ebook img

Multivariable Calculus with Applications PDF

488 Pages·2018·8.71 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multivariable Calculus with Applications

Undergraduate Texts in Mathematics Peter D. Lax Maria Shea Terrell Multivariable Calculus with Applications Undergraduate Texts in Mathematics Undergraduate Texts in Mathematics Series Editors: Sheldon Axler San Francisco State University, San Francisco, CA, USA Kenneth Ribet University of California, Berkeley, CA, USA Advisory Board: Colin Adams, Williams College David A. Cox, Amherst College L. Craig Evans, University of California, Berkeley Pamela Gorkin, Bucknell University Roger E. Howe, Yale University Michael Orrison, Harvey Mudd College Lisette G. de Pillis, Harvey Mudd College Jill Pipher, Brown University Fadil Santosa, University of Minnesota Undergraduate Texts in Mathematics are generally aimed at third- and fourth- year undergraduate mathematics students at North American universities. These texts strive to provide students and teachers with new perspectives and novel approaches.Thebooksincludemotivationthatguidesthereadertoanappreciation ofinterrelations among different aspectsofthesubject.Theyfeature examples that illustrate key concepts as well as exercises that strengthen understanding. More information about this series at http://www.springer.com/series/666 Peter D. Lax Maria Shea Terrell (cid:129) Multivariable Calculus with Applications 123 PeterD.Lax Maria SheaTerrell CourantInstitute of MathematicalSciences Department ofMathematics NewYork University Cornell University NewYork,NY Ithaca, NY USA USA ISSN 0172-6056 ISSN 2197-5604 (electronic) Undergraduate Texts inMathematics ISBN978-3-319-74072-0 ISBN978-3-319-74073-7 (eBook) https://doi.org/10.1007/978-3-319-74073-7 LibraryofCongressControlNumber:2017963518 MathematicsSubjectClassification(2010): 93C35,0001,97xx ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Ourpurposeinwritingamultivariablecalculustexthasbeentohelpstudentslearn that mathematics is the language in which scientific ideas can be precisely for- mulated and that science is a source of mathematical ideas that profoundly shape the development of mathematics. In calculus, students are expected to acquire a number of problem-solving techniques and to practice using them. Our goal is to prepare students to solve problems in multivariable calculus and to encourage them to ask, Why does cal- culus work? As a result throughout the text we offer explanations of all the importanttheoremstohelpstudentsunderstandtheirmeaning.Ouraimistofoster understanding. Thetextisintendedforafirstcourseinmultivariablecalculus.Onlyknowledge of single variable calculus is expected. In some explanations we refer to the fol- lowingtheoremsofcalculusasdiscussedforexampleinCalculusWithApplications, Peter D.Lax and Maria Shea Terrell,Springer 2014. (cid:129) MonotoneConvergenceTheoremAboundedmonotonesequencehasalimit. (cid:129) Greatest Lower Bound and Least Upper Bound Theorem A set of numbers that is bounded below has a greatest lower bound. A set of numbers that is bounded above has a least upper bound. Chapters1and2introducetheconceptofvectorsinRnandfunctionsfromRnto Rm.Chapters3through8showhowtheconceptsofderivativeandintegral,andthe important theorems of single variable calculus are extended to partial derivatives and multiple integrals, and to Stokes’ and the Divergence Theorems. Todopartialderivativeswithoutshowinghowtheyareusedisfutile.Therefore inChapter8weusevectorcalculustoderiveanddiscussseveralconservationlaws. In Chapter 9 we present and discuss a number of physical theories using partial differential equations. We quote a final passage from the book: We observe, with some astonishment, that except for the symbols used, the equationsformembranesinwhichtheelasticforcesaresobalancedthattheydonot vibrate, and heat-conducting bodies in which the temperature is so balanced that it does not change, are identical. v vi Preface Thereisnophysicalreasonwhytheequilibriumofanelasticmembraneandthe equilibriumofheatdistributionshouldbegovernedbythesameequation,butthey are, and so Their mathematical theory is the same. This is what makes mathematics a universal tool in dealing with problems of science. We thank friends and colleagues who have given us encouragement, helpful feedback, and comments on early drafts of the book, especially Louise Raphael of Howard University and Laurent Saloff-Coste and Robert Strichartz of Cornell University. We also thank Cornell students in Math 2220 who suggested ways to improve the text. We especially thank Prabudhya Bhattacharyya for his careful readingandcommentsonthetextwhilehewasanundergraduateMathematicsand Physics major at Cornell University. The book would not have been possible without the support and help of Bob Terrell. We owe Bob more than we can say. New York, USA Peter D. Lax Ithaca, USA Maria Shea Terrell Contents 1 Vectors and matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Two-dimensional vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 The norm and dot product of vectors. . . . . . . . . . . . . . . . . . . . . 9 1.3 Bilinear functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4 n-dimensional vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.5 Norm and dot product in n dimensions . . . . . . . . . . . . . . . . . . . 25 1.6 The determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.7 Signed volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 1.8 Linear functions and their representation by matrices . . . . . . . . . 48 1.9 Geometric applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.1 Functions of several variables . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.2 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 2.3 Other coordinate systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3 Differentiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.1 Differentiable functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.2 The tangent plane and partial derivatives . . . . . . . . . . . . . . . . . . 115 3.3 The Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 3.4 Inverse functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 3.5 Divergence and curl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 4 More about differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 4.1 Higher derivatives offunctions of several variables. . . . . . . . . . . 161 4.2 Extrema offunctions of two variables . . . . . . . . . . . . . . . . . . . . 165 4.3 Extrema offunctions of several variables . . . . . . . . . . . . . . . . . . 177 4.4 Extrema on level sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 vii viii Contents 5 Applications to motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 5.1 Motion in space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 5.2 Planetary motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 6 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 6.1 Introduction to area, volume, and integral . . . . . . . . . . . . . . . . . 205 6.2 The integral of a continuous function of two variables . . . . . . . . 223 6.3 Double integrals as iterated single integrals . . . . . . . . . . . . . . . . 238 6.4 Change of variables in a double integral . . . . . . . . . . . . . . . . . . 245 6.5 Integration over unbounded sets . . . . . . . . . . . . . . . . . . . . . . . . 253 6.6 Triple and higher integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 7 Line and surface integrals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 7.1 Line integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 7.2 Conservative vector fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 7.3 Surfaces and surface integrals . . . . . . . . . . . . . . . . . . . . . . . . . . 310 8 Divergence and Stokes’ Theorems and conservation laws. . . . . . . . 333 8.1 Green’s Theorem and the Divergence Theorem in R2. . . . . . . . . 333 8.2 The Divergence Theorem in R3. . . . . . . . . . . . . . . . . . . . . . . . . 346 8.3 Stokes’ Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 8.4 Conservation laws. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368 8.5 Conservation laws and one-dimensional flows . . . . . . . . . . . . . . 375 9 Partial differential equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387 9.1 Vibration of a string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387 9.2 Vibration of a membrane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398 9.3 The conduction of heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 9.4 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410 9.5 The Schrödinger equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416 Answers to selected problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421 Index .... .... .... .... .... ..... .... .... .... .... .... ..... .... 477 Chapter 1 Vectors and matrices Abstract The mathematical description of aspects of the natural world requires a collection of numbers. For example, a position on the surface of the earth is described by two numbers, latitude and longitude. To specify a position above the earth requires a third number, the altitude. To describe the state of a gas we have to specify its density and temperature; if it is a mixture of gases like oxygen and nitrogen, wehave tospecify their proportion. Such situations are abstracted inthe conceptofavector. 1.1 Two-dimensionalvectors Definition1.1.Anorderedpairofnumbersiscalledatwo-dimensionalvec- tor.Wedenoteavectorbyacapitalletter U=(u ,u ). 1 2 Thenumbersu andu arecalledthecomponentsofthevectorU.Thesetof 1 2 alltwo-dimensionalvectors,denotedR2,iscalledtwo-dimensionalspace. Weintroducethefollowingalgebraicoperationsfortwo-dimensionalvectors (a) ThemultipleofavectorU=(u ,u )byanumberc, cU,isdefinedasthevector 1 2 obtainedbymultiplyingeachcomponentofUbyc: cU=(cu ,cu ). (1.1) 1 2 (b) ThesumofvectorsU=(u ,u )andV=(v ,v ), U+V,isdefinedbyaddingthe 1 2 1 2 correspondingcomponentsofUandV: U+V=(u +v ,u +v ). (1.2) 1 1 2 2 (cid:2)c SpringerInternationalPublishingAG2017 1 P.D.LaxandM.S.Terrell,MultivariableCalculuswithApplications, UndergraduateTextsinMathematics,https://doi.org/10.1007/978-3-319-74073-7 1

Description:
This text in multivariable calculus fosters comprehension through meaningful explanations. Written with students in mathematics, the physical sciences, and engineering in mind, it extends concepts from single variable calculus such as derivative, integral, and important theorems to partial derivativ
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.