Multiscale Simulations for Electrochemical Devices Multiscale Simulations for Electrochemical Devices edited by Ryoji Asahi Published by Jenny Stanford Publishing Pte. Ltd. Level 34, Centennial Tower 3 Temasek Avenue Singapore 039190 Email: [email protected] Web: www.jennystanford.com British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Multiscale Simulations for Electrochemical Devices All rights reserved. This book, or parts thereof, may not be reproduced in any form Copyright © 2020 by Jenny Stanford Publishing Pte. Ltd. or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN 978-981-4800-71-6 (Hardcover) ISBN 978-0-429-29545-4 (eBook) Contents Preface 1. Co mput ational Materials Design for Hydrogen Storage x1i Kazutoshi Miwa 1.1 Background 1 1.2 Methodology 3 1.3 Transition-Metal Hydrides 4 1.3.1 Thermodynamics for Hydrides 4 1.3.2 Energetics of Transition-Metal Dihydrides 5 1.4 Borohydrides 8 1.4.1 Fundamental Properties of LiBH4 8 1.4.2 Borohydrides with Multivalent Cations 13 1.4.3 Thermodynamically Stability of Borohydrides 15 1.4.4 Experimental Support 17 2. 1A.t5o mistFicu Atunrael ySsciso poef Electrolytes: Redox Potentials 18 and Electrochemical Reactions in a Lithium-Ion Battery 25 Kaito Miyamoto 2.1 Introduction 25 2.2 Redox Potential Computations Using the DFT/PCM Method 26 2.2.1 Standard Redox Potential 28 2.2.2 Standard Gibbs Free Energy Calculations Using the DFT/PCM Method 29 2.2.3 Oxidation and Reduction Potentials of Typical Organic Solvents 30 2.2.3.1 One-electron oxidation potential 34 2.2.3.2 One-electron reduction potential 36 2.3 Electrolyte Decomposition Analysis 37 vi Contents 2.3.1 Global Reaction Route Mapping Method 40 2.3.2 Reductive Decomposition of Ethylene Carbonate 41 3. 2El.e4c tronSicu mStmruacrtuy raen Tdh Feuotruy roef SEcleocpter olyte/Electrode 45 Interfaces 57 Ryosuke Jinnouchi, Kensaku Kodama, Eishiro Toyoda, and Yu Morimoto 3.1 Introduction 57 3.2 Electrolyte/Electrode Interface 58 3.2.1 Electrode Potential and Electric Double Layer 58 3.2.2 Grand Partition Function and Modeling of the Electric Double Layer 61 3.3 Density Functional Theory Combined with Modified Poisson–Boltzmann Theory 64 3.3.1 Model and Approximation in Grand W Partition Function 64 3.3.2 Equations on and Details of the W Calculation Scheme 66 W 71 3.3.2.1 Equations of the mean field 66 3.3.2.2 Minimization of 3.3.2.3 Constant Fermi energy calculation 73 3.3.2.4 Electrosorption valency value and symmetry factor 74 3.4 Applications 76 3.4.1 Equilibrium Surface Phase Diagram 76 3.4.2 Electrosorption Valency Value 80 3.4.3 Potential-Dependent Spectroscopy 81 3.4.4 Kinetics and Symmetry Factor 83 3.4.5 Applications to New Materials 87 4. 3A.t5o mistFicu Mtuored eSlcinogp eo f Photoelectric Cells for 91 Artificial Photosynthesis 107 Ryoji Asahi and Ryosuke Jinnouchi 4.1 Introduction 107 4.2 Surface Modification of Semiconductors 111 Contents vii 4.2.1 Metal-Nanoparticles Loaded on TiO2 111 4.2.2 Defect Formations of N-doped Ta2O5 116 4.3 Electron Transfer Dynamics in Semiconductor/ Metal-Complex for CO2 Reduction 125 4.3.1 Methodology 126 4.3.2 Results and Discussion 129 5. 4La.4rg e-ScSaulem Smimaruyla atniodn Fs uI:t uMreet Shcoodpse a nd Applications 133 for a Li-Ion Battery 147 Nobuko Ohba and Shuji Ogata 5.1 Introduction 147 5.2 Method 150 5.2.1 Real-Space Grid Kohn–Sham DFT (RGDFT) Method [48] 150 5.2.2 Divide-and-Conquer-Type RGDFT Method [48] 152 5.2.3 Hybrid Quantum-Classical Simulation Method 161 5.2.3.1 Buffered cluster method 161 5.3 Applications 163 5.3.1 Li-Ion Transfer through the Boundary between Solid/Electrolyte Interphase and Liquid Electrolyte [45] 163 5.3.1.1 Time Evolution of Distribution of Li Ions 165 5.3.1.2 Microscopic mechanisms of Li-Ion transfer through the SEI boundary 169 5.3.2 Hybrid Quantum-Classical Simulation on the Diffusivity of Lithium in Graphite [51] 174 5.3.2.1 Intraplane correlation between Li ions 174 5.3.2.2 Interplane correlation between Li ions 184 5.4 Conclusion and Future Scope 185 viii Contents 6. Large-Scale Simulation II: Atomistic and Coarse-Grained Simulations of Polyelectrolyte Membranes 195 Tomoyuki Kinjo and Satoru Yamamoto 6.1 Introduction 195 6.2 From Atomistic Description to Coarse- Grained Description 196 6.3 Polyelectrolyte Membranes 199 6.4 Dissipative Particle Dynamics 200 6.5 Coarse-Grained Model of Polyelectrolyte Membrane 203 6.6 Morphology of a Polyelectrolyte Membrane 205 6.7 Force Field in Classical Molecular Dynamics Simulation 208 6.8 Self-Diffusion Coefficient of Oxygen and Water in Bulk Nafion 210 7. 6Ph.9a se-FCieoldn cMluosdioenlss for the Microstructural 214 Characterization of Electrode Materials 219 Shunsuke Yamakawa 7.1 Introduction 219 7.2 Simulation Methodology 222 7.2.1 Bulk Free Energy 224 7.2.2 Gradient Energy 226 7.2.3 Elastic Strain Energy 228 7.3 Morphological Characterization of Electrocatalysts in a PEFC 230 7.3.1 Phase-Field Model for the Deposition Process of Pt Nanoparticles on a Carbon Substrate 230 7.3.1.1 Computational details 230 7.3.1.2 Results and discussion 234 7.3.2 Surface Segregations in Pt-Based Alloy Nanoparticles 236 7.3.2.1 Computational details 236 7.3.2.2 Results and discussion 240 7.4 Effect of Electrode Material Microstructure on LIB Performance 245 Contents ix 7.4.1 Effect of Microstructure on the Discharge Properties of Polycrystalline LiCoO2 245 7.4.1.1 Computational details 246 7.4.1.2 Results and discussion 251 7.4.2 Phase-Field Modeling of Stress Generation in Polycrystalline LiCoO2 252 7.4.2.1 Computational details 252 7.4.2.2 Results and discussion 254 8. 7D.e5v ice SFiminualla Rtieomn afrokr sL i-Ion Batteries 225685 Naoki Baba 8.1 Introduction 265 8.2 Electrochemical-Thermal Coupled Device Simulation 266 8.2.1 Conventional Device Simulation Approach 267 8.2.2 LiB Model Suitable for Device Simulation 267 8.2.2.1 Conventional LiB models 268 8.2.2.2 Enhanced single-particle model 269 8.2.2.3 Model validation 279 8.2.3 Multidimensional Two-Way Coupling Device Simulation 282 8.3 Therm al Abuse Simulation 287 8.3.1 Thermal Abuse Modeling 289 8.3.2 Model Validation 294 9. 8D.e4v ice SSiummulmatairoyn sa nind FFuuetlu Creel lSsc ope 239073 Takahisa Suzuki, Kenji Kudo, Ryosuke Jinnouchi, and Yu Morimoto 9.1 Introduction 303 9.2 The Conventional Model 305 9.2.1 Reactions and Structure of PEFCs 305 9.2.2 Mass Transport Resistance on the Cathode Side 307 9.2.3 The Agglomerate Model 308