ebook img

Multipole correlations of $t_{\rm 2g}$-orbital Hubbard model with spin-orbit coupling PDF

0.19 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multipole correlations of $t_{\rm 2g}$-orbital Hubbard model with spin-orbit coupling

Proc.Int.Conf.HeavyElectrons(ICHE2010) J.Phys.Soc.Jpn.80(2011)SAonishi-iche2010 c 2011ThePhysicalSocietyofJapan (cid:13) Multipolecorrelations oft -orbital Hubbard model withspin-orbit coupling 2g HiroakiOnishi∗ AdvancedScienceResearchCenter,JapanAtomicEnergyAgency,Tokai,Ibaraki319-1195,JAPAN Weinvestigatetheground-state propertiesofaone-dimensional t -orbitalHubbardmodel including 2g anatomicspin-orbitcouplingbyusingnumericalmethods,suchasLanczosdiagonalizationanddensity- matrixrenormalizationgroup.Asthespin-orbitcouplingincreases,wefindaground-statetransitionfrom 1 a paramegnetic state to a ferromagnetic state. In the ferromagnetic state, since the spin-orbit coupling 1 mixes spin and orbital stateswith complex number coefficients, an antiferro-orbital statewith complex 0 orbitalsappears.Accordingtotheappearanceofthecomplexorbitalstate,weobserveanenhancementof 2 Γ octupolecorrelations. 4u n a KEYWORDS: t orbitals,spin-orbitcoupling,multipole,density-matrixrenormalizationgroup 2g J 1 1 Thecompetitionandcooperationbetweenspinandorbital the magnitude of the total spin. In the ferromagnetic phase, degrees of freedom in strongly correlated electron systems antiferro-dipolecorrelationsdevelopevenwhenthespinstate ] l manifest itself in the emergence of various types of spin- isferromagneticduetotheorbitalcontribution.Ontheother e orbital ordered and quantum liquid phases.1–3) In general, hand,thespin-orbitcouplinginducesacomplexorbitalstate, - r amongcompetinginteractionsinvolvingspinandorbital,the inwhichrealxy,yz,andzxorbitalsaremixedwithcomplex t s spin-orbitcoupling is supposed to be weak in 3d transition- number coefficients. Accordingto the complex orbitalstate, . at metaloxidessuchascupuratesandmanganites,whileaswe Γ4uoctupolecorrelationsareenhanced. moveto4dand5delectrons,thespin-orbitcouplingbecomes Let us consider triply degenerate t orbitals on a one- m 2g strong and responsible for magnetic, transport, and optical dimensional chain along the x direction with five electrons - d properties. When the spin-orbit coupling is dominant, spin persite.Theone-dimensionalt2g-orbitalHubbardmodelwith n andorbitalarenotindependent,butinstead thetotalangular thespin-orbitcouplingisdescribedby o momentumgivesagooddescriptionofthemany-bodystate. c Infact,ithasbeensuggestedthatSr IrO ,inwhichIr4+ions H = X tττ′(d†iτσdi+1τ′σ+h.c.)+λXLi·Si [ 2 4 have five electrons in triply degenerate t orbitals, exhibits i,τ,τ′,σ i 2g v1 a novel Mott-insulating state with an effective total angular +UXρiτ↑ρiτ↓+(U′/2) X ρiτσρiτ′σ′ momentumJ =1/2 due to a strong spin-orbitcoupling.4–7) 5 eff i,τ i,σ,σ′,τ6=τ′ In the limit of strong spin-orbit coupling, the ground-state 5 0 Kramersdoubletatalocalioncanbedescribedbyanisospin +(J/2) X d†iτσd†iτ′σ′diτσ′diτ′σ 2 with Jeff=1/2.8,9) The exchange interaction among isospins i,σ,σ′,τ6=τ′ 01. coafnspliena-dortboitaalveanriteatnygloefdosrtdaetersin.gand fluctuation phenomena +(J′/2) X d†iτσd†iτσ′diτ′σ′diτ′σ, (1) 1 Whenwemovetoheavy-elementf-electronsystemssuch i,σ6=σ′,τ6=τ′ 1 asrare-earthandactinidecompounds,thespin-orbitcoupling where d (d† ) is an annihilation (creation) operator for : iτσ iτσ v is large comparing with other energy scales. In such a case, an electron with spin σ (=↑,↓) in orbital τ (=xy,yz,zx) at Xi we usually classify the complicated spin-orbital state from sitei,andρiτσ=d†iτσdiτσ.Thehoppingamplitudeisgivenby the viewpoint of multipole, which is described by the total t =t =t and zero for other combinationsof orbitals. r xy,xy zx,zx a angular momentum. Indeed, the multipole physics has been Hereafter, t is taken as the energy unit. L and S represent i i activelydiscussedinthefieldofheavyelectrons.10) Arecent orbital and spin angular momentum operators, respectively, trendistounveilexotichigh-ordermultipoleordering.Asan andλisthespin-orbitcoupling.U,U′,J,andJ′denoteintra- attemptto clarifymultipolepropertiesoff-electronsystems orbitalCoulomb,inter-orbitalCoulomb,exchange,and pair- from a microscopic viewpoint, we have numerically studied hopping interactions, respectively. We assume U=U′+J+J′ multipolecorrelationsofan f-orbitalHubbardmodelonthe due to the rotation symmetry in the local orbital space and basisofthej-j couplingscheme.11) Webelievethatitisalso J′=J duetotherealityoftheorbitalfunction.12)Throughout importanttoclarifymultipolepropertiesind-electronsystems thispaper,weset~=k =1. B undertheeffectofthespin-orbitcoupling. Weinvestigatetheground-statepropertiesofthemodel(1) In this paper, we investigate multipole properties in the by exploiting a finite-system density-matrix renormalization groundstateofaone-dimensionalt2g-orbitalHubbardmodel group (DMRG) method with open boundary conditions.13) includingthespin-orbitcouplingbynumericalmethods.With The number of states kept for each block is up to m=120, increasing the spin-orbit coupling, the ground state changes and the truncation error is estimated to be 10−4∼10−5. We fromaparamagneticstatetoaferromagneticstateintermsof remarkthatduetothethreeorbitalsinonesite,thenumberof basesforthe singlesite is64,andthe size ofthesuperblock ∗E-mailaddress:[email protected] SAonishi-iche2010-1 J.Phys.Soc.Jpn.80(2011)SAonishi-iche2010 SAonishi-iche2010-2 (a) 1 U=U'+J+J', J=J' Γγmultipole multipoleoperator 0.8 U'=10 Γ4udipole Jx,Jy,Jz Γ3gquadrupole Ou=(1/2)(2Jz2−Jx2−Jy2) λ0.6 ferromagnetic Γ5gquadrupole OOyvz==(√(√33/2/2)()JJx2y−JzJy2) 0.4 Ozx=(√3/2)JzJx Oxy=(√3/2)JxJy 0.2 paramagnetic Γ2uoctupole Txyz=(√15/6)JxJyJz 0 Γ4uoctupole Txα=(1/2)(2Jx3−JxJy2−Jz2Jx) 0 2 4 J 6 8 10 Tyα=(1/2)(2Jy3−JyJz2−Jx2Jy) (2Sb tot) 234 ( Sc ocloc) 12 Γ5uoctupole TTTTyxzzββαβ====((((√√√1/2111)555(///2666J)))(((z3JJJ−xyzJJJJzxzy222J−−−x2JJJ−yxz222JJJJyz2yxJ)))z) 1 U'=10, J=2 L l U'=10, J=2 Table I. Definitionofmultipoleoperatorsuptorank3.Theoverlineonthe 0 0 productdenotestheoperationoftakingallpossiblepermutationsinterms 0 0.2 0.4 λ0.6 0.8 1 0 0.2 0.4 λ0.6 0.8 1 ofcartesiancomponents,e.g.,JxJy=JxJy+JyJx. 6 2 (d) (e) magnitude of the total angular momentum in the single site 5 2 J2 isshown.Atthetransitionpoint,J2 exhibitsa sudden J loc 4 n τ1.5 xy inlcorcease,sincethespin-orbitcouplingstlaocbilizesalargetotal 3 U'=10, J=2 yz U'=10, J=2 angularmomentumstateateverylocalsites.Noteagainthat zx 2 1 J2 doesnotreachthemaximumvalue 5(5 +1)=35 in the 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 loc 2 2 4 λ λ limit of large λ, since the total angular momentum is not a conservedquantity.Regardingthe orbitalstate, we show the Fig. 1. Lanczosresultsforthefour-siteperiodicchain.(a)Theground-state chargedensityineachorbitalinFig.1(e).Dueto thespatial phasediagraminthe(J,λ)planeforU′=10.(b)Themagnitudeofthetotal anisotropyof orbitals, one hole is preferablyaccommodated spininthewholesystem.(c)Thecorrelationbetweenspinandorbitalin initinerantxy orzxorbitalsineachsite, whilelocalizedyz thesinglesite.(d)Themagnitudeofthetotalangularmomentuminthe orbitalsaredoublyoccupied.Measuringchargecorrelations, singlesite.(e)Thechargedensityineachorbital. wefindthatholesoccupyrealxyorzxorbitalalternatelyfor smallλ(notshown).Namely,thegroundstateisarealorbital Hilbert space grows as m2×642. To reduce the size of the state.Forlargeλ,however,xy,yz,andzxorbitalsaremixed Hilbertspace,weusuallydecomposetheHilbertspaceintoa withcomplexnumbercoefficientsbythespin-orbitcoupling, block-diagonalformbyusingsymmetriesoftheHamiltonian. leadingtoacomplexorbitalstate. In the present case, however, the spin-orbit coupling breaks Now we move on to the analysis of multipole properties thespin SU(2)symmetry,sothatwecannotutilizeSz asa to clarify the ground-state properties from the viewpoint of tot goodquantumnumber,whereSz isthez componentofthe multipole.Wemeasuremultipolecorrelationfunctions tot total spin. Since we ignore e orbitals among d orbitals, the totalangularmomentumisnogtaconservedquantity.Thetotal χΓγ(q)=XhXjΓγXkΓγieiq(j−k)/N, (2) j,k numberofelectronscanbeusedasagoodquantumnumber. Thus, since DMRG calculations consume much CPU times, where XiΓγ is a multipole operator with the symbol X of wesupplementallyuseaLanczosdiagonalizationmethodfor multipole for the irreducible representation Γγ in the cubic theanalysisofafour-siteperiodicchaintoaccumulateresults symmetryatsitei.Here,weconsider15typesofmultipoles withrelativelyshortCPUtimes. includingthreedipoles(X=J),fivequadrupoles(X=O),and LetusfirstlookatLanczosresultsforthefour-siteperiodic sevenoctupoles(X=T),aslistedinTableI.14)Weevaluatethe chain. In Fig. 1(a), we show the phase diagram in the (J,λ) multipole correlation functions by DMRG calculations with plane for U′=10. The phase boundary is determined by the chainsof16sites. magnitudeofthetotalspinS2 .AsshowninFig.1(b),S2 Figure2showsDMRGresultsofthemultipolecorrelation tot tot is almost zero for small λ, indicating a spin-singlet ground functionsatU′=10,J=2,andλ=0fortheparamagneticphase. state. Asλ increases,we find a transitionto a ferromagnetic Regarding dipoles, as shown in Fig. 2(a), the Jx correlation state with finite S2 . Note that even in the limit of large λ, has a peak at q=π, which signals an antiferromagneticstate. tot S2 doesnotapproachthe maximumvalue 2(2+1)=6,since Here,wenoticethateachofthedipolecorrelationsexhibitsa tot the spin-orbit coupling mixes spin up and down states and kink at q=π/2, while the kink correspondsto a peak for the thecompleteferromagneticstateisdisturbed.InFig.1(c),we Jy and Jz correlations. This kink structure originates in the plotthecorrelationbetweenspinandorbitalin thelocalsite spin-orbitalSU(4)symmetrywhichrealizesataspecialpoint L ·S .Atλ=0, thereisnocorrelationbetweenspinand J=λ=0.15–19) At the SU(4) symmetric point, correlations of loc loc orbital. As λ increases, the spin-orbital correlation develops spinSi andorbitalpseudospinTi=21Pτ,τ′,σd†iτσσττ′diτ′σ, andapproachesonein the limitoflargeλ, indicatingtotally whereσarePaulimatrices,coincidewitheachotherandhave parallel spin and orbital angular momenta. In Fig. 1(d), the a peak at q=π/2. With increasing J, the spin correlation of q=π/2growsandthepeakofthespincorrelationremainsat J.Phys.Soc.Jpn.80(2011)SAonishi-iche2010 SAonishi-iche2010-3 0.4 2 0.4 2 (a) (b) (a) (b) U'=10, J=2, λ=0 U'=10, J=2, λ=0 U'=10, J=2, λ=0.5 U'=10, J=2, λ=0.5 0.3 J x O u 0.3 J x O u J y O v J y O v J z O yz J z O yz χ0.2 χ 1 O zx χ0.2 χ 1 O zx O xy O xy 0.1 0.1 0 0 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 q / π q / π q / π q / π 30 4 30 4 (c) (d) (c) (d) U'=10, J=2, λ=0 U'=10, J=2, λ=0 U'=10, J=2, λ=0.5 U'=10, J=2, λ=0.5 20 TTT xyz ααα 3 TTT xyz βββ 20 TTT xyz ααα 3 TTT xyz βββ χ χ 2 T xyz χ χ 2 T xyz 10 10 1 1 0 0 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 q / π q / π q / π q / π Fig. 2. DMRGresultsofmultipolecorrelationsatU′=10,J=2,andλ=0: Fig. 3. DMRGresultsofmultipolecorrelationsatU′=10,J=2,andλ=0.5: (a)Γ4udipoles;(b)Γ3gandΓ5gquadrupoles;(c)Γ4uoctupoles;and(d) (a)Γ4udipoles;(b)Γ3gandΓ5gquadrupoles;(c)Γ4uoctupoles;and(d) Γ5uandΓ2uoctupoles. Γ5uandΓ2uoctupoles. q=π/2.Ontheotherhand,thepseudospincorrelationofq=π thespinstateisferromagnetic.Moreover,thecomplexorbital isenhanced,andthepeakpositionofthepseudospincorrela- state appears, since the spin-orbit coupling yields the linear tionchangestoq=π.Notethatfortheorbitalangularmomen- combinationsofspinandorbitalstateswithcomplexnumber tumLi,thecorrelationoftheq=πcomponentisenhancedas coefficients.Accordingly,weobserveanenhancementofthe well.Thus,theorbitalcontributiontodipoleleadstothepeak Γ octupolecorrelations.Itisaninterestingissuetoexplore 4u oftheJx correlationatq=πratherthanq=π/2. possiblemultipoleorderingin5d-electronIrcompoundswith In Fig. 2(b), we find that for the Ou and Ov correlations, strongspin-orbitcoupling. asharppeakappearsatq=0,sincehOuiandhOviareturned TheauthorthanksG.Khaliullin,S.Maekawa,andM.Mori out to be finite. We also find a peak at q=π for the Ou, Ov, forusefuldiscussions.ThisworkwassupportedbyGrant-in- andOyz correlations,implyinganantiferro-orbitalstate.For AidforScientificResearchofMinistryofEducation,Culture, all quadrupoles, there occurs a kink at q=π/2 in similar to Sports,Science,andTechnolotyofJapan. the case of dipoles, which is a trace of the SU(4) symmetry atJ=λ=0.AsshowninFig.2(c)and2(d),wealsoobservea kinkatq=π/2foroctupoles. 1) Proc.Int.Conf.StronglyCorrelatedElectronswithOrbitalDegreesof In Fig. 3, we present the multipole correlation functions Freedom(ORBITAL2001),J.Phys.Soc.Jpn.71(2002)Suppl. atU′=10,J=2, andλ=0.5 for the ferromagneticphase.At a 2) Y.TokuraandN.Nagaosa:Science288(2000)462. 3) T.Hotta:Rep.Prog.Phys.69(2006)2061. glance, we find that the kink structure at q=π/2 disappears 4) B.J.Kim,H.Jin,S.J.Moon,J.-Y.Kim,B.-G.Park,C.S.Leem,J.Yu, forallmultipoles.Concerningdipoles,asshowninFig.3(a), T.W.Noh,C.Kim,S.-J.Oh,J.-H.Park, V.Durairaj, G.Cao, andE. a peakappearsat q=π. Namely,antiferro-dipolecorrelations Rotenberg:Phys.Rev.Lett.101(2008)076402. become dominanteven when the spin state is ferromagnetic 5) B.J.Kim,H.Ohsumi,T.Komesu,S.Sakai,T.Morita,H.Takagi,and duetotheorbitalcontribution.Infact,thespinS correlation T.Arima:Science323(2009)1329. i hasapeakatq=0,while theorbitalL correlationexhibitsa 6) S.Chikara,O.Korneta,W.P.Crummett,L.E.DeLong,P.Schlottmann, i andG.Cao:Phys.Rev.B80(2009)140407. peakatq=π (notshown).On theotherhand,thequadrupole 7) S.J.Moon,H.Jin,W.S.Choi,J.S.Lee,S.S.A.Seo,J.Yu,G.Cao,T. correlations are found to be almost flat, and we cannot see W.Noh,andY.S.Lee:Phys.Rev.B80(2009)195110. anyfinestructuressignalingquadrupoleordering,asshownin 8) H.Jin,H.Jeong,T.Ozaki,andJ.Yu:Phys.Rev.B80(2009)075112. Fig.3(b).Asforoctupoles,weobserveasignificantenhance- 9) G.JackeliandG.Khaliullin:Phys.Rev.Lett.102(2009)017205. 10) Y.Kuramoto,H.Kusunose,andA.Kiss:J.Phys.Soc.Jpn.78(2009) mentoftheΓ octupolecorrelationsoftheq=π component 4u 072001. [seeFigs.2(c)and3(c)].Thegrowthoftheantiferro-octupole 11) H.OnishiandT.Hotta:J.Phys.Soc.Jpn.75Suppl.(2006)266. correlations reflects the stabilization of the antiferro-orbital 12) E.Dagotto,T.Hotta,andA.Moreo:Phys.Rep.344(2001)1. statewithcomplexorbitals. 13) S.R.White:Phys.Rev.Lett.93(1992)2863. Insummary,wehavestudiedtheground-stateproperitesof 14) R.Shiina,H.Shiba,andP.Thalmeier:J.Phys.Soc.Jpn.66(1997)1741. 15) Y.Yamashita,N.Shibata,andK.Ueda:Phys.Rev.B58(1998)9114. the t -orbital Hubbard model with the spin-orbit coupling 2g 16) H.C.Lee,P.Azaria,andE.Boulat:Phys.Rev.B69(2004)155109. from the viewpoint of multipole, by numerical techniques. 17) J.C.Xavier,H.Onishi,T.Hotta,andE.Dagotto:Phys.Rev.B73(2006) The strong spin-orbitcouplinginduces a transition from the 014405. antiferromagnetic state to the ferromagnetic state. We have 18) H.OnishiandT.Hotta:J.Magn.Magn.Mater.310(2007)790. found that antiferro-dipole correlations develop even when 19) H.Onishi:Phys.Rev.B76(2007)014441.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.