9781285060293_FM.qxd 10/30/12 1:14 PM Page xiv 9781285060293_FES.qxp 10/18/12 7:39 AM Page 2 Index of Applications Engineering and Physical Electrical resistance,185 Mass,1055,1061 Sciences Electricity,155,303 on the surface of Earth,486 Electromagnetic theory,577 Maximum area,219,220,221,222,224, Acceleration,124,128,156,158,176, Emptying a tank of oil,481 240,242,949 253,906 Error Maximum cross-sectional area of an Air pressure,431 in volume of a ball bearing,233 irrigation canal,223 Air traffic control,154,745,650,850 in volume and surface area of a cube, Maximum volume,221,222,223 Aircraft glide path,193 236 of a box,215,216,220,222,944,949, Angle of elevation,151,155,156 Explorer 18,694,741 958 Angular rate of change,374 Explorer 55,694 of a can buoy,959 Architecture,694 Falling object,34,315,426,429 of a package,222 Area,116,126,153,256,603,674 Ferris wheel,866 Minimum length,218,221,222,240 Asteroid Apollo,738 Flow rate,286,355,1105 Minimum surface area,222 Atmospheric pressure and altitude,327, Fluid force,541 Minimum time,222,230 353,951 on a circular plate,502 Motion Automobile aerodynamics,30 of gasoline,501,502 of a liquid,1118,1119 Average speed,40,89 on a stern of a boat,502 of a particle,712 Average temperature,984,1034 in a swimming pool,504,506 pendulum,1155 Average velocity,112 on a tank wall,501,502 spring,1154 Beam deflection,693 of water,501 Moving ladder,154 Beam strength,35,222 Force,289,501,771 Moving shadow,156,158,160 Billiard balls and normal lines,927 Force field,1130 Muzzle velocity,756,757 Boiling temperature,35 Free-falling object,69,82,91 Navigation,695,757 Boyle’s Law,485,504 Frictional force,858,862 Newton’s Law of Gravitation,1041 Braking load,774 Gauss’s Law,1103 Orbit of Earth,708 Breaking strength of a steel cable,364 Gravitational fields,1041 Orbital speed,850 Bridge design,694 Gravitational force,577 Parabolic reflector,684 Building design,445,556,1008,1035, Halley’s comet,694,737 Parachute jump,1148 1064 Harmonic motion,36,38,138,353 Particle motion,128,287,290,823,831, Buoyant force,501 Heat flux,1123 833,839,840,849,850,861 Cable tension,757,765 Heat transfer,336 Path Capillary action,1008 Heat-seeking particle,921 of a ball,838 Car performance,35 Heat-seeking path,926 of a baseball,837,838,860 Carbon dating,413 Height of a bomb,839,865 Center of mass,of glass,496 of a baseball,29 of a football,839 Center of pressure on a sail,1001 of a basketball,32 of a projectile,182,712,838,839,964 Centripetal acceleration,850 Highway design,169,193,866 of a shot-put throw,839 Centripetal force,850 Honeycomb,169 Pendulum,138,237,906,1155 Centroid,494,495,502,519 Horizontal motion,355 Planetary motion,741 Chemical mixture problem,427,429 Hyperbolic detection system,691 Planetary orbits,687 Chemical reaction,391,422,550,962 Hyperbolic mirror,695 Planimeter,1122 Circular motion,840,848 Ideal Gas Law,879,898,914 Power,169,906 Comet Hale-Bopp,741 Illumination,222,241 Projectile motion,237,675,705,757, Construction,154,765 Inflating balloon,150 836,838,839,847,849,850,860, Cycloidal motion,839,849 Kepler’s Laws,737,738,862 865,913 Depth Kinetic and potential energy,1071,1074 Radioactive decay,356,409,413,421, of gasoline in a tank,503 Law of Conservation of Energy,1071 431 of water in a swimming pool,153 Lawn sprinkler,169 Refraction of light,959 of water in a vase,29 Length,603 Refrigeration,158 Distance,241 of a catenary,473,503 Resultant force,754,756 Einstein’s Special Theory of Relativity of pursuit,476 Ripples in a pond,149 and Newton’s First Law of Motion, of a stream,475 Rolling a ball bearing,185 204 Linear and angular velocity,158 Satellite antenna,742 Electric circuit,406,426,429 Linear vs. angular speed,156 Satellite orbit,694,866 Electric force,485 Load supported by a beam,1155 Satellites,127 Electric force fields,1041 Load supports,765 Sending a space module into orbit,480, Electric potential,878 Lunar gravity,253 571 Electrical charge,1105 Magnetic field of Earth,1050 Solar collector,693 Electrical circuits,1147 Map of the ocean floor,926 Sound intensity,40,327,414 (continued on back inside cover) Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 9781285060293_FES.qxp 10/18/12 7:39 AM Page 3 DERIVATIVES AND INTEGRALS s. s Basic Differentiation Rules e c Suc 1. d (cid:2)cu(cid:3)(cid:3)cu(cid:4) 2. d (cid:2)u ± v(cid:3)(cid:3)u(cid:4)± v(cid:4) 3. d (cid:2)uv(cid:3)(cid:3) uv(cid:4)(cid:5) vu(cid:4) k dx dx dx or d (cid:8)u(cid:9) vu(cid:4)(cid:2)uv(cid:4) d d w 4. (cid:3) 5. (cid:2)c(cid:3)(cid:3)0 6. (cid:2)un(cid:3)(cid:3) nun(cid:2)1u(cid:4) e dx v v2 dx dx m Ho 7. d (cid:2)x(cid:3)(cid:3)1 8. d (cid:2)(cid:4)u(cid:4)(cid:3)(cid:3) (cid:4)u(cid:4)(cid:6)u(cid:4)(cid:7), u(cid:6)0 9. d (cid:2)ln u(cid:3)(cid:3) u(cid:4) r dx dx u dx u o ds f 10. d (cid:2)eu(cid:3)(cid:3)euu(cid:4) 11. d (cid:2)log u(cid:3)(cid:3) u(cid:4) 12. d (cid:2)au(cid:3)(cid:3)(cid:6)ln a(cid:7)auu(cid:4) ar dx dx a (cid:6)ln a(cid:7)u dx C a 13. d (cid:2)sin u(cid:3)(cid:3)(cid:6)cos u(cid:7)u(cid:4) 14. d (cid:2)cos u(cid:3)(cid:3)(cid:2)(cid:6)sin u(cid:7)u(cid:4) 15. d (cid:2)tan u(cid:3)(cid:3)(cid:6)sec2 u(cid:7)u(cid:4) ul dx dx dx m r d d d Fo 16. (cid:2)cot u(cid:3)(cid:3)(cid:2)(cid:6)csc2 u(cid:7)u(cid:4) 17. (cid:2)sec u(cid:3)(cid:3)(cid:6)sec u tan u(cid:7)u(cid:4) 18. (cid:2)csc u(cid:3)(cid:3)(cid:2)(cid:6)csc u cot u(cid:7)u(cid:4) ut dx dx dx o d u(cid:4) d (cid:2)u(cid:4) d u(cid:4) r 19. (cid:2)arcsin u(cid:3)(cid:3) 20. (cid:2)arccos u(cid:3)(cid:3) 21. (cid:2)arctan u(cid:3)(cid:3) ea dx (cid:5)1(cid:2)u2 dx (cid:5)1(cid:2)u2 dx 1(cid:5)u2 T d (cid:2)u(cid:4) d u(cid:4) d (cid:2)u(cid:4) 22. dx(cid:2)arccot u(cid:3)(cid:3) 1(cid:5)u2 23. dx(cid:2)arcsec u(cid:3)(cid:3) (cid:4)u(cid:4)(cid:5)u2(cid:2)1 24. dx(cid:2)arccsc u(cid:3)(cid:3) (cid:4)u(cid:4)(cid:5)u2(cid:2)1 d d d 25. (cid:2)sinh u(cid:3)(cid:3)(cid:6)cosh u(cid:7)u(cid:4) 26. (cid:2)cosh u(cid:3)(cid:3)(cid:6)sinh u(cid:7)u(cid:4) 27. (cid:2)tanh u(cid:3)(cid:3)(cid:6)sech2 u(cid:7)u(cid:4) dx dx dx d d d 28. (cid:2)coth u(cid:3)(cid:3)(cid:2)(cid:6)csch2 u(cid:7)u(cid:4) 29. (cid:2)sech u(cid:3)(cid:3)(cid:2)(cid:6)sech u tanh u(cid:7)u(cid:4) 30. (cid:2)csch u(cid:3)(cid:3)(cid:2)(cid:6)csch u coth u(cid:7)u(cid:4) dx dx dx d u(cid:4) d u(cid:4) d u(cid:4) 31. (cid:2)sinh(cid:2)1 u(cid:3)(cid:3) 32. (cid:2)cosh(cid:2)1 u(cid:3)(cid:3) 33. (cid:2)tanh(cid:2)1 u(cid:3)(cid:3) dx (cid:5)u2(cid:5)1 dx (cid:5)u2(cid:2)1 dx 1(cid:2)u2 d u(cid:4) d (cid:2)u(cid:4) d (cid:2)u(cid:4) 34. dx(cid:2)coth(cid:2)1 u(cid:3)(cid:3) 1(cid:2)u2 35. dx(cid:2)sech(cid:2)1 u(cid:3)(cid:3) u(cid:5)1(cid:2)u2 36. dx(cid:2)csch(cid:2)1 u(cid:3)(cid:3) (cid:4)u(cid:4)(cid:5)1(cid:5)u2 Basic Integration Formulas (cid:10) (cid:10) (cid:10) (cid:10) (cid:10) 1. kf(cid:6)u(cid:7) du(cid:3)k f(cid:6)u(cid:7) du 2. (cid:2)f(cid:6)u(cid:7) ± g(cid:6)u(cid:7)(cid:3) du(cid:3) f(cid:6)u(cid:7) du ± g(cid:6)u(cid:7) du (cid:10) (cid:10) un(cid:5)1 3. du(cid:3)u(cid:5)C 4. un du(cid:3) (cid:5)C, n(cid:6)(cid:2)1 (cid:10) (cid:10) n(cid:5)1 du (cid:4) (cid:4) 5. (cid:3)ln u (cid:5)C 6. eu du(cid:3)eu(cid:5)C (cid:10)u (cid:10) (cid:11) 1 (cid:12) 7. au du(cid:3) au(cid:5)C 8. sin u du (cid:3)(cid:2)cos u (cid:5)C (cid:10) ln a (cid:10) (cid:4) (cid:4) 9. cos u du (cid:3)sin u (cid:5)C 10. tan u du (cid:3)(cid:2)ln cos u (cid:5) C (cid:10) (cid:10) (cid:4) (cid:4) (cid:4) (cid:4) 11. cot u du (cid:3)ln sin u (cid:5)C 12. sec u du (cid:3)ln sec u (cid:5)tan u (cid:5) C g (cid:10) (cid:10) n ni (cid:4) (cid:4) ar 13. csc u du (cid:3)(cid:2)ln csc u (cid:5)cot u (cid:5)C 14. sec2 u du(cid:3)tan u (cid:5)C e L (cid:10) (cid:10) e g ga 15. csc2 u du(cid:3)(cid:2)cot u (cid:5)C 16. sec u tan u du(cid:3)sec u (cid:5)C en (cid:10) (cid:10) C Cole, 17. (cid:10)csc u cot u du(cid:3)(cid:2)csc u (cid:5)C 18. (cid:10)(cid:5)a2du(cid:2)u2 (cid:3)arcsin au (cid:5) C / (cid:4) (cid:4) ks du 1 u du 1 u o 19. (cid:3) arctan (cid:5)C 20. (cid:3) arcsec (cid:5) C ro a2(cid:5)u2 a a u(cid:5)u2(cid:2)a2 a a B © Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 9781285060293_FES.qxp 10/18/12 7:39 AM Page 4 TRIGONOMETRY Definition of the Six Trigonometric Functions Right triangle definitions,where 0 < (cid:7)< (cid:8)(cid:13)2. y HAθy pdojtaecneunste Opposite c t saoinns (cid:7)(cid:7)(cid:7)(cid:3)(cid:3)(cid:3) hhooayyppdppppj scc esocct (cid:7)(cid:7)(cid:7)(cid:3)(cid:3)(cid:3) ohhaapyyddpppjj (−(−232,2,12)(−2212),56π23341π)51023°3π5°120°π2 9(00,° 610)°4π35°3(0π124°,π62(3)22(,2322, )21) adj opp 0° 0 Circular function definitions,where (cid:7)is any angle. (−1, 0) π 180° 360° 2π (1, 0) x y y r (x, y) r = x2 + y2 sin (cid:7)(cid:3) xr csc (cid:7)(cid:3) yr (− 23, −12) 76π52π1202°5°240° 300°31353°70π°116π ( 23, −21) y xr θ x c taons (cid:7)(cid:7)(cid:3)(cid:3) yr sc eoct (cid:7)(cid:7)(cid:3)(cid:3) xx (− 22,−(−212,)− 34) 43π 270° 3(20π, −1)53π(41, −( 322), − 22) x y 2 2 2 2 Reciprocal Identities Double-Angle Formulas 1 1 1 sin 2u (cid:3)2 sin u cos u sin x(cid:3) sec x(cid:3) tan x(cid:3) csc x cos x cot x cos 2u (cid:3)cos2 u(cid:2)sin2 u(cid:3)2 cos2 u(cid:2) 1(cid:3) 1(cid:2) 2 sin2 u 1 1 1 2 tan u csc x(cid:3) cos x(cid:3) cot x (cid:3) tan 2u (cid:3) sin x sec x tan x 1(cid:2)tan2 u Quotient Identities Power-Reducing Formulas tan x (cid:3) sin x cot x (cid:3) cos x sin2 u(cid:3) 1(cid:2)cos 2u cos x sin x 2 1(cid:5)cos 2u Pythagorean Identities cos2 u(cid:3) 2 sin2 x(cid:5) cos2 x(cid:3) 1 1(cid:2)cos 2u tan2 u(cid:3) 1(cid:5)tan2 x(cid:3) sec2 x 1(cid:5)cot2 x(cid:3)csc2 x 1(cid:5)cos 2u Cofunction Identities Sum-to-Product Formulas (cid:11)(cid:8) (cid:12) (cid:11)(cid:8) (cid:12) (cid:11)u(cid:5)v(cid:12) (cid:11)u(cid:2)v(cid:12) sin (cid:2) x (cid:3) cos x cos (cid:2)x (cid:3)sin x sin u (cid:5)sin v (cid:3)2 sin cos 2 2 2 2 (cid:11)(cid:8) (cid:12) (cid:11)(cid:8) (cid:12) (cid:11)u(cid:5)v(cid:12) (cid:11)u(cid:2)v(cid:12) csc (cid:2)x (cid:3) sec x tan (cid:2)x (cid:3)cot x sin u (cid:2)sin v (cid:3)2 cos sin 2 2 2 2 sec(cid:11)(cid:8)(cid:2)x(cid:12) (cid:3) csc x cot(cid:11)(cid:8)(cid:2)x(cid:12) (cid:3)tan x cos u (cid:5)cos v (cid:3)2 cos(cid:11)u(cid:5)2 v(cid:12) cos(cid:11)u(cid:2)2 v(cid:12) 2 2 (cid:11)u(cid:5)v(cid:12) (cid:11)u(cid:2)v(cid:12) Even/Odd Identities cos u (cid:2)cos v (cid:3)(cid:2)2 sin sin 2 2 sin(cid:6)(cid:2)x(cid:7)(cid:3)(cid:2)sin x cos(cid:6)(cid:2)x(cid:7)(cid:3)cos x Product-to-Sum Formulas ning csc(cid:6)(cid:2)x(cid:7)(cid:3)(cid:2)csc x tan(cid:6)(cid:2)x(cid:7)(cid:3)(cid:2)tan x ar 1 e sec(cid:6)(cid:2)x(cid:7)(cid:3) sec x cot(cid:6)(cid:2)x(cid:7)(cid:3)(cid:2)cot x sin u sin v(cid:3) 2(cid:2)cos(cid:6)u(cid:2)v(cid:7)(cid:2)cos(cid:6)u(cid:5)v(cid:7)(cid:3) ge L a Sum and Difference Formulas cos u cos v(cid:3) 1(cid:2)cos(cid:6)u(cid:2)v(cid:7)(cid:5)cos(cid:6)u(cid:5) v(cid:7)(cid:3) eng sin(cid:6)u ± v(cid:7)(cid:3) sin u cos v ± cos u sin v 2 e, C cos(cid:6)u ± v(cid:7)(cid:3) cos u cos v (cid:9) sin u sin v sin u cos v(cid:3) 1(cid:2)sin(cid:6)u(cid:5)v(cid:7)(cid:5)sin(cid:6)u(cid:2)v(cid:7)(cid:3) Col 2 / tan u ± tan v ks tan(cid:6)u ± v(cid:7)(cid:3) 1 o 1 (cid:9) tan u tan v cos u sin v(cid:3) (cid:2)sin(cid:6)u(cid:5)v(cid:7)(cid:2)sin(cid:6)u(cid:2)v(cid:7)(cid:3) ro 2 B © Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 9781285060293_FM.qxd 10/30/12 1:14 PM Page i Multivariable Calculus 10e Ron Larson The Pennsylvania State University The Behrend College Bruce Edwards University of Florida Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 9781285060293_FM.qxd 10/30/12 1:14 PM Page xiv This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for materials in your areas of interest. Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 9781285060293_FM.qxd 10/30/12 1:14 PM Page ii Multivariable Calculus © 2014, 2010, 2006 Brooks/Cole, Cengage Learning Tenth Edition ALL RIGHTS RESERVED. No part of this work covered by the copyright Larson/Edwards herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to Publisher: Liz Covello photocopying, recording, scanning, digitizing, taping, Web distribution, Senior Development Editor: Carolyn Lewis information networks, or information storage and retrieval systems, Assistant Editor: Liza Neustaetter except as permitted under Section 107 or 108 of the 1976 United States Editorial Assistant: Stephanie Kreuz Copyright Act, without the prior written permission of the publisher. Associate Media Editor: Guanglei Zhang Senior Content Project Manager: Jessica Rasile For product information and technology assistance, contact us at Art Director: Linda May Cengage Learning Customer & Sales Support, 1-800-354-9706. Rights Acquisition Specialist: Shalice Shah-Caldwell For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions. Manufacturing Planner: Doug Bertke Further permissions questions can be emailed to Text/Cover Designer: Larson Texts, Inc. [email protected]. Compositor: Larson Texts, Inc. Cover Image: Larson Texts, Inc. Library of Congress Control Number: 2012948318 ISBN-13: 978-1-285-06029-3 ISBN-10: 1-285-06029-6 Brooks/Cole 20 Channel Center Street Boston, MA 02210 USA Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at: international.cengage.com/region Cengage Learning products are represented in Canada by Nelson Education, Ltd. For your course and learning solutions, visit www.cengage.com. Purchase any of our products at your local college store or at our preferred online store www.cengagebrain.com. Instructors:Please visit login.cengage.comand log in to access instructor-specific resources. Printed in the United States of America 1 2 3 4 5 6 7 16 15 14 13 12 Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 9781285060293_FM.qxd 10/30/12 1:14 PM Page iii Contents 11 Vectors and the Geometry of Space 747 11.1 Vectors in the Plane 748 11.2 Space Coordinates and Vectors in Space 758 11.3 The Dot Product ofTwo Vectors 766 11.4 The Cross Product ofTwo Vectors in Space 775 11.5 Lines and Planes in Space 783 Section Project:Distances in Space 793 11.6 Surfaces in Space 794 11.7 Cylindrical and Spherical Coordinates 804 Review Exercises 811 P.S.Problem Solving 813 12 Vector-Valued Functions 815 12.1 Vector-Valued Functions 816 Section Project: Witch of Agnesi 823 12.2 Differentiation and Integration of Vector-Valued Functions 824 12.3 Velocity and Acceleration 832 12.4 Tangent Vectors and Normal Vectors 841 12.5 Arc Length and Curvature 851 Review Exercises 863 P.S.Problem Solving 865 13 Functions of Several Variables 867 13.1 Introduction to Functions of Several Variables 868 13.2 Limits and Continuity 880 13.3 Partial Derivatives 890 Section Project: Moiré Fringes 899 13.4 Differentials 900 13.5 Chain Rules for Functions of Several Variables 907 13.6 Directional Derivatives and Gradients 915 13.7 Tangent Planes and Normal Lines 927 Section Project: Wildflowers 935 13.8 Extrema of Functions of Two Variables 936 13.9 Applications of Extrema 944 Section Project: Building a Pipeline 951 13.10 Lagrange Multipliers 952 Review Exercises 960 P.S.Problem Solving 963 iii Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 9781285060293_FM.qxd 10/30/12 1:14 PM Page iv iv Contents 14 Multiple Integration 965 14.1 Iterated Integrals and Area in the Plane 966 14.2 Double Integrals and Volume 974 14.3 Change of Variables: Polar Coordinates 986 14.4 Center of Mass and Moments of Inertia 994 Section Project: Center of Pressure on a Sail 1001 14.5 Surface Area 1002 Section Project: Capillary Action 1008 14.6 Triple Integrals and Applications 1009 14.7 Triple Integrals in Other Coordinates 1020 Section Project: Wrinkled and Bumpy Spheres 1026 14.8 Change of Variables: Jacobians 1027 Review Exercises 1034 P.S.Problem Solving 1037 15 Vector Analysis 1039 15.1 Vector Fields 1040 15.2 Line Integrals 1051 15.3 Conservative Vector Fields and Independence of Path 1065 15.4 Green’s Theorem 1075 Section Project: Hyperbolic and Trigonometric Functions 1083 15.5 Parametric Surfaces 1084 15.6 Surface Integrals 1094 Section Project: Hyperboloid of One Sheet 1105 15.7 Divergence Theorem 1106 15.8 Stokes’s Theorem 1114 Review Exercises 1120 Section Project: The Planimeter 1122 P.S.Problem Solving 1123 16 Additional Topics in Differential Equations 1125 16.1 Exact First-Order Equations 1126 16.2 Second-Order Homogeneous Linear Equations 1133 16.3 Second-Order Nonhomogeneous Linear Equations 1141 Section Project: Parachute Jump 1148 16.4 Series Solutions of Differential Equations 1149 Review Exercises 1153 P.S.Problem Solving 1155 Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.