ebook img

Multiscale, Nonlinear and Adaptive Approximation: Dedicated to Wolfgang Dahmen on the Occasion of his 60th Birthday PDF

670 Pages·2009·14.321 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multiscale, Nonlinear and Adaptive Approximation: Dedicated to Wolfgang Dahmen on the Occasion of his 60th Birthday

Multiscale, Nonlinear and Adaptive Approximation Ronald A. DeVore (cid:2) Angela Kunoth Editors Multiscale, Nonlinear and Adaptive Approximation Dedicated to Wolfgang Dahmen on the Occasion of his 60th Birthday Editors RonaldA.DeVore AngelaKunoth DepartmentofMathematics InstitutfürMathematik TexasA&MUniversity UniversitätPaderborn CollegeStation,TX77840 WarburgerStr.100 USA 33098Paderborn [email protected] Germany [email protected] ISBN978-3-642-03412-1 e-ISBN978-3-642-03413-8 DOI10.1007/978-3-642-03413-8 SpringerHeidelbergDordrechtLondonNewYork LibraryofCongressControlNumber:2009935698 MathematicsSubjectClassification(2000):41-XX,65-XX (cid:2)c Springer-VerlagBerlinHeidelberg2009 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Coverdesign:WMXDesignGmbH,Heidelberg Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) DedicatedtoWolfgangDahmenonthe Occasionofhis60thBirthday Preface Ontheoccasionofhis60thbirthdayinOctober2009,friends,collaborators,and admirersofWolfgangDahmenhaveorganizedthisvolumewhichtouchesonvari- ousofhisresearchinterests.Thisvolumewillprovideaneasytoreadexcursioninto many important topics in applied and computational mathematics. These include nonlinear and adaptive approximation, multivariate splines, subdivision schemes, multiscale and wavelet methods, numerical schemes for partial differential and boundaryintegralequations,learningtheory,andhigh-dimensionalintegrals. CollegeStation,Texas,USA RonaldA.DeVore Paderborn,Germany AngelaKunoth June2009 vii Acknowledgements WearedeeplygratefultoDr.MartinPetersandThanh-HaLeThifromSpringerfor realizingthisbookprojectandtoFrankHolzwarthfortechnicalsupport. ix Contents Introduction:WolfgangDahmen’smathematicalwork ................ 1 RonaldA.DeVoreandAngelaKunoth 1 Introduction.............................................. 1 2 Theearlyyears:Classicalapproximationtheory................ 2 3 Bonn,Bielefeld,Berlin,andmultivariatesplines ............... 2 3.1 Computeraidedgeometricdesign.................... 3 3.2 Subdivisionandwavelets ........................... 4 4 Waveletandmultiscalemethodsforoperatorequations.......... 5 4.1 Multilevelpreconditioning.......................... 5 4.2 Compressionofoperators........................... 5 5 Adaptivesolvers .......................................... 6 6 Constructionandimplementation............................ 7 7 Hyperbolicpartialdifferentialequationsandconservationlaws ... 8 8 Engineeringcollaborations ................................. 9 9 Thepresent .............................................. 9 10 Finalremarks............................................. 10 PublicationsbyWolfgangDahmen(asofsummer2009)............... 10 Thewaythingswereinmultivariatesplines:Apersonalview........... 19 CarldeBoor 1 Tensorproductsplineinterpolation........................... 19 2 Quasiinterpolation ........................................ 20 3 MultivariateB-splines ..................................... 21 4 Kergininterpolation ....................................... 23 5 TherecurrenceformultivariateB-splines ..................... 25 6 Polyhedralsplines......................................... 27 7 Boxsplines .............................................. 28 8 SmoothmultivariatepiecewisepolynomialsandtheB-net ....... 31 References..................................................... 34 xi xii Contents On the efficientcomputationof high-dimensionalintegralsand the approximationbyexponentialsums ................................ 39 DietrichBraessandWolfgangHackbusch 1 Introduction.............................................. 39 2 Approximation of completely monotone functions by exponentialsums ......................................... 41 3 Rationalapproximationofthesquarerootfunction ............. 43 3.1 Heron’salgorithmandGauss’arithmetic-geometricmean 43 3.2 Heron’smethodandbestrationalapproximation........ 44 3.3 Extensionoftheestimate(19) ....................... 48 3.4 Anexplicitformula................................ 49 α 4 Approximationof1/x byexponentialsums .................. 50 4.1 Approximationof1/xonfiniteintervals .............. 50 4.2 Approximationof1/xon[1,∞)...................... 51 4.3 Approximationof1/xα,α>0 ...................... 54 5 Applicationsof1/xapproximations.......................... 55 5.1 Abouttheexponentialsums......................... 55 5.2 Applicationinquantumchemistry.................... 55 5.3 Inversem√atrix .................................... 56 6 Applicationsof1/ xapproximations ........................ 58 6.1 Basicfacts ....................................... 58 6.2 Applicationtoconvolution.......................... 58 6.3 Modificationforwaveletapplications................. 60 6.4 ExpectationvaluesoftheH-atom .................... 60 7 Computationofthebestap√proximation ....................... 62 8 Rationalapproximationof xonsmallintervals ............... 63 9 Thearithmetic-geometricmeanandellipticintegrals............ 65 10 Adirectapproachtotheinfiniteinterval ...................... 67 11 Sincquadraturederivedapproximations ...................... 68 References..................................................... 73 Adaptiveandanisotropicpiecewisepolynomialapproximation ......... 75 AlbertCohenandJean-MarieMirebeau 1 Introduction.............................................. 75 1.1 Piecewisepolynomialapproximation ................. 75 1.2 Fromuniformtoadaptiveapproximation.............. 77 1.3 Outline .......................................... 79 2 Piecewiseconstantone-dimensionalapproximation............. 80 2.1 Uniformpartitions................................. 81 2.2 Adaptivepartitions ................................ 83 2.3 Agreedyrefinementalgorithm ...................... 85 3 Adaptiveandisotropicapproximation ........................ 87 3.1 Localestimates ................................... 88 3.2 Globalestimates .................................. 90 3.3 Anisotropicgreedyrefinementalgorithm ............. 91 Contents xiii 3.4 Thecaseofsmoothfunctions. ....................... 95 4 Anisotropicpiecewiseconstantapproximationonrectangles .....100 4.1 Aheuristicestimate................................100 4.2 Arigourousestimate...............................103 5 Anisotropicpiecewisepolynomialapproximation ..............108 5.1 Theshapefunction ................................108 5.2 Algebraicexpressionsoftheshapefunction ...........109 5.3 Errorestimates....................................111 5.4 Anisotropicsmoothnessandcartoonfunctions .........112 6 Anisotropicgreedyrefinementalgorithms.....................116 6.1 Therefinementalgorithmforpiecewiseconstantson rectangles ........................................119 6.2 Convergenceofthealgorithm .......................121 6.3 Optimalconvergence ..............................124 6.4 Refinementalgorithmsforpiecewisepolynomialson triangles .........................................128 References.....................................................134 Anisotropicfunctionspaceswithapplications........................ 137 ShaiDekelandPenchoPetrushev 1 Introduction..............................................137 2 AnisotropicmultiscalestructuresonRn.......................139 2.1 Anisotropicmultilevelellipsoidcovers(dilations)ofRn .139 2.2 Comparison of ellipsoid covers with nested triangulationsinR2................................142 3 Buildingblocks...........................................143 3.1 Constructionofamultilevelsystemofbases ...........143 3.2 Compactlysupporteddualsandlocalprojectors ........145 3.3 Two-level-splitbases...............................146 3.4 Globaldualsandpolynomialreproducingkernels.......148 3.5 Constructionofanisotropicwaveletframes ...........151 3.6 Discretewaveletframes ............................154 3.7 Two-level-splitframes .............................155 4 AnisotropicBesovspaces(B-spaces).........................156 4.1 B-spacesinducedbyanisotropiccoversofRn ..........156 4.2 B-spacesinducedbynestedmultileveltriangulationsof R2 ..............................................158 4.3 ComparisonofdifferentB-spacesandBesovspaces ....159 5 Nonlinearapproximation...................................160 6 MeasuringsmoothnessviaanisotropicB-spaces................162 7 Application to preconditioning for elliptic boundary value problems ................................................164 References.....................................................166 xiv Contents Nonlinearapproximationanditsapplications........................ 169 RonaldA.DeVore 1 Theearlyyears ...........................................169 2 Smoothnessandinterpolationspaces .........................171 2.1 Theroleofinterpolation............................172 3 Themaintypesofnonlinearapproximation ...................174 3.1 n-termapproximation ..............................174 3.2 Adaptiveapproximation ............................178 3.3 Treeapproximation................................178 3.4 Greedyalgorithms.................................181 4 Imagecompression........................................185 5 RemarksonnonlinearapproximationinPDEsolvers ...........187 6 Learningtheory...........................................189 6.1 Learningwithgreedyalgorithms.....................193 7 Compressedsensing.......................................195 8 Finalthoughts ............................................199 References.....................................................199 Univariatesubdivisionandmulti-scaletransforms:Thenonlinearcase .. 203 NiraDynandPeterOswald 1 Introduction..............................................203 2 Nonlinearmulti-scaletransforms:Functionalsetting............210 2.1 Basicnotationandfurtherexamples ..................210 2.2 Polynomialreproductionandderivedsubdivision schemes .........................................215 2.3 Convergenceandsmoothness .......................217 2.4 Stability .........................................223 2.5 Approximationorderanddecayofdetails .............227 3 Thegeometricsetting:Casestudies ..........................230 3.1 Geometry-basedsubdivisionschemes.................231 3.2 Geometricmulti-scaletransformsforplanarcurves .....240 References.....................................................245 RapidsolutionofboundaryintegralequationsbywaveletGalerkin schemes ....................................................... 249 HelmutHarbrechtandReinholdSchneider 1 Introduction..............................................249 2 Problemformulationandpreliminaries .......................252 2.1 Boundaryintegralequations.........................252 2.2 Parametricsurfacerepresentation ....................253 2.3 Kernelproperties..................................255 3 Waveletbasesonmanifolds.................................256 3.1 Waveletsandmultiresolutionanalyses ................256 3.2 Refinementrelationsandstablecompletions ...........258 3.3 Biorthogonalsplinemultiresolutionontheinterval......259 3.4 Waveletsontheunitsquare .........................261

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.