ebook img

Multivariable Calculus with MATLAB®: With Applications to Geometry and Physics PDF

280 Pages·2018·8.101 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multivariable Calculus with MATLAB®: With Applications to Geometry and Physics

® Multivariable Calculus with MATLAB · Ronald L. Lipsman Jonathan M. Rosenberg Multivariable Calculus ® with MATLAB With Applications to Geometry and Physics RonaldL.Lipsman JonathanM.Rosenberg DepartmentofMathematics DepartmentofMathematics UniversityofMaryland UniversityofMaryland CollegePark,MD,USA CollegePark,MD,USA ISBN978-3-319-65069-2 ISBN978-3-319-65070-8(eBook) DOI10.1007/978-3-319-65070-8 LibraryofCongressControlNumber:2017949120 ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface 4 3 z2 1 0 2 1 1 2 0 0 -1 y -1 -2 x The preface of a book gives the authors their best chance to answer an extremely importantquestion:Whatmakesthisbookspecial? ThisbookisareworkingandupdatingforMATLABofourpreviousbook(joint ® with Kevin R. Coombes) Multivariable Calculus with Mathematica , Springer,1998.Itrepresentsourattempttoenrichandenliventheteachingofmul- tivariable calculus and mathematical methods courses for scientistsand engineers. Mostbooksinthesesubjectsarenotsubstantiallydifferentfromthoseoffiftyyears ago. (Well, they may include fancier graphics and omit several topics, but those are minor changes.) This book is different. We do touch on most of the classical topics; however, we have made a particular effort to illustrate each point with a significant example. More importantly, we have tried to bring fundamental physi- calapplications—Kepler’slaws,electromagnetism,fluidflow,energyestimation— back to a prominent position in the subject. From one perspective, the subject of multivariable calculus only existsbecause itcan beapplied toimportantproblems inscience. Inaddition,wehaveincludedadiscussionofthegeometricinvariantsofcurves andsurfaces,providing,ineffect,abriefintroductiontodifferentialgeometry.This materialprovidesanaturalextensiontothetraditionalsyllabus. We believe that we have succeeded in resurrecting material that used to be in the course while introducing new material. A major reason for that success is that weusethecomputationalpowerofthemathematicalsoftwaresystemMATLABto carry a large share of the load. MATLAB is tightly integrated into every portion of this book. We use its graphical capabilities to draw pictures of curves and sur- faces;weuse itssymbolical capabilities tocompute curvature and torsion;we use itsnumericalcapabilitiestotackleproblemsthatarewellbeyondthetypicalmun- daneexamplesoftextbooksthattreatthesubjectwithoutusingacomputer.Finally, and this is something not done in any other books at this level, we give a serious yet elementary explanation of how various numerical algorithms work, and what their advantages and disadvantages are. Again, this is something that could not be accomplishedwithoutasoftwarepackagesuchasMATLAB. v vi Preface AsanadditionalbenefitfromintroducingMATLAB,weareabletoimprovestu- dents’understandingofimportantelementsofthetraditionalsyllabus.Ourstudents arebetterabletovisualizeregionsintheplaneandinspace.Theydevelopabetter feelforthegeometricmeaningofthegradient;forthemethodofsteepestdescent; fortheorthogonalityoflevelcurvesandgradientflows.Becausetheyhavetoolsfor visualizingcrosssectionsofsolids,theyarebetterabletofindthelimitsofintegra- tioninmultipleintegrals. Tosummarize,wethinkthisbookisspecialbecause,byusingit: (cid:129) studentsobtainabetterunderstandingofthetraditionalmaterial; (cid:129) studentsseethedeepconnectionsbetweenmathematicsandscience; (cid:129) studentslearnmoreabouttheintrinsicgeometryofcurvesandsurfaces; (cid:129) studentsacquireskillusingMATLAB,apowerfulpieceofmodernmathematical software; (cid:129) instructorscanchoosefromamoreexcitingvarietyofproblemsthaninstandard textbooks;and (cid:129) both students and instructors are exposed to a more holistic approach to the subject—onethatembracesnotonlyalgebraic/calculus-basedsolutionstoprob- lems, but also numerical, graphical/geometric and qualitative approaches to the subjectanditsproblems. Conventions Throughout the book, MATLAB commands, such as solve, are printed in type- writer boldface. Theorems and general principles, such as: derivativesmeasure change, are printed in a slanted font. When new terms, such as torsion, are intro- duced,theyareprintedinanitalicfont.FilenamesandURLs(webaddresses)are printedintypewriter font.Everythingelseisprintedinastandardfont. At the start of each chapter, below the title, is a small illustration. Each is a graphic generated by a MATLAB command. Most are taken from the MATLAB solutiontooneoftheproblemsintheaccompanyingproblemset.Afewaretaken fromthechapteritself.Finally,inthisPreface,thegraphicrepresentsamoreeclectic choice.Weleaveittotheindustriousreadertoidentifythesourceofthesegraphics, aswellastoreproducethefigure. Acknowledgments We above all want to thank our former collaborators for their contributions to this project.KevinCoombes(nowattheDepartmentofBiomedicalInformaticsatOhio ® State University) was a co-author of Multivariable Calculus with Mathematica and kindly agreed to let us adapt that book for MATLAB. Brian Hunt was a co-authorofAGuidetoMATLABandtaughtusmanyusefulMATLABtricksand Preface vii tips.PaulGreenhelpeddevelopMATLABexercisesformultivariablecalculusthat eventuallyworkedtheirwayintothisbook. JonathanRosenbergthankstheNationalScienceFoundationforitssupportunder grantDMS-1607162.Anyopinions,findings,andconclusionsorrecommendations expressedinthismaterialarethoseoftheauthorsanddonotnecessarilyreflectthe viewsoftheNationalScienceFoundation. CollegePark,MD,USA RonaldL.Lipsman October1,2017 JonathanM.Rosenberg Contents Preface........................................................... v 1 Introduction................................................... 1 1.1 BenefitsofMathematicalSoftware ............................ 2 1.2 What’sinThisBook ........................................ 3 1.2.1 ChapterDescriptions ................................. 3 1.3 What’sNotinThisBook .................................... 5 1.4 HowtoUseThisBook ...................................... 6 1.5 TheMATLABInterface ..................................... 7 1.5.1 AWordonTerminology .............................. 8 1.6 SoftwareVersions .......................................... 8 ProblemSetA.ReviewofOne-VariableCalculus .................... 9 GlossaryofMATLABCommands ................................. 12 OptionstoMATLABCommands .................................. 13 References..................................................... 13 2 VectorsandGraphics........................................... 15 2.1 Vectors ................................................... 15 2.1.1 ApplicationsofVectors ............................... 17 2.2 ParametricCurves .......................................... 19 2.3 GraphingSurfaces.......................................... 23 2.4 ParametricSurfaces......................................... 25 ProblemSetB.VectorsandGraphics............................... 27 GlossaryofMATLABCommands ................................. 31 OptionstoMATLABCommands .................................. 31 3 GeometryofCurves ............................................ 33 3.1 ParametricCurves .......................................... 33 3.2 GeometricInvariants........................................ 36 3.2.1 Arclength........................................... 36 3.2.2 TheFrenetFrame .................................... 37 ix x Contents 3.2.3 CurvatureandTorsion ................................ 39 3.3 DifferentialGeometryofCurves .............................. 42 3.3.1 TheOsculatingCircle ................................ 42 3.3.2 PlaneCurves........................................ 43 3.3.3 SphericalCurves..................................... 44 3.3.4 HelicalCurves ...................................... 44 3.3.5 Congruence......................................... 45 3.3.6 TwoMoreExamples ................................. 47 ProblemSetC.Curves ........................................... 51 GlossaryofMATLABCommands ................................. 59 4 Kinematics .................................................... 61 4.1 Newton’sLawsofMotion ................................... 61 4.2 Kepler’sLawsofPlanetaryMotion............................ 64 4.3 StudyingEquationsofMotionwithMATLAB .................. 65 ProblemSetD.Kinematics ....................................... 67 GlossaryofMATLABCommands ................................. 72 Reference...................................................... 73 5 DirectionalDerivatives.......................................... 75 5.1 VisualizingFunctionsofTwoVariables ........................ 75 5.1.1 Three-DimensionalGraphs ............................ 76 5.1.2 GraphingLevelCurves ............................... 77 5.2 TheGradientofaFunctionofTwoVariables.................... 80 5.2.1 PartialDerivativesandtheGradient..................... 80 5.2.2 DirectionalDerivatives ............................... 82 5.3 FunctionsofThreeorMoreVariables.......................... 85 ProblemSetE.DirectionalDerivatives ............................. 89 GlossaryofMATLABCommandsandOptions ...................... 94 OptionstoMATLABCommands .................................. 94 6 GeometryofSurfaces........................................... 95 6.1 TheConceptofaSurface .................................... 95 6.1.1 BasicExamples...................................... 96 6.2 TheImplicitFunctionTheorem............................... 102 6.3 GeometricInvariants........................................ 105 6.4 CurvatureCalculationswithMATLAB ........................ 112 ProblemSetF.Surfaces .......................................... 115 GlossaryofMATLABCommandsandOptions ...................... 121 OptionstoMATLABCommands .................................. 121 References..................................................... 121 Contents xi 7 OptimizationinSeveralVariables................................ 123 7.1 TheOne-VariableCase...................................... 123 7.1.1 AnalyticMethods.................................... 123 7.1.2 NumericalMethods .................................. 124 7.1.3 Newton’sMethod .................................... 125 7.2 FunctionsofTwoVariables .................................. 127 7.2.1 SecondDerivativeTest................................ 128 7.2.2 SteepestDescent..................................... 130 7.2.3 MultivariableNewton’sMethod ....................... 133 7.3 ThreeorMoreVariables..................................... 134 7.4 ConstrainedOptimizationandLagrangeMultipliers.............. 136 ProblemSetG.Optimization...................................... 139 GlossaryofMATLABCommands ................................. 146 8 MultipleIntegrals.............................................. 147 8.1 AutomationandIntegration .................................. 147 8.1.1 RegionsinthePlane.................................. 148 8.1.2 ViewingSimpleRegions .............................. 151 8.1.3 PolarRegions ....................................... 152 8.2 AlgorithmsforNumericalIntegration.......................... 156 8.2.1 Algorithms for Numerical Integration in a Single Variable ............................................ 156 8.2.2 AlgorithmsforNumericalMultipleIntegration ........... 157 8.3 ViewingSolidRegions ...................................... 160 8.4 AMoreComplicatedExample ............................... 165 8.5 CylindricalCoordinates ..................................... 169 8.6 MoreGeneralChangesofCoordinates......................... 170 ProblemSetH.MultipleIntegrals.................................. 173 GlossaryofMATLABCommands ................................. 183 9 MultidimensionalCalculus...................................... 185 9.1 TheFundamentalTheoremofLineIntegrals.................... 186 9.2 Green’sTheorem........................................... 190 9.3 Stokes’Theorem ........................................... 192 9.4 TheDivergenceTheorem .................................... 194 9.5 VectorCalculusandPhysics ................................. 196 ProblemSetI.MultivariableCalculus .............................. 199 GlossaryofMATLABCommands ................................. 202 OptionstoMATLABCommands .................................. 203 References..................................................... 203

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.