ebook img

Multivariable Conformable Fractional Calculus PDF

0.12 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multivariable Conformable Fractional Calculus

Multivariable Conformable Fractional Calculus Nazlı Yazıcı G¨ozu¨toka, Ug˘ur G¨ozu¨toka,∗ aDepartment of Mathematics 7 Karadeniz Technical University 1 61080, Trabzon, TURKEY 0 2 n a J Abstract 3 Conformable fractional derivative is introduced by the authors Khalil et al. In ] A this study we develop their concept and introduce multivariable conformable C derivative for a vector valued function with several variables. . h Keywords: Conformable fractional derivative, multivariable conformable t a m calculus, conformable partial derivatives, conformable jacobian matrix [ 2010 MSC: 26B12,26A33 1 v 6 1. Introduction 1 6 0 For many years, many definitions of fractional derivative have been intro- 0 . duced by various researchers. One of them is the Riemann-Liouville fractional 1 0 derivative and the second one is the so-called Caputo derivative. But these 7 1 are not all purpose definitions. Recently, a new fractional derivative has been : v introducedin [1]andone cansee thatthe new derivative suggestedin these pa- i X pers satisfies all the properties of the standart one. However, definitions given r a in the literature are only for the real valued functions. In this paper, we give conformablefractionalderivativedefinitionfor the vectorvaluedfunctions with several real variables. Our paper has the following order: In Section 2, some basic definitions and theorems appeared in the literature are given. In Sec- tion 3, α derivative of a vector valued function, conformable Jacobian matrix − ∗Correspondingauthor Email addresses: [email protected] (NazlıYazıcıG¨ozu¨tok), [email protected] (U˘gurG¨ozu¨tok) Preprint submitted toElsevier January 4, 2017 are defined; relationbetween α derivative and usual derivative of a vector val- − ued function is revealed; chain rule for multivariable conformable derivative is given. In Section 4, conformable partial derivatives of a real valued function with n variables is defined and relation between conformable Jacobian matrix − and conformable partial derivatives is given. 2. Basic definitions and theorems In this section we will give some definitions and properties introduced in [1, 2] Definition 2.1. Given afunction f :[0, ) R. The conformable derivative ∞ −→ of the function f of order α is defined by f(x+hx1−α) f(x) T (f)(x)= lim − (1) α h→0 h for all x>0, α (0,1). ∈ Theorem 2.2. If a function f : [0, ) R is α differentiable at t > 0, 0 ∞ −→ − α (0,1], then f is continuous at t . 0 ∈ Theorem 2.3. Let α (0,1] and f,g be α differentiable at a point t > 0. ∈ − Then (1) T (af +bg)=aT (f)+bT (g), for all a,b R. α α α ∈ (2) T (tp)=ptp−α for all p R. α ∈ (3) T (λ)=0, for all constant functions f(t)=λ. α (4) T (fg)=fT (g)+gT (f). α α α f gT (f) fT (g) α α (5) T ( )= − . α g g2 d (6) If, in addition, f is differentiable, then T (f)(t)=t1−α f(t). α dt 2 Theorem 2.4. Assume f,g : (0, ) R be two α differentiable functions ∞ −→ − where α (0,1]. Then g f is α differentiable and for all t with t = 0 and ∈ ◦ − 6 f(t)=0 we have 6 T (g f)(t)=T (g)(f(t))T (f)(t)f(t)α−1. (2) α α α ◦ 3. α−Derivative of a Vector Valued Function Definition 3.1. Let f be a vector valued function with n real variables such that f(x ,...,x ) = (f (x ,...,x ),...,f (x ,...,x )). Then we say that f is 1 n 1 1 n m 1 n α differentiable at a = (a ,...,a ) Rn where each a > 0, if there is a linear 1 n i − ∈ transformation L:Rn Rm such that −→ f(a +h a1−α,...,a +h a1−α) f(a ,...,a ) L(h) lim k 1 1 1 n n n − 1 n − k =0 (3) h→0 h k k where h = (h ,...,h ) and α (0,1]. The linear transformation is denoted by 1 n ∈ Dαf(a) and called the conformable derivative of f of order α at a. Remark 3.2. For m=n=1, Definition 3.1 equivalent to Definition 2.1. Theorem 3.3. Let f be a vector valued function with n variables. If f is α differentiable at a = (a ,...,a ) Rn, each a > 0, then there is a unique 1 n i − ∈ linear transformation L:Rn Rm such that −→ f(a +h a1−α,...,a +h a1−α) f(a ,...,a ) L(h) lim k 1 1 1 n n n − 1 n − k =0. h→0 h k k Proof. Suppose M :Rn Rm satisfies −→ f(a +h a1−α,...,a +h a1−α) f(a ,...,a ) M(h) lim k 1 1 1 n n n − 1 n − k =0. h→0 h k k Then, L(h) M(h) lim k − k h→0 h k k L(h) (f(a +h a1−α,...,a +h a1−α) f(a)) lim k − 1 1 1 n n n − k ≤h→0 h k k (f(a +h a1−α,...,a +h a1−α) f(a)) M(h) + lim k 1 1 1 n n n − − k =0 h→0 h k k 3 If x Rn, then tx 0 as t 0. Hence for x=0 we have ∈ → → 6 L(tx) M(tx) L(x) M(x) 0= lim k − k = k − k. h→0 tx x k k k k Therefore L(x)=M(x). Example 3.4. Let us consider the function f defined by f(x,y) = sinx and the point (a,b) R2 such that a,b > 0, then Dαf(a,b) = L satisfies L(x,y) = ∈ xa1−αcosa. To prove this, note that f(a+h a1−α,b+h b1−α) f(a,b) L(h ,h ) 1 2 1 2 lim | − − | (h1,h2)→(0,0) (h1,h2) k k sin(a+h a1−α) sina h a1−αcosa 1 1 = lim | − − | (h1,h2)→(0,0) ph21+h22 sin(a+h a1−α) sina h a1−αcosa 1 1 lim | − − | ≤h1→0 h1 | | sin(a+h a1−α) sina = lim 1 − a1−αcosa h1→0| h1 − | = a1−αcosa a1−αcosa =0 | − | Definition 3.5. Consider the matrix of the linear transformation Dαf(a) : Rn Rm with respect to the usual bases of Rn and Rm. This m n matrix −→ × is called the conformable Jacobian matrix of f at a, and denoted by fα(a). Example 3.6. If f(x,y)=sinx, then fα(a,b)= a1−αcosa 0 h i Theorem 3.7. Let f be α differentiable at a=(a ,...,a ) Rn, each a >0. 1 n i − ∈ If f is differentiable at a, then Dαf(a)=Df(a) L1−α ◦ a where Df(a) is the usual derivative of f and L1−α is the linear transformation a from Rn to Rn defined by L1−α(x ,...,x )=(a1−αx ,...,a1−αx ). a 1 n 1 1 n n Proof. It is suffices to show that f(a +h a1−α,...,a +h a1−α) f(a ,...,a ) Df(a) L1−α(h) lim k 1 1 1 n n n − 1 n − ◦ a k =0. h→0 h k k 4 Let ǫ = (ǫ ,...,ǫ ) = (h a1−α,...,h a1−α), then ǫ 0 as h 0. On the other 1 n 1 1 n n → → hand, if we put M =max (a1−α)2 a >0,i=1,2,...,n >0, then { i | i } kǫk=qh21(a11−α)2+...+h2n(a1n−α)2 ≤qh21M +...+h2nM =√nMkhk. Hence we have 1 ǫ h . √nMk k≤k k Finally, f(a +h a1−α,...,a +h a1−α) f(a ,...,a ) Df(a) L1−α(h) lim k 1 1 1 n n n − 1 n − ◦ a k h→0 h k k f(a +h a1−α,...,a +h a1−α) f(a) Df(a)(h a1−α,...,h a1−α) = lim k 1 1 1 n n n − − 1 1 n n k h→0 h k k f(a+ǫ) f(a) Df(a)(ǫ) lim k − − k ≤ǫ→0 1 ǫ √nMk k f(a+ǫ) f(a) Df(a)(ǫ) =√nM lim k − − k =√nM.0=0. ǫ→0 ǫ k k This completes the proof. Theorem 3.7 is the generalized case of the part (6) of Theorem 2.3. Also matrix form of the Theorem 3.7 is given by the following: a11−α 0 ... 0 fα(a)=f′(a). 0... a11−...α ...... 0... ,  0 0 ... a1−α n a11−α 0 ... 0 where f′(a) is the usual Jacobian of f and  0... a11−...α ...... 0...  is the matrix  0 0 ... a1−α corresponding to linear transformation L1−α. n a Theorem3.8. Ifavectorvaluedfunctionf withnvariables isα differentiable − at a=(a ,...,a ) Rn, each a >0, then f is continuous at a Rn. 1 n i ∈ ∈ 5 Proof. Since f(a +h a1−α,...,a +h a1−α) f(a ,...,a ) k 1 1 1 n n n − 1 n k f(a +h a1−α,...,a +h a1−α) f(a) L(h)+L(h) = k 1 1 1 n n n − − k h h k k k k f(a +h a1−α,...,a +h a1−α) f(a) L(h) k 1 1 1 n n n − − k h + L(h) . ≤ h k k k k k k We have f(a +h a1−α,...,a +h a1−α) f(a ,...,a ) k 1 1 1 n n n − 1 n k f(a +h a1−α,...,a +h a1−α) f(a) L(h) k 1 1 1 n n n − − k h + L(h) . ≤ h k k k k k k By taking limits of the two sides of the inequality as h 0, we have → lim f(a +h a1−α,...,a +h a1−α) f(a ,...,a ) h→0k 1 1 1 n n n − 1 n k f(a +h a1−α,...,a +h a1−α) f(a) L(h) lim k 1 1 1 n n n − − k lim h + lim L(h) ≤h→0 h h→0k k h→0k k k k =0. Let (ǫ ,...,ǫ )=(h a1−α,...,h a1−α), then ǫ 0 as h 0. Since 1 n 1 1 n n → → lim f(a+ǫ) f(a) 0 ǫ→0k − k≤ we have lim f(a+ǫ) f(a) =0. ǫ→0k − k Hence f is continuous at a Rn. ∈ Theorem 3.9. (Chain Rule) Let x Rn, y Rm. If f(x)=(f (x),...,f (x)) 1 m ∈ ∈ is α differentiable at a=(a ,...,a ) Rn, each a >0 such that α (0,1] and 1 n i − ∈ ∈ g(y) = (g (y),...,g (y)) is α differentiable at f(a) Rm, all f (a) > 0 such 1 p i − ∈ that α (0,1]. Then the composition g f is α differentiable at a and ∈ ◦ − Dα(g f)(a)=Dαg(f(a)) f(a)α−1 Dαf(a) (4) ◦ ◦ ◦ where f(a)α−1 is the linear transformation from Rm to Rm defined by f(a)α−1(x ,...,x )=(x f (a)α−1,...,x f (a)α−1). 1 m 1 1 m m 6 Proof. Let L=Dαf(a), M =Dαg(f(a)). If we define (i) ϕ(a +h a1−α,...,a +h a1−α) 1 1 1 n n n =f(a +h a1−α,...,a +h a1−α) f(a) L(h), 1 1 1 n n n − − (ii) ψ(f (a)+k f (a)1−α,...,f (a)+k f (a)1−α) 1 1 1 n n n =g(f (a)+k f (a)1−α,...,f (a)+k f (a)1−α) g(f(a)) M(k), 1 1 1 n n n − − (iii) ρ(a +h a1−α,...,a +h a1−α) 1 1 1 n n n =g f(a +h a1−α,...,a +h a1−α) g f(a) M f(a)α−1 L(h), ◦ 1 1 1 n n n − ◦ − ◦ ◦ then ϕ(a +h a1−α,...,a +h a1−α) (iv) limh→0 k 1 1 1 h n n n k =0, k k ψ(f (a)+k f (a)1−α,...,f (a)+k f (a)1−α) 1 1 1 n n n (v) limk→0 k k k =0, k k and we must show that ρ(a +h a1−α,...,a +h a1−α) limh→0k 1 1 1 h n n n k =0 k k Now, ρ(a +h a1−α,...,a +h a1−α) 1 1 1 n n n =g(f(a +h a1−α,...,a +h a1−α)) g(f(a)) M f(a)α−1 L(h) 1 1 1 n n n − − ◦ ◦ =g(f (a +h a1−α,...,a +h a1−α),...,f (a +h a1−α,...,a +h a1−α)) 1 1 1 1 n n n m 1 1 1 n n n g(f(a)) M f(a)α−1(f(a +h a1−α,...,a +h a1−α) f(a) − − ◦ 1 1 1 n n n − ϕ(a +h a1−α,...,a +h a1−α)) by(i) − 1 1 1 n n n =[g(f (a +h a1−α,...,a +h a1−α),...,f (a +h a1−α,...,a +h a1−α)) 1 1 1 1 n n n m 1 1 1 n n n g(f(a)) M(f(a)α−1(f(a +h a1−α,...,a +h a1−α) f(a)))] − − 1 1 1 n n n − +M f(a)α−1(ϕ(a +h a1−α,...,a +h a1−α)) ◦ 1 1 1 n n n =[g(f (a +h a1−α,...,a +h a1−α),...,f (a +h a1−α,...,a +h a1−α)) 1 1 1 1 n n n m 1 1 1 n n n g(f(a)) M(f(a)α−1(f (a +h a1−α,...,a +h a1−α) f (a),..., − − 1 1 1 1 n n n − 1 f (a +h a1−α,...,a +h a1−α) f (a)))] m 1 1 1 n n n − m +M f(a)α−1(ϕ(a +h a1−α,...,a +h a1−α)) ◦ 1 1 1 n n n 7 =[g(f (a +h a1−α,...,a +h a1−α),...,f (a +h a1−α,...,a +h a1−α)) 1 1 1 1 n n n m 1 1 1 n n n g(f(a)) M([f (a +h a1−α,...,a +h a1−α) f (a)]f (a)α−1,..., − − 1 1 1 1 n n n − 1 1 [f (a +h a1−α,...,a +h a1−α) f (a)]f (a)α−1)] m 1 1 1 n n n − m m +M f(a)α−1(ϕ(a +h a1−α,...,a +h a1−α)) ◦ 1 1 1 n n n If we put u = [f (a +h a1−α,...,a +h a1−α) f (a)]f (a)α−1, i = 1,...,n, i i 1 1 1 n n n − i i then we have f (a +h a1−α,...,a +h a1−α)=f (a)+u f (a)1−α and u 0 i 1 1 1 n n n i i i → as h 0. Therefore, → ρ(a +h a1−α,...,a +h a1−α) 1 1 1 n n n =[g(f (a +h a1−α,...,a +h a1−α),...,f (a +h a1−α,...,a +h a1−α)) 1 1 1 1 n n n m 1 1 1 n n n g(f(a)) M(u)]+M f(a)α−1(ϕ(a +h a1−α,...,a +h a1−α)) − − ◦ 1 1 1 n n n =ψ(f (a)+u f (a)1−α,...,f (a)+u f (a)1−α) 1 1 1 m m m +M f(a)α−1(ϕ(a +h a1−α,...,a +h a1−α)) by(ii). ◦ 1 1 1 n n n Thus we must show ψ(f (a)+u f (a)1−α,...,f (a)+u f (a)1−α) (vi) limu→0 k 1 1 1 u m m m k =0, k k M f(a)α−1(ϕ(a +h a1−α,...,a +h a1−α)) (vii) limh→0 k ◦ 1 1h1 n n n k =0. k k For (vi), it is obvious from (v). For (vii), the linear transformation satisfies M f(a)α−1(ϕ(a +h a1−α,...,a +h a1−α)) k ◦ 1 1 1 n n n k K ϕ(a +h a1−α,...,a +h a1−α) ≤ k 1 1 1 n n n k such that K >0. Hence, from (iv), (vii) holds. Corollary 3.10. For, m=n=p=1, Theorem 3.9 states that T (g f)(a)=T g(f(a))T f(a)f(a)α−1. α α α ◦ Above corollary says that Theorem 3.9 is the generalized case of Theorem 2.4. 8 Corollary 3.11. Let all conditions of Theorem 3.9 be satisfied. Then f1(a)α−1 0 ... 0 (g◦f)α(a)=gα(f(a)) 0... f2(a...)α−1 ...... 0... fα(a)  0 0 ... fm(a)α−1 f1(a)α−1 0 ... 0  0 f2(a)α−1 ... 0  where  ... ... ... ...  is the matrix corresponding to the linear  0 0 ... fm(a)α−1 transformation f(a)α−1. Theorem 3.12. Let f be a vector valued function with n variables such that f(x ,...,x ) = (f (x ,...,x ),...,f (x ,...,x )). Then f is α differentiable at 1 n 1 1 n m 1 n − a=(a ,...,a ) Rn, each a >0 if and only if each f is, and 1 n i i ∈ Dαf(a)=(Dαf (a),...,Dαf (a)). 1 m Proof. If eachf is α differentiable at a andL=(Dαf (a),...,Dαf (a)), then i 1 m − f(a +h a1−α,...,a +h a1−α) f(a) L(h) 1 1 1 n n n − − =(f (a +h a1−α,...,a +h a1−α) f (a) Dαf (a)(h),..., 1 1 1 1 n n n − 1 − 1 f (a +h a1−α,...,a +h a1−α) f (a) Dαf (a)(h)). m 1 1 1 n n n − m − m Therefore, f(a +h a1−α,...,a +h a1−α) f(a) L(h) lim k 1 1 1 n n n − − k h→0 h k k n f (a +h a1−α,...,a +h a1−α) f (a) Dαf (a)(h) lim k i 1 1 1 n n n − i − i k =0. ≤h→0X h i=1 k k If,ontheotherhand,f isα differentiableata,thenf =π f isα differentiable i i − − at a by Theorem 3.9. Theorem 3.13. Let α (0,1] and f,g be α differentiable at a point a = ∈ − (a ,...,a ) Rn, each a >0. Then 1 n i ∈ (i) Dα(λf +µg)(a)=λDαf(a)+µDαg(a) for all λ,µ R. ∈ (ii) Dα(fg)(a)=f(a)Dαg(a)+g(a)Dαf(a). 9 Proof. (i) follows from the definition, thus we omitted the proof of (i). For (ii), let a +h a1−α,...,a +h a1−α =A, then 1 1 1 n n n (fg)(A) (fg)(a) (f(a)Dαg(a)+g(a)Dαf(a))(h) lim k − − k h→0 h k k f(A)g(A) f(a)g(A) g(A)Dαf(a)(h) lim k − − k ≤h→0 h k k f(a)g(A) f(a)g(a) f(a)Dαg(a)(h) + lim k − − k h→0 h k k g(A)Dαf(a)(h) g(a)Dαf(a)(h) + lim k − k h→0 h k k f(A) f(a) Dαf(a)(h) = lim g(A) k − − k h→0k k h k k g(A) g(a) Dαg(a)(h) g(A) g(a) + lim f(a) k − − k + lim Dαf(a)(h) k − k h→0k k h h→0k k h k k k k g(A) g(a) lim K h k − k =0 ≤h→0 k k h k k This completes the proof. 4. Conformable Partial Derivatives We begin this section with a correction. In [3], authors define the con- formable derivative of a function with m variables [Definition 2.9]. But the definition is not valid for α= 1 and x <0. We give the corrected definition of 2 i conformable partial derivative of a real valued function with n variables by the following. Definition 4.1. Let f be a real valued function with n variables and a = (a ,...,a ) Rn be a point whose ith component is positive. Then the limit 1 n ∈ f(a ,...,a +ǫa1−α,...,a ) f(a ,...,a ) lim 1 i i n − 1 n , (5) ǫ→0 ǫ ∂α ifit exists, is denotedby f(a), and called theithconformable partial deriva- ∂xα tive of f of order α (0,1] at a. ∈ Theorem 4.2. Let f be a vector valued function with n variables. If f is ∂α α differentiable at a=(a ,...,a ) Rn, each a >0, then f (a) exists for − 1 n ∈ i ∂xα i j 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.