ebook img

Multivariable Calculus, Applications and Theory PDF

466 Pages·2011·8.17 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multivariable Calculus, Applications and Theory

Multivariable Calculus, Applications and Theory Kenneth Kuttler August 19, 2011 2 Contents 0.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 I Basic Linear Algebra 11 1 Fundamentals 13 1.0.1 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.1 Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.2 Algebra in Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3 Geometric Meaning Of Vector Addition In R3 . . . . . . . . . . . . . . . 16 1.4 Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5 Distance in Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.6 Geometric Meaning Of Scalar Multiplication In R3 . . . . . . . . . . . . 24 1.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.8 Exercises With Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 Matrices And Linear Transformations 29 2.0.1 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.1 Matrix Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.1.1 Addition And Scalar Multiplication Of Matrices . . . . . . . . . 29 2.1.2 Multiplication Of Matrices . . . . . . . . . . . . . . . . . . . . . 32 2.1.3 The ijth Entry Of A Product . . . . . . . . . . . . . . . . . . . . 35 2.1.4 Properties Of Matrix Multiplication . . . . . . . . . . . . . . . . 37 2.1.5 The Transpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.1.6 The Identity And Inverses . . . . . . . . . . . . . . . . . . . . . . 39 2.2 Linear Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.3 Constructing The Matrix Of A Linear Transformation . . . . . . . . . . 42 2.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.5 Exercises With Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3 Determinants 53 3.0.1 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1 Basic Techniques And Properties . . . . . . . . . . . . . . . . . . . . . . 53 3.1.1 Cofactors And 2×2 Determinants . . . . . . . . . . . . . . . . . 53 3.1.2 The Determinant Of A Triangular Matrix . . . . . . . . . . . . . 56 3.1.3 Properties Of Determinants . . . . . . . . . . . . . . . . . . . . . 58 3.1.4 Finding Determinants Using Row Operations . . . . . . . . . . . 59 3.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.2.1 A Formula For The Inverse . . . . . . . . . . . . . . . . . . . . . 61 3.2.2 Cramer’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.4 Exercises With Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3 4 CONTENTS II Vectors In Rn 77 4 Vectors And Points In Rn 79 4.0.1 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.1 Open And Closed Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2 Physical Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.4 Exercises With Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5 Vector Products 91 5.0.1 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.1 The Dot Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.2 The Geometric Significance Of The Dot Product . . . . . . . . . . . . . 94 5.2.1 The Angle Between Two Vectors . . . . . . . . . . . . . . . . . . 94 5.2.2 Work And Projections . . . . . . . . . . . . . . . . . . . . . . . . 96 5.2.3 The Parabolic Mirror, An Application . . . . . . . . . . . . . . . 98 5.2.4 The Dot Product And Distance In Cn . . . . . . . . . . . . . . . 100 5.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.4 Exercises With Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.5 The Cross Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.5.1 The Distributive Law For The Cross Product . . . . . . . . . . . 108 5.5.2 Torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.5.3 Center Of Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.5.4 Angular Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.5.5 The Box Product . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.6 Vector Identities And Notation . . . . . . . . . . . . . . . . . . . . . . . 115 5.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.8 Exercises With Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6 Planes And Surfaces In Rn 123 6.0.1 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.1 Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.2 Quadric Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 III Vector Calculus 131 7 Vector Valued Functions 133 7.0.1 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7.1 Vector Valued Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7.2 Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.3 Continuous Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 7.3.1 Sufficient Conditions For Continuity . . . . . . . . . . . . . . . . 136 7.4 Limits Of A Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 7.5 Properties Of Continuous Functions . . . . . . . . . . . . . . . . . . . . 140 7.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 7.7 Some Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 7.7.1 The Nested Interval Lemma . . . . . . . . . . . . . . . . . . . . . 146 7.7.2 The Extreme Value Theorem . . . . . . . . . . . . . . . . . . . . 146 7.7.3 Sequences And Completeness . . . . . . . . . . . . . . . . . . . . 148 7.7.4 Continuity And The Limit Of A Sequence . . . . . . . . . . . . . 151 7.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 CONTENTS 5 8 Vector Valued Functions Of One Variable 153 8.0.1 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 8.1 Limits Of A Vector Valued Function Of One Variable . . . . . . . . . . 153 8.2 The Derivative And Integral . . . . . . . . . . . . . . . . . . . . . . . . . 155 8.2.1 Geometric And Physical Significance Of The Derivative . . . . . 156 8.2.2 Differentiation Rules . . . . . . . . . . . . . . . . . . . . . . . . . 158 8.2.3 Leibniz’s Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 160 8.3 Product Rule For Matrices∗ . . . . . . . . . . . . . . . . . . . . . . . . . 160 8.4 Moving Coordinate Systems∗ . . . . . . . . . . . . . . . . . . . . . . . . 161 8.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 8.6 Exercises With Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 8.7 Newton’s Laws Of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . 166 8.7.1 Kinetic Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 8.7.2 Impulse And Momentum . . . . . . . . . . . . . . . . . . . . . . 171 8.8 Acceleration With Respect To Moving Coordinate Systems∗ . . . . . . . 172 8.8.1 The Coriolis Acceleration . . . . . . . . . . . . . . . . . . . . . . 172 8.8.2 The Coriolis Acceleration On The Rotating Earth . . . . . . . . 174 8.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 8.10 Exercises With Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 8.11 Line Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 8.11.1 Arc Length And Orientations . . . . . . . . . . . . . . . . . . . . 182 8.11.2 Line Integrals And Work . . . . . . . . . . . . . . . . . . . . . . 185 8.11.3 Another Notation For Line Integrals . . . . . . . . . . . . . . . . 188 8.12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 8.13 Exercises With Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 8.14 Independence Of Parameterization∗ . . . . . . . . . . . . . . . . . . . . 190 8.14.1 Hard Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 8.14.2 Independence Of Parameterization . . . . . . . . . . . . . . . . . 194 9 Motion On A Space Curve 197 9.0.3 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 9.1 Space Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 9.1.1 Some Simple Techniques . . . . . . . . . . . . . . . . . . . . . . . 200 9.2 Geometry Of Space Curves∗ . . . . . . . . . . . . . . . . . . . . . . . . . 202 9.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 10 Some Curvilinear Coordinate Systems 209 10.0.1 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 10.1 Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 10.1.1 Graphs In Polar Coordinates . . . . . . . . . . . . . . . . . . . . 210 10.2 The Area In Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . 212 10.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 10.4 Exercises With Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 10.5 The Acceleration In Polar Coordinates . . . . . . . . . . . . . . . . . . . 216 10.6 Planetary Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 10.6.1 The Equal Area Rule . . . . . . . . . . . . . . . . . . . . . . . . 219 10.6.2 Inverse Square Law Motion, Kepler’s First Law . . . . . . . . . . 219 10.6.3 Kepler’s Third Law. . . . . . . . . . . . . . . . . . . . . . . . . . 222 10.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 10.8 Spherical And Cylindrical Coordinates . . . . . . . . . . . . . . . . . . . 224 10.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 10.10 Exercises With Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 6 CONTENTS IV Vector Calculus In Many Variables 229 11 Functions Of Many Variables 231 11.0.1 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 11.1 The Graph Of A Function Of Two Variables. . . . . . . . . . . . . . . . 231 11.2 Review Of Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 11.3 The Directional Derivative And Partial Derivatives . . . . . . . . . . . . 234 11.3.1 The Directional Derivative . . . . . . . . . . . . . . . . . . . . . 234 11.3.2 Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 236 11.4 Mixed Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 238 11.5 Partial Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . 240 11.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 12 The Derivative Of A Function Of Many Variables 243 12.0.1 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 12.1 The Derivative Of Functions Of One Variable . . . . . . . . . . . . . . . 243 12.2 The Derivative Of Functions Of Many Variables. . . . . . . . . . . . . . 245 12.3 C1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 12.3.1 Approximation With A Tangent Plane . . . . . . . . . . . . . . . 251 12.4 The Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 12.4.1 The Chain Rule For Functions Of One Variable . . . . . . . . . . 252 12.4.2 The Chain Rule For Functions Of Many Variables . . . . . . . . 252 12.4.3 Related Rates Problems . . . . . . . . . . . . . . . . . . . . . . . 256 12.4.4 The Derivative Of The Inverse Function . . . . . . . . . . . . . . 258 12.4.5 Acceleration In Spherical Coordinates∗ . . . . . . . . . . . . . . . 259 12.4.6 Proof Of The Chain Rule . . . . . . . . . . . . . . . . . . . . . . 262 12.5 Lagrangian Mechanics∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 12.6 Newton’s Method∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 12.6.1 The Newton Raphson Method In One Dimension . . . . . . . . . 268 12.6.2 Newton’s Method For Nonlinear Systems . . . . . . . . . . . . . 269 12.7 Convergence Questions∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 12.7.1 A Fixed Point Theorem . . . . . . . . . . . . . . . . . . . . . . . 272 12.7.2 The Operator Norm . . . . . . . . . . . . . . . . . . . . . . . . . 272 12.7.3 A Method For Finding Zeros . . . . . . . . . . . . . . . . . . . . 275 12.7.4 Newton’s Method. . . . . . . . . . . . . . . . . . . . . . . . . . . 276 12.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 13 The Gradient And Optimization 281 13.0.1 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 13.1 Fundamental Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 13.2 Tangent Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 13.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 13.4 Local Extrema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 13.5 The Second Derivative Test . . . . . . . . . . . . . . . . . . . . . . . . . 288 13.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 13.7 Lagrange Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 13.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 13.9 Exercises With Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 13.10Proof Of The Second Derivative Test∗ . . . . . . . . . . . . . . . . . . . 306 CONTENTS 7 14 The Riemann Integral On Rn 309 14.0.1 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 14.1 Methods For Double Integrals . . . . . . . . . . . . . . . . . . . . . . . . 309 14.1.1 Density And Mass . . . . . . . . . . . . . . . . . . . . . . . . . . 316 14.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 14.3 Methods For Triple Integrals . . . . . . . . . . . . . . . . . . . . . . . . 318 14.3.1 Definition Of The Integral . . . . . . . . . . . . . . . . . . . . . . 318 14.3.2 Iterated Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 14.3.3 Mass And Density . . . . . . . . . . . . . . . . . . . . . . . . . . 323 14.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 14.5 Exercises With Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 15 The Integral In Other Coordinates 331 15.0.1 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 15.1 Different Coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 15.1.1 Two Dimensional Coordinates . . . . . . . . . . . . . . . . . . . 332 15.1.2 Three Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 334 15.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 15.3 Exercises With Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 15.4 The Moment Of Inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 15.4.1 The Spinning Top . . . . . . . . . . . . . . . . . . . . . . . . . . 348 15.4.2 Kinetic Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 15.4.3 Finding The Moment Of Inertia And Center Of Mass . . . . . . 352 15.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 16 The Integral On Two Dimensional Surfaces In R3 357 16.0.1 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 16.1 The Two Dimensional Area In R3 . . . . . . . . . . . . . . . . . . . . . . 357 16.1.1 Surfaces Of The Form z =f(x,y) . . . . . . . . . . . . . . . . . 361 16.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 16.3 Exercises With Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 17 Calculus Of Vector Fields 369 17.0.1 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 17.1 Divergence And Curl Of A Vector Field . . . . . . . . . . . . . . . . . . 369 17.1.1 Vector Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 17.1.2 Vector Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 17.1.3 The Weak Maximum Principle . . . . . . . . . . . . . . . . . . . 372 17.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 17.3 The Divergence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 374 17.3.1 Coordinate Free Concept Of Divergence . . . . . . . . . . . . . . 377 17.4 Some Applications Of The Divergence Theorem . . . . . . . . . . . . . . 378 17.4.1 Hydrostatic Pressure . . . . . . . . . . . . . . . . . . . . . . . . . 378 17.4.2 Archimedes Law Of Buoyancy . . . . . . . . . . . . . . . . . . . 379 17.4.3 Equations Of Heat And Diffusion . . . . . . . . . . . . . . . . . . 379 17.4.4 Balance Of Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 17.4.5 Balance Of Momentum . . . . . . . . . . . . . . . . . . . . . . . 381 17.4.6 Frame Indifference . . . . . . . . . . . . . . . . . . . . . . . . . . 386 17.4.7 Bernoulli’s Principle . . . . . . . . . . . . . . . . . . . . . . . . . 387 17.4.8 The Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . 388 17.4.9 A Negative Observation . . . . . . . . . . . . . . . . . . . . . . . 389 17.4.10Electrostatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389 17.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390 8 CONTENTS 18 Stokes And Green’s Theorems 393 18.0.1 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 18.1 Green’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 18.2 Stoke’s Theorem From Green’s Theorem . . . . . . . . . . . . . . . . . . 398 18.2.1 The Normal And The Orientation . . . . . . . . . . . . . . . . . 400 18.2.2 The Mobeus Band . . . . . . . . . . . . . . . . . . . . . . . . . . 402 18.2.3 Conservative Vector Fields . . . . . . . . . . . . . . . . . . . . . 403 18.2.4 Some Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . 406 18.2.5 Maxwell’s Equations And The Wave Equation . . . . . . . . . . 406 18.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408 A The Mathematical Theory Of Determinants∗ 411 A.1 The Function sgn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 n A.2 The Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413 A.2.1 The Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413 A.2.2 Permuting Rows Or Columns . . . . . . . . . . . . . . . . . . . . 414 A.2.3 A Symmetric Definition . . . . . . . . . . . . . . . . . . . . . . . 415 A.2.4 The Alternating Property Of The Determinant . . . . . . . . . . 415 A.2.5 Linear Combinations And Determinants . . . . . . . . . . . . . . 416 A.2.6 The Determinant Of A Product. . . . . . . . . . . . . . . . . . . 416 A.2.7 Cofactor Expansions . . . . . . . . . . . . . . . . . . . . . . . . . 417 A.2.8 Formula For The Inverse. . . . . . . . . . . . . . . . . . . . . . . 419 A.2.9 Cramer’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420 A.2.10 Upper Triangular Matrices . . . . . . . . . . . . . . . . . . . . . 420 A.2.11 The Determinant Rank . . . . . . . . . . . . . . . . . . . . . . . 421 A.2.12 Telling Whether A Is One To One Or Onto . . . . . . . . . . . . 422 A.2.13 Schur’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 A.2.14 Symmetric Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 425 A.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426 B Implicit Function Theorem∗ 429 B.1 The Method Of Lagrange Multipliers . . . . . . . . . . . . . . . . . . . . 432 B.2 The Local Structure Of C1 Mappings . . . . . . . . . . . . . . . . . . . 434 C The Theory Of The Riemann Integral∗ 437 C.1 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440 C.2 Which Functions Are Integrable? . . . . . . . . . . . . . . . . . . . . . . 442 C.3 Iterated Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 C.4 The Change Of Variables Formula . . . . . . . . . . . . . . . . . . . . . 454 C.5 Some Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460 Copyright (cid:176)c 2004 0.1 Introduction Multivariable calculus is just calculus which involves more than one variable. To do it properly,youhavetousesomelinearalgebra. Otherwiseitisimpossibletounderstand. This book presents the necessary linear algebra and then uses it as a framework upon which to build multivariable calculus. This is not the usual approach in beginning courses but it is the correct approach, leaving open the possibility that at least some students will learn and understand the topics presented. For example, the derivative of afunctionofmanyvariablesisalineartransformation. Ifyoudon’tknowwhatalinear transformation is, then you can’t understand the derivative because that is what it is 0.1. INTRODUCTION 9 and nothing else can be correctly substituted for it. The chain rule is best understood in terms of products of matrices which represent the various derivatives. The concepts involving multiple integrals involve determinants. The understandable version of the second derivative test uses eigenvalues, etc. Thepurposeofthisbookistopresentthissubjectinawaywhichcanbeunderstood by a motivated student. Because of the inherent difficulty, any treatment which is easy forthemajorityofstudentswillnotyieldacorrectunderstanding. However,theattempt is being made to make it as easy as possible. Many applications are presented. Some of these are very difficult but worthwhile. Hard sections are starred in the table of contents. Most of these sections are en- richment material and can be omitted if one desires nothing more than what is usually doneinastandardcalculusclass. Stunninglydifficultsectionshavingsubstantialmath- ematical content are also decorated with a picture of a battle between a dragon slayer and a dragon, the outcome of the contest uncertain. These sections are for fearless students who want to understand the subject more than they want to preserve their egos. Sometimes the dragon wins. 10 CONTENTS

Description:
III Vector Calculus 131 Multivariable calculus is just calculus which involves more than one variable. To do it properly, you have to use some linear algebra.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.