This page intentionally left blank CAMBRIDGESTUDIESINADVANCEDMATHEMATICS97 EditorialBoard B.Bollobas,W.Fulton,A.Katok,F.Kirwan,P.Sarnak,B.Simon,B.Totaro MULTIPLICATIVENUMBERTHEORYI: CLASSICALTHEORY Primenumbersarethemultiplicativebuildingblocksofnaturalnumbers.Un- derstanding their overall influence and especially their distribution gives rise tocentralquestionsinmathematicsandphysics.Inparticulartheirfinerdistri- butioniscloselyconnectedwiththeRiemannhypothesis,themostimportant unsolvedprobleminthemathematicalworld.Assumingonlysubjectscovered inastandarddegreeinmathematics,theauthorscomprehensivelycoverallthe topicsmetinfirstcoursesonmultiplicativenumbertheoryandthedistribution ofprimenumbers.Theybringtheirextensiveanddistinguishedresearchexper- tisetobearinpreparingthestudentforintelligentreadingofthemoreadvanced researchliterature.Thetext,whichisbasedoncoursestaughtsuccessfullyover manyyearsatMichigan,ImperialCollegeandPennsylvaniaState,isenriched bycomprehensivehistoricalnotesandreferencesaswellasover500exercises. HughMontgomeryisaProfessorofMathematicsattheUniversityofMichigan. Robert Vaughan is a Professor of Mathematics at Pennsylvannia State University. CAMBRIDGESTUDIESINADVANCEDMATHEMATICS AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersoffromCambridgeUniversity Press.Foracompleteserieslistingvisit: http://www.cambridge.org/series/sSeries.asp?code=CSAM Alreadypublished 70 R.Iorio&V.IorioFourieranalysisandpartialdifferentialequations 71 R.BleiAnalysisinintegerandfractionaldimensions 72 F.Borceaux&G.JanelidzeGaloistheories 73 B.Bolloba´sRandomgraphs 74 R.M.DudleyRealanalysisandprobability 75 T.Sheil-SmallComplexpolynomials 76 C.VoisinHodgetheoryandcomplexalgebraicgeometry,I 77 C.VoisinHodgetheoryandcomplexalgebraicgeometry,II 78 V.PaulsenCompletelyboundedmapsandoperatoralgebras 79 F.Gesztesy&H.HoldenSolitonEquationsandTheirAlgebro-GeometricSolution,I 81 S.MukaiAnIntroductiontoInvariantsandModuli 82 G.TourlakisLecturesinLogicandSetTheory,I 83 G.TourlakisLecturesinLogicandSetTheory,II 84 R.A.BaileyAssociationSchemes 85 J.Carlson,S.Mu¨ller-Stach&C.PetersPeriodMappingsandPeriodDomains 86 J.J.Duistermaat&J.A.C.KolkMultidimensionalRealAnalysisI 87 J.J.Duistermaat&J.A.C.KolkMultidimensionalRealAnalysisII 89 M.Golumbic&A.TrenkToleranceGraphs 90 L.HarperGlobalMethodsforCombinatorialIsoperimetricProblems 91 I.Moerdijk&J.MrcunIntroductiontoFoliationsandLieGroupoids 92 J.Kollar,K.E.Smith&A.CortiRationalandNearlyRationalVarieties 93 D.ApplebaumLevyProcessesandStochasticCalculus 94 B.ConradModularFormsandtheRamanujanConjecture 95 M.SchechterAnIntroductiontoNonlinearAnalysis 96 R.CarterLieAlgebrasofFiniteandAffineType 97 H.L.Montgomery&R.CVaughanMultiplicativeNumberTheoryI 98 I.ChavelRiemannianGeometry 99 D.GoldfeldAutomorphicFormsandL-FunctionsfortheGroupGL(n,R) 100 M.Marcus&J.RosenMarkovProcesses,GaussianProcesses,andLocalTimes 101 P.Gille&T.SzamuelyCentralSimpleAlgebrasandGaloisCohomology 102 J.BertoinRandomFragmentationandCoagulationProcesses Multiplicative Number Theory I. Classical Theory HUGH L. MONTGOMERY UniversityofMichigan,AnnArbor ROBERT C. VAUGHAN PennsylvaniaStateUniversity,UniversityPark cambridge university press Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press TheEdinburghBuilding,Cambridgecb22ru,UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521849036 © Cambridge University Press 2006 Thispublicationisincopyright.Subjecttostatutoryexceptionandtotheprovisionof relevantcollectivelicensingagreements,noreproductionofanypartmaytakeplace withoutthewrittenpermissionofCambridgeUniversityPress. Firstpublishedinprintformat 2006 isbn-13 978-0-511-25645-5eBook(EBL) isbn-10 0-511-25645-0 eBook(EBL) isbn-13 978-0-521-84903-6hardback isbn-10 0-521-84903-9 hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyofurls forexternalorthird-partyinternetwebsitesreferredtointhispublication,anddoesnot guaranteethatanycontentonsuchwebsitesis,orwillremain,accurateorappropriate. Dedicatedtoourteachers: P.T.Bateman J.H.H.Chalk H.Davenport T.Estermann H.Halberstam A.E.Ingham Taleta¨rta¨nkandetsbo¨rjanochslut. Medtankenfo¨ddestalet. Uto¨fvertaletn˚artankenicke. Numbersarethebeginningandendofthinking. Withthoughtswerenumbersborn. Beyondnumbersthoughtdoesnotreach. Magnus Gustaf Mittag-Leffler, 1903 Contents Preface pagexi Listofnotation xiii 1 Dirichletseries:I 1 1.1 Generatingfunctionsandasymptotics 1 1.2 AnalyticpropertiesofDirichletseries 11 1.3 Eulerproductsandthezetafunction 19 1.4 Notes 31 1.5 References 33 2 Theelementarytheoryofarithmeticfunctions 35 2.1 Meanvalues 35 2.2 TheprimenumberestimatesofChebyshevandofMertens 46 2.3 Applicationstoarithmeticfunctions 54 2.4Thedistributionof (cid:1)(n)−ω(n)65 2.5 Notes 68 2.6 References 71 3 Principlesandfirstexamplesofsievemethods 76 3.1 Initiation 76 3.2TheSelberglambda-squaredmethod82 3.3 Siftinganarithmeticprogression 89 3.4 Twinprimes 91 3.5 Notes 101 3.6 References 104 4 Primesinarithmeticprogressions:I 108 4.1 Additivecharacters 108 4.2 Dirichletcharacters 115 4.3 Dirichlet L-functions 120 vii viii Contents 4.4 Notes 133 4.5 References 134 5 Dirichletseries:II 137 5.1 TheinverseMellintransform 137 5.2 Summability 147 5.3 Notes 162 5.4 References 164 6 ThePrimeNumberTheorem 168 6.1 Azero-freeregion 168 6.2 ThePrimeNumberTheorem 179 6.3 Notes 192 6.4 References 195 7 ApplicationsofthePrimeNumberTheorem 199 7.1 Numberscomposedofsmallprimes 199 7.2 Numberscomposedoflargeprimes 215 7.3 Primesinshortintervals 220 7.4 Numberscomposedofaprescribednumberofprimes 228 7.5 Notes 239 7.6 References 241 8 FurtherdiscussionofthePrimeNumberTheorem 244 8.1 RelationsequivalenttothePrimeNumberTheorem 244 8.2 AnelementaryproofofthePrimeNumberTheorem 250 8.3 TheWiener–IkeharaTauberiantheorem 259 8.4 Beurling’sgeneralizedprimenumbers 266 8.5 Notes 276 8.6 References 279 9 PrimitivecharactersandGausssums 282 9.1 Primitivecharacters 282 9.2 Gausssums 286 9.3 Quadraticcharacters 295 9.4 Incompletecharactersums 306 9.5 Notes 321 9.6 References 323 10 Analyticpropertiesofthezetafunctionand L-functions 326 10.1 Functionalequationsandanalyticcontinuation 326 10.2 Productsandsumsoverzeros 345 10.3 Notes 356 10.4 References 356