderterm p q ∞ ∂2 ∂2 R2(F) := 4√−pq j,∑ℓ=1(cid:16)∂xj∂xℓ f(F+)+ ∂xj∂xℓ f(F−)(cid:17)(DFj)(DFℓ) satisfying 1 p q d 2 |E[hR2(F),−DL−1Fiiℓ2(N)]| ≤ 2M2(f)E |√−pq| ∑|DFj| ,|−DL−1Fi| ℓ2(N) . (29) j=1 hD (cid:16) (cid:17) E i Finally, the assertionfollows from(28) uponputting R(F) := R (F) R (F) andusingthe boundsin(26) 1 2 − and(29). Remark3.6. InthesymmetriccasewheretheunderlyingRademachersequencesatisfies p = q =1/2for k k everyk N,theboundfortheremaindertermin(22)simplifiesto ∈ 5 d 3 |E[hR(F),−DL−1Fiiℓ2(N)]| ≤ 3M3(f)E ∑|DFj| ,|−DL−1Fi| ℓ2(N) , hD(cid:16)j=1 (cid:17) E i since p q =0,foreveryk N. k− k ∈ 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.