Advanced Structured Materials Holm Altenbach Victor A. Eremeyev Leonid A. Igumnov Editors Multiscale Solid Mechanics Strength, Durability, and Dynamics Advanced Structured Materials Volume 141 Series Editors Andreas Öchsner, Faculty of Mechanical Engineering, Esslingen University of Applied Sciences, Esslingen, Germany Lucas F. M. da Silva, Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal Holm Altenbach , Faculty of Mechanical Engineering, Otto von Guericke University Magdeburg, Magdeburg, Sachsen-Anhalt, Germany Common engineering materials reach in many applications their limits and new developments are required to fulfil increasing demands on engineering materials. The performance ofmaterials can beincreasedby combiningdifferent materials to achieve better properties than a single constituent or by shaping the material or constituents in a specific structure. The interaction between material and structure mayariseondifferentlengthscales,suchasmicro-,meso-ormacroscale,andoffers possible applications in quite diverse fields. Thisbookseriesaddressesthefundamentalrelationshipbetweenmaterialsandtheir structure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc.)andapplications. The topics of Advanced Structured Materials include but are not limited to (cid:129) classical fibre-reinforced composites (e.g. glass, carbon or Aramid reinforced plastics) (cid:129) metal matrix composites (MMCs) (cid:129) micro porous composites (cid:129) micro channel materials (cid:129) multilayered materials (cid:129) cellular materials (e.g., metallic or polymer foams, sponges, hollow sphere structures) (cid:129) porous materials (cid:129) truss structures (cid:129) nanocomposite materials (cid:129) biomaterials (cid:129) nanoporous metals (cid:129) concrete (cid:129) coated materials (cid:129) smart materials Advanced Structured Materials is indexed in Google Scholar and Scopus. More information about this series at http://www.springer.com/series/8611 Holm Altenbach Victor A. Eremeyev (cid:129) (cid:129) Leonid A. Igumnov Editors Multiscale Solid Mechanics Strength, Durability, and Dynamics 123 Editors HolmAltenbach Victor A.Eremeyev Faculty of MechanicalEngineering Faculty of Civil andEnvironmental Otto vonGuericke University Magdeburg Engineering Magdeburg, Sachsen-Anhalt, Germany Gdańsk University of Technology Gdańsk,Poland LeonidA.Igumnov Research Institute for Mechanics State University of Nizhny Novgorod Nizhny Novgorod,Russia ISSN 1869-8433 ISSN 1869-8441 (electronic) AdvancedStructured Materials ISBN978-3-030-54927-5 ISBN978-3-030-54928-2 (eBook) https://doi.org/10.1007/978-3-030-54928-2 ©SpringerNatureSwitzerlandAG2021 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface The present book is a collection of papers of leading Russian scientists devoted to thedescriptionandsimulationofdynamicsandstrengthofmaterialsanddurability ofsystems.Theproblemsarisingfromtheoperationofmachinesandsystemsunder multifactorial influences are considered. The design and experimental assessment of the processes of deformation, the development of damage, the destruction of materials and structures are studied. For given loading history, the appearance of macroscopicmaterialdiscontinuitiesaredetermined.Thefundamentaldependences on the strain rates of the ultimate characteristics of strength, dynamics, etc., are formulated. When modeling, the significant influence on the rate of the processes of deformation, accumulation of damage, fracture, and such factors as the type of deformation trajectory should be taken into account. In addition, the temperature change, the stress state, thehistory ofthe stress state changes, etc., areconsidered. In the framework of damage mechanics, the mechanisms of degradation of the initial strength properties of structural materials under various conditions of thermo-force loading are studied. The kinetics of the stress–strain state in the corresponding places of structural elements is introduced in the theoretical models andsimulations.Thenumericalexperimentsarebasedonvariational-differenceand finite element technologies. The correctness of the simulations are proofed by experiments. Theresultsofnumerical modelingoftheprocesses ofvisco-plastic deformation of structural elements are presented for several applied problems. Together with elements of the analysis of the current state of the experimental, theoretical, and numerical studies of the behavior of materials under quasi-static, cyclic, and dynamicloading,thedevelopmentandimplementationofnewsimulationmethods are presented. The identification and verification of mathematical models of deformation, damage and fracture of structural materials is carried out including experimental methods of high-speed deformation based on the Kolsky method. The problems of basic experiments related to identification of the material parameters and functions used material models are discussed. The study of the processesofdeformationandfractureofstructuralmaterialsiscarriedoutfromthe v vi Preface perspective of an experimental-theoretical approach. Finally, applications are pre- sented including not only mechanical loading, but also the influence of the tem- perature regimes, etc. Considering the scale factor multiscale approaches are applied. The editors hope that the readers of this book can get an excellent insight into actualtheoretical,numericalandexperimentalresearchresultsofRussianscientists working in the field of mechanics. Magdeburg, Germany Holm Altenbach Gdańsk, Poland Victor A. Eremeyev Nizhny Novgorod, Russia Leonid A. Igumnov June 2020 Contents 1 Practical Methods for Fatigue Characteristics Assessing Based on the Monotonic Diffusion Distribution Under Random Censorship Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 LevonV.Agamirov,VladimirL.Agamirov,andVladimirA.Vestyak 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Statistical Estimation Methods of a Randomly Censored Sample Parameters Based on the Monotonic Diffusion Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Bootstrap Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2 Quantile Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.3 Monte Carlo Model Testing . . . . . . . . . . . . . . . . . . . . 6 1.2.4 Statistical Processing of Test Results. . . . . . . . . . . . . . 6 1.3 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Earthquakes and Cracks of New Type Complementing the Griffith–Irwin’s Crack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 VladimirA.Babeshko,OlgaV.Evdokimova,andOlgaM.Babeshko 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Rigid Contact of the Lithosphere Plates with the Base . . . . . . . 14 2.3 External Analysis of the Boundary Value Problem . . . . . . . . . . 17 2.4 On the Properties of Wedge-Shaped Cavities and Griffith’ Cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3 Optimal Attenuation of Transverse Vibrations for a Cantilever Beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Dmitry V. Balandin and Egor V. Petrakov 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 vii viii Contents 3.2 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Two-Criterion Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4 Solution of Two-Criterion Problem . . . . . . . . . . . . . . . . . . . . . 31 3.5 Numerical Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4 Numerical Study of the Mutual Influence of Nearby Buried Structures Under Seismic Influences. . . . . . . . . . . . . . . . . . . . . . . . 37 Valentin G. Bazhenov and Nadezhda S. Dyukina 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 Mathematical Model and Numerical Technique . . . . . . . . . . . . 38 4.3 AnalysisoftheMutualInfluenceofSeismicVibrationsofTwo Nearby Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.4 Influence of Seismic Isolation Between Structures on Their Mutual Influence During Seismic Impact . . . . . . . . . . 40 4.5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5 DynamicDeformationandFailureCriterionofCylindricalShells Subjected to Explosive Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Valentin G. Bazhenov, Alexander A. Ryabov, Vladimir I. Romanov, and Evgeny E. Maslov 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.2 Statement of Problem and Defining Relations. . . . . . . . . . . . . . 49 5.3 Experimental and Numerical Results and Analysis . . . . . . . . . . 50 5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6 Plasticity of Materials with Additional Hardening Exposed to Cyclic Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Valentin S. Bondar and Dmitry R. Abashev 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.2 Mathematical Modeling of Elastoplastic Strain . . . . . . . . . . . . . 58 6.3 Additional Isotropic Hardening in Case of Disproportionate Cyclic Loading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 7 Dynamic Compressibility of Birch Under Various Types of Stress-Strain State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Anatoly M. Bragov, Andrey K. Lomunov, and Tatiana N. Yuzhina 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.2 Material and Specimen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7.3 Method of Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Contents ix 7.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 8 On Description of Fast Diffusion in a Coupled Multicomponent System with Microstructure Within the Framework of the Thermodynamics of Irreversible Processes . . . . . . . . . . . . . . 81 Dmitry Dudin and Ilya Keller 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 8.2 Extended Brassart Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 8.2.1 Strain Tensor and Its Components. . . . . . . . . . . . . . . . 83 8.2.2 Helmholtz Free Energy. . . . . . . . . . . . . . . . . . . . . . . . 84 8.2.3 Thermodynamic Inequality . . . . . . . . . . . . . . . . . . . . . 84 8.2.4 Partial Energies and Elastic Equations . . . . . . . . . . . . . 86 8.2.5 Dissipative Equations . . . . . . . . . . . . . . . . . . . . . . . . . 87 8.2.6 Balance Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 8.3 Analysis of the Relaxation of Spatial Perturbations. . . . . . . . . . 89 8.3.1 Model Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 8.3.2 Field Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 8.3.3 Perturbation Method. . . . . . . . . . . . . . . . . . . . . . . . . . 90 8.3.4 Relaxation Times of Perturbations and Their Asymptotes. . . . . . . . . . . . . . . . . . . . . . . . . 91 8.4 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 9 Linear and Nonlinear Problems of Wave Resistance to the Movement of Objects Along Elastic Guides . . . . . . . . . . . . . 97 Vladimir I. Erofeev, Sergey I. Gerasimov, Elena E. Lisenkova, Alexey O. Malkhanov, and Vladimir M. Sandalov 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 9.2 Resistance to the Movement Along an Elastic Load Guide with Its Own Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . 99 9.3 Some General Relations for Waves Propagating in One-Dimensional Elastic Systems . . . . . . . . . . . . . . . . . . . . 105 9.4 ResistancetotheMovementoftheLoadAlongaGuideLying on a Nonlinear Elastic Basement . . . . . . . . . . . . . . . . . . . . . . . 112 9.5 Stabilization of Transverse Vibrations of a Mass Moving Along a String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 9.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 10 Dispersion, Attenuation and Spatial Localization of Thermoelastic Waves in a Medium with Point Defects . . . . . . . . 123 Vladimir I. Erofeev, Anna V. Leonteva, and Ashot V. Shekoyan 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124