Multiscale Modeling of Nano-Reinforced Aerospace Adhesives by Jacob Wernik, B.A.Sc A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Mechanical and Industrial Engineering University of Toronto © Copyright by Jacob Wernik 2013 Multiscale Modeling of Nano-Reinforced Aerospace Adhesives Jacob Wernik Doctor of Philosophy Department of Mechanical and Industrial Engineering University of Toronto 2013 Abstract In this work, the mechanical properties of carbon nanotube reinforced structural adhesives are investigated both theoretically and experimentally. The theoretical investigations employ a novel multiscale modeling technique that integrates the governing atomistic constitutive laws in a continuum framework. This technique takes into account the discrete nature of the atomic interactions at the nanometer length scale and the interfacial characteristics of the nanotube and the surrounding polymer matrix. Fundamental to the proposed concept is the notion that atomic bonds between two atoms act like load-bearing continuum elements, whereas individual atoms can be represented by nodes of the related structure. Molecular dynamic interatomic potentials were used to derive the constitutive behavior of the finite elements thereby reducing the computational complexity of the problem while maintaining the accuracy of the model. The governing formulations were developed to allow for the atomistic-based continuum modelling of nano-reinforced structural adhesive bonds on the basis of a nanoscale representative volume element that accounts for the nonlinear behaviour of its constituents; namely, the reinforcing carbon nanotube, the surrounding adhesive and their interface. This model was used to evaluate the constitutive response of carbon nanotubes with varied chiral indices, the load transfer and the strengthening mechanisms between the nanotube and the surrounding adhesive as well as their interfacial properties. The newly developed representative volume element was then used in ii analytical (Mori-Tanaka) and computational (finite element) micromechanical modeling techniques to investigate the homogeneous dispersion of the reinforcing element into the adhesive considered upon its mechanical properties. In this way, the model allowed for the prediction of the full constitutive response of the bulk composite. The work is further extended experimentally to establish the relative merits of using carbon nanotubes as mechanical reinforcements in structural adhesive bonds. In this part of the research, we identified an appropriate dispersion methodology to achieve a uniform distribution of the nanotubes in the epoxy matrix and evaluated its mechanical properties. Scanning electron and transmission electron microscopy techniques were routinely used to characterize the quality of the dispersion, the geometrical properties of the nanotubes, and the fracture surfaces of the test specimens. iii Acknowledgments I extend my appreciation and gratitude to Dr. Shaker Meguid for his expert advice, technical guidance, financial assistance and continued support throughout the course of my research. I also wish to thank all the past and present members of the Mechanics and Aerospace Design lab for their friendship, advice and technical assistance. Furthermore, the financial support of the National Science and Engineering Research Council Postgraduate Scholarship, the Mechanical and Industrial Engineering Fellowship and the Joseph Bazylewicz Scholarship are gratefully acknowledged. Finally, I would like to acknowledge the continued support and understanding of my parents Marek and Miroslawa Wernik, to you I dedicate this thesis. iv List of Abbreviations 3D Three-dimensional PA6 Polyamide – 6 (Nylon 6) ABC Atomistic-based continuum PANI Polyaniline AFM Atomic force microscopy PE Polyethylene CNT Carbon nanotube PMMA Polymethyl methacrylate DCB Double cantilever beam PmPV Poly-m-phenylenevinylene DGEBA Diglycidyl ether of bisphenol A PS Polystyrene DLS Double lap shear PVP Polyvinylpyrrolidone DWCNT Double-walled carbon nanotube QM Quantum mechanics FEM Finite element method RVE Representative volume element Glass Laminate Aluminum GLARE SAB Structural adhesive bond Reinforced Epoxy HPC High powered computing SEM Scanning electron microscopy Scanning transmission electron ISS Interfacial shear strength STEM microscopy LJ Lennard-Jones potential SWCNT Single-walled carbon nanotube MD Molecular dynamics TEM Transmission electron microscopy MM Micromechanics TETA Triethylene tetramine MWCNT Multi-walled carbon nanotube vdW van der Waals v List of Notations α Aspect ratio of fiber e Applied strain r a Delamination length {ε} Strain vector v a Acceleration of particle i i ε Strain tensor kl A CNT cross-section area ε Average fiber strain f Strain concentration factor for A o matrix ε Average matrix strain o Strain concentration factor for Young’s modulus of composite A f fiber E with randomly orientated inclusions Dilute strain concentration factor A dil f for fiber Longitudinal Young’s modulus Ef , L of representative fiber Dilute strain concentration factor Adil o for matrix Transverse Young’s modulus of Ef , T representative fiber Transformation matrix for 3D A ij space F DCB correction factor b DCB specimen thickness Fv Force acting on particle i i Bounding surface of B F Total shear force τ representative fiber F Total axial force σ [B] Derivatives of shape functions Shear modulus of composite C Stiffness tensor of composite G with randomly orientated inclusions C Stiffness tensor of matrix 0 G Critical strain energy release rate C , Cf Stiffness tensor of fiber IC f ijkl Longitudinal shear modulus of Gf D Diameter of representative fiber L representative fiber {d} Displacement vector Transverse shear modulus of Gf T representative fiber [D] Elasticity matrix G Fiber pull-out energy f δ Crack opening displacement γ Shear strain Δ DCB correction factor vi I Identity tensor t CNT wall thickness Plane-strain bulk modulus of Δt Time step size Kf representative fiber τ Interfacial shear strength i L Length of representative fiber U Internal energy L Initial CNT length o v Volume fraction of matrix 0 m Mass of particle i i v Volume fraction of fiber f M Moment V Volume of representative fiber Components of outward normal nj vector to boundary B V (rv) Total potential energy of atomic system N DCB correction factor W External work [N] Shape functions Local coordinate system of x j representative fiber P Applied load X Global coordinate system Π Total potential energy i Total strain energy of r Bond length χ representative fiber v R Chiral vector Angles of coordinate φ, Φ 1 transformation S Eshelby tensor r Lennard-Jones potential σ Average stress of composite μ, ψ parameters σ Stress tensor ij D β, k Modified Morse potential e, θ and k parameters {σ} Stress vector sextic vii Table of Contents Acknowledgments ........................................................................................................................... ii List of Abbreviations ...................................................................................................................... v List of Notations ............................................................................................................................ vi Table of Contents ......................................................................................................................... viii List of Tables ................................................................................................................................ xii List of Figures .............................................................................................................................. xiii List of Appendices ..................................................................................................................... xxiii Chapter 1 Introduction and Justification ......................................................................................... 1 1.1 Paradigm shift in Composite and Airframe Design ............................................................ 1 1.2 Justification of the Study .................................................................................................... 4 1.3 Objective of the Study ........................................................................................................ 5 1.4 Method of Approach ........................................................................................................... 6 1.5 Layout of Thesis ................................................................................................................. 8 Chapter 2 Literature Review ......................................................................................................... 10 2.1 Carbon Nanotubes ............................................................................................................. 10 2.1.1 Structure of CNTs ................................................................................................. 10 2.1.2 Mechanical Properties ........................................................................................... 12 2.2 Nano-Reinforced Composites ........................................................................................... 15 2.2.1 Dispersion and Functionalization ......................................................................... 15 2.2.2 Experimental Investigations of the Mechanical Properties .................................. 19 2.3 Existing Multiscale Models and Theoretical Characterization of Nanocomposites ......... 26 2.3.1 Atomistic Modeling .............................................................................................. 27 2.3.2 Continuum Modeling ............................................................................................ 29 2.3.3 Existing Multiscale Modeling Techniques ........................................................... 32 2.4 The Need for the Current Studies ..................................................................................... 36 2.4.1 CNT Dispersion .................................................................................................... 36 2.4.2 Interfacial Characteristics and Load Transfer ....................................................... 37 2.4.3 Theoretical Models ............................................................................................... 38 2.4.4 Multifunctionality and Self-Health Monitoring .................................................... 38 Chapter 3 Multiscale Modeling of Nanocomposites Using Atomistic-Based Continuum Method ..................................................................................................................................... 40 3.1 Molecular Dynamics ......................................................................................................... 40 3.1.1 Two-body (pair) potentials ................................................................................... 42 3.1.2 Many-body Potentials ........................................................................................... 44 3.1.3 Time Stepping ....................................................................................................... 47 3.2 The Finite Element Method .............................................................................................. 49 3.3 Representative Volume Element ....................................................................................... 50 3.3.1 Atomistic-based Continuum Representation of CNT Structures .......................... 51 3.3.2 Atomistic-based Continuum Representation of Interfaces ................................... 54 3.3.3 Homogenized Epoxy Matrix Representation ........................................................ 57 3.3.4 Assembled RVE .................................................................................................... 60 Chapter 4 Interfacial Characterization of Nano-Reinforced Adhesives Using Atomistic-Based Continuum ................................................................................................................................ 61 4.1 Nanotube Pull-out ............................................................................................................. 61 4.2 Interfacial Representation ................................................................................................. 62 4.3 Epoxy Matrix Representation ........................................................................................... 63 Chapter 5 Micromechanical Determination of Effective Mechanical Properties of Nanocomposites ....................................................................................................................... 66 5.1 The Representative Fiber .................................................................................................. 66 5.1.1 Representative Fiber Constitutive Model ............................................................. 67 5.1.2 Boundary Conditions ............................................................................................ 68 ix 5.1.3 Material Property Summary .................................................................................. 70 5.2 Micromechanical Analysis Using Mori-Tanaka Formulations ......................................... 71 5.2.1 Mori-Tanaka Method for Unidirectionally Aligned CNTs ................................... 72 5.2.2 Mori-Tanaka Method for Randomly Orientated CNTs ........................................ 75 5.2.3 Orientational Averaging ........................................................................................ 76 5.2.4 Effective Engineering Constants of Nanocomposite ............................................ 78 5.3 Micromechanical Analysis Using Large Scale Hybrid Monte-Carlo FEA Simulations .. 79 5.3.1 Representative Fiber Constitutive Model ............................................................. 79 5.3.2 Monte-Carlo Computational Cell ......................................................................... 81 Chapter 6 Experimental Investigations ......................................................................................... 85 6.1 Fabrication of Nano-Reinforced SABs ............................................................................. 85 6.1.1 Materials Used ...................................................................................................... 85 6.1.2 Dispersion Methodology and Specimen Fabrication ............................................ 91 6.2 Mechanical Characterization of Nano-Reinforced SABs ................................................. 92 6.2.1 Dogbone Tensile Testing ...................................................................................... 92 6.2.2 Tensile Button Testing .......................................................................................... 93 6.2.3 Double Lap Shear Testing .................................................................................... 93 6.2.4 Double Cantilever Beam Testing .......................................................................... 94 Chapter 7 Analysis of Results and Discussions ............................................................................ 97 7.1 Numerical Predictions ....................................................................................................... 97 7.1.1 Constitutive Response and Fracture Behavior of CNT ......................................... 97 7.1.2 ABC Model Validation Using Molecular Dynamics .......................................... 105 7.1.3 Interfacial Characteristics ................................................................................... 108 7.1.4 Effective Linear Elastic Properties of Nano-Reinforced Adhesives ................... 127 7.1.5 Full Constitutive Response Predictions .............................................................. 135 7.2 Experimental Findings .................................................................................................... 142 x
Description: