Lecture Notes in Computer Science 13594 FoundingEditors GerhardGoos KarlsruheInstituteofTechnology,Karlsruhe,Germany JurisHartmanis CornellUniversity,Ithaca,NY,USA EditorialBoardMembers ElisaBertino PurdueUniversity,WestLafayette,IN,USA WenGao PekingUniversity,Beijing,China BernhardSteffen TUDortmundUniversity,Dortmund,Germany MotiYung ColumbiaUniversity,NewYork,NY,USA Moreinformationaboutthisseriesathttps://link.springer.com/bookseries/558 · · · · Xiang Li Jinglei Lv Yuankai Huo Bin Dong · Richard M. Leahy Quanzheng Li (Eds.) Multiscale Multimodal Medical Imaging Third International Workshop, MMMI 2022 Held in Conjunction with MICCAI 2022 Singapore, September 22, 2022 Proceedings Editors XiangLi JingleiLv MassachusettsGeneralHospital UniversityofSydney Boston,MA,USA Sydney,Australia YuankaiHuo BinDong VanderbiltUniversity PekingUniversity Nashville,TN,USA Beijing,China RichardM.Leahy QuanzhengLi UniversityofSouthernCalifornia MassachusettsGeneralHospital LosAngeles,CA,USA Boston,MA,USA ISSN 0302-9743 ISSN 1611-3349 (electronic) LectureNotesinComputerScience ISBN 978-3-031-18813-8 ISBN 978-3-031-18814-5 (eBook) https://doi.org/10.1007/978-3-031-18814-5 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicense toSpringerNatureSwitzerlandAG2022 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynow knownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbookare believedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsortheeditors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaimsin publishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Onbehalfoftheorganizingcommittee,wewelcomeyoutothe3rdInternationalWork- shop on Multiscale Multimodal Medical Imaging (MMMI 2022), held in conjunction withtheInternationalConferenceonMedicalImageComputingandComputerAssisted Intervention (MICCAI 2022) in Singapore. The workshop was organized through the combinedeffortsoftheMassachusettsGeneralHospitalandHarvardMedicalSchool, theUniversityofSouthernCalifornia,PekingUniversity,VanderbiltUniversity,andthe UniversityofSydney. This series of MMMI workshops aims to develop the state of the art in acquiring andanalyzingmedicalimagesatmultiplescalesandfrommultiplemodalities.Topics oftheworkshopincludealgorithmdevelopment,implementationofmethodologies,and experimental studies. The workshop also aims to facilitate more communication and interchangeofideasbetweenresearchersinthefieldsofclinicalstudy,medicalimage analysis,andmachinelearning. Since the first edition in 2019 (Shenzhen, China), the MMMI workshop has been wellreceivedbytheMICCAIcommunity.Thisyear,theworkshop’sthemewasnovel methodology development for multi-modal fusion. MMMI 2022 received a total of 18 submissions. All submissions underwent a double-blind peer-review process, each beingreviewedbyatleasttwoindependentreviewersandoneProgramCommittee(PC) member.Finally,12submissionswereacceptedforpresentationattheworkshop,which areincludedinthisproceedings,basedonthePCreviewscoresandcomments.Thetime andeffortsofallthePCmembersandreviewers,whichensuredthattheMMMIworkshop wouldfeaturehigh-qualityandvaluableworksinthefield,arehighlyappreciated. With the increasing application of multi-modal, multi-scale imaging in medical researchstudiesandclinicalpractice,weenvisionthattheMMMIworkshopwillcon- tinuetoserveasaninternationalplatformforpresentingnovelworks,discussingessential challenges,andpromotingcollaborationswithinthecommunity.Wewouldliketothank everyoneforthehardwork,andseeyounextyear! September2022 Xiang Li Jinglei Lv Yuankai Huo Bin Dong Richard M. Leahy Quanzheng Li Organization WorkshopChairs XiangLi MassachusettsGeneralHospital,USA JingleiLv UniversityofSydney,Australia YuankaiHuo VanderbiltUniversity,USA BinDong PekingUniversity,China RichardM.Leahy UniversityofSouthernCalifornia,USA QuanzhengLi MassachusettsGeneralHospital,USA ProgramCommittee DakaiJin PAIIInc.,USA DonghaoZhang MonashUniversity,Australia EungJooLee MassachusettsGeneralHospitalandHarvard MedicalSchool,USA GeorgiosAngelis UniversityofSydney,Australia HuiRen MassachusettsGeneralHospitalandHarvard MedicalSchool,USA JiangHu MassachusettsGeneralHospitalandHarvard MedicalSchool,USA LeiBi UniversityofSydney,Australia LiyueShen StanfordUniversity,USA MarianoCabezas UniversityofSydney,Australia ShijieZhao NorthwesternPolytechnicalUniversity,China ZhoubingXu SiemensHealthineers,USA Contents M2F: A Multi-modal and Multi-task Fusion Network for Glioma DiagnosisandPrognosis ................................................ 1 ZilinLu,MengkangLu,andYongXia VisualModalitiesBasedMultimodalFusionforSurgicalPhaseRecognition ... 11 BogyuPark,HyeongyuChi,BokyungPark,JiwonLee,SunghyunPark, WooJinHyung,andMin-KookChoi Cross-Scale Attention Guided Multi-instance Learning for Crohn’s DiseaseDiagnosiswithPathologicalImages ............................... 24 RuiningDeng, CanCui, LucasW.Remedios, ShunxingBao, R.MichaelWomick, SophieChiron, JiaLi, JosephT.Roland, KenS.Lau,QiLiu,KeithT.Wilson,YaohongWang,LoriA.Coburn, BennettA.Landman,andYuankaiHuo VesselSegmentationviaLinkPredictionofGraphNeuralNetworks .......... 34 HaoYu,JieZhao,andLiZhang A Bagging Strategy-Based Multi-scale Texture GLCM-CNN Model for Differentiating Malignant from Benign Lesions Using Small PathologicallyProvenDataset ........................................... 44 ShuZhang, JinruWu, SigangYu, RuoyangWang, EnzeShi, YongfengGao,andZhengrongLiang LiverSegmentationQualityControlinMulti-sequenceMRStudies ........... 54 Yi-QingWangandGiovanniPalma PatternAnalysisofSubstantiaNigrainParkinsonDiseasebyFifth-Order TensorDecompositionandMulti-sequenceMRI ........................... 63 HayatoItoh, TaoHu, MasahiroOda, ShinjiSaiki, KojiKamagata, NobutakaHattori,ShigekiAoki,andKensakuMori Gabor Filter-Embedded U-Net with Transformer-Based Encoding forBiomedicalImageSegmentation ...................................... 76 AbelA.Reyes,SidikePaheding,MakarandDeo,andMichelAudette Learning-Based Detection of MYCN Amplification in Clinical NeuroblastomaPatients:APilotStudy ................................... 89 XiangXiang,ZihanZhang,XuehuaPeng,andJianboShao viii Contents Coordinate Translator for Learning Deformable Medical Image Registration .......................................................... 98 YihaoLiu, LianruiZuo, ShuoHan, YuanXue, JerryL.Prince, andAaronCarass Towards Optimal Patch Size in Vision Transformers for Tumor Segmentation ......................................................... 110 RamtinMojtahedi, MohammadHamghalam, RichardK.G.Do, andAmberL.Simpson Improved Multi-modal Patch Based Lymphoma Segmentation withNegativeSampleAugmentationandLabelGuidanceonPET/CTScans ... 121 LiangchenLiu, JianfeiLiu, ManasKumarNag, NavidHasani, SeungYeonShin, SriramS.Paravastu, BabakSaboury, JingXiao, LingyunHuang,andRonaldM.Summers AuthorIndex ......................................................... 131 M2F: A Multi-modal and Multi-task Fusion Network for Glioma Diagnosis and Prognosis B Zilin Lu1,2, Mengkang Lu2, and Yong Xia1,2( ) 1 Ningbo Institute of Northwestern Polytechnical University, Ningbo 315048, China 2 National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China [email protected] Abstract. Clinical decision of oncology comes from multi-modal infor- mation, such as morphological information from histopathology and molecularprofilesfromgenomics.Mostoftheexistingmulti-modallearn- ing models achieve better performance than single-modal models. How- ever, these multi-modal models only focus on the interactive informa- tion between modalities, which ignore the internal relationship between multiple tasks. Both survival analysis task and tumor grading task can provide reliable information for pathologists in the diagnosis and prog- nosis of cancer. In this work, we present a Multi-modal and Multi-task Fusion (M2F) model to make use of the potential connection between modalities and tasks. The co-attention module in multi-modal trans- former extractor can excavate the intrinsic information between modal- ities more effectively than the original fusion methods. Joint training of tumorgradingbranchandsurvivalanalysisbranch,insteadofseparating them,canmakefulluseofthecomplementaryinformationbetweentasks to improve the performance of the model. We validate our M2F model ongliomadatasetsfromtheCancerGenomeAtlas(TCGA).Experiment resultsshowourM2Fmodelissuperiortoexistingmulti-modalmodels, which proves the effectiveness of our model. · · · Keywords: Multi-modal learning Multi-task Survival analysis Tumor grading 1 Introduction Gliomas are the most common primary malignant brain tumors, which account for 80% of cases [26]. Clinical diagnosis and prognosis of gliomas comes from multi-modal information, such as pathological images and genomics data [7]. Pathological images contain the structural and morphological information of tumor cells, and genomics data provide molecular profiles. (cid:2)c TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2022 X.Lietal.(Eds.):MMMI2022,LNCS13594,pp.1–10,2022. https://doi.org/10.1007/978-3-031-18814-5_1