ebook img

Multiple superconducting gap and anisotropic spin fluctuations in iron arsenides: Comparison with nickel analog PDF

0.42 MB·English
by  Z. Li
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multiple superconducting gap and anisotropic spin fluctuations in iron arsenides: Comparison with nickel analog

Multiple superconducting gap and anisotropic spin fluctuations in iron arsenides: Comparison with nickel analog Z.Lia,S.Kawasakib,T.Okab,T.Tabuchib,Y.Ooeb,M.Ichiokab,Z.A.Rena,Z.X.Zhaoa,J.L.Luoa,N.L.Wanga,X.C.Wanga, Q.Q.Liua,C.Q.Jina,C.T.Linc,Guo-qingZhenga,b aInstituteofPhysicsandBeijingNationalLabforCondensedMatterPhysics,ChineseAcademyofScience,Beijing,100190,China bDepartmentofPhysics,OkayamaUniversity,Okayama700-8530,Japan cMaxPlanckInstitute,Heisenbergstrasse1,D-70569Stuttgart,Germany 1 1 0 2 nAbstract a JWe present extensive 75As NMR and NQR data on the superconductingarsenides PrFeAs0.89F0.11 (Tc=45 K), LaFeAsO0.92F0.08 6 (Tc=27 K), LiFeAs (Tc = 17 K) and Ba0.72K0.28Fe2As2 (Tc = 31.5 K) single crystal, and compare with the nickel analog 2LaNiAsO F (T =4.0 K) . In contrast to LaNiAsO F where the superconducting gap is shown to be isotropic, the spin 0.9 0.1 c 0.9 0.1 lattice relaxation rate 1/T in the Fe-arsenides decreases below T with no coherence peak and shows a step-wise variation at 1 c ] low temperatures. The Knight shift decreases below T and shows a step-wise T variation as well. These results indicate spin- n c osinglet superconductivitywith multiple gaps in the Fe-arsenides. The Fe antiferromagneticspin fluctuationsare anisotropicand cweakercomparedtounderdopedcopper-oxidesorcobalt-oxidesuperconductors,whilethereisnosignificantelectroncorrelations - rinLaNiAsO0.9F0.1. WewilldiscusstheimplicationsoftheseresultsandhighlighttheimportanceoftheFermisurfacetopology. p uKeywords: superconductivity,ironarsenide,nickelarsenide,NMR s . t a 1. Introduction 2. Experiments m - The preparation of the samples of PrFeAs F d 0.89 0.11 n (Tc=45 K), LaFeAsO0.92F0.08 (Tc=23 K), LiFeAs(Tc = o 17 K), LaNiAsO F (T = 4.0 K), and single crystal 0.9 0.1 c [catTthheetrreacnesnittiodnistceomvepreyraotfurseupTecrc=on2d6uKcti[v1it]yhiansLaattFreaActseOd1g−rxeFaxt B[5a,06.7,2K4,07.2,8F8e].2ANsQ2R(Tancd=NM31R.5mKea)suarreempenutbsliwsheeredcealrsreiewdhoeruet 1attention. Soonaftertheinitialwork,T wasraisedto55Kin by using a phase coherent spectrometer. The NMR spectra c vSmFeAsO F [2], which is the highest among materials ex- weretakenbysweepingthemagneticfieldatafixedfrequency. 1 x x 14ceptcuprate−s. Thesecompoundshavea ZrCuSiAstype struc- The spin-latticerelaxationrate 1/T1 wasmeasuredby usinga ture (P4/nmm) in which FeAs forms a two-dimensional net- singlesaturationpulse. 0 5work similar to the CuO2 plane in the cuprates case. By re- .placing O with F, electrons are doped. After the discoveryof 1 3. ResultsandDiscussion 0ReFeAsO (Re: rare earth, so-called 1111 compound), several 1otherFe-pnictideshavebeenfoundtosuperconduct.BaFe2As2 3.1. Knightshift 1(so-called 122 compound) has a ThCr Si -type structure. By 2 2 Figure 1 shows the temperature dependence of the Knight : vreplacingBawithK,holesaredopedandTc canbeashighas shiftforPrFeAs F (T =45K)withthemagneticfield(H) i38K[3]. Anotherarsenide,LiFeAs(so-called111compound) 0.89 0.11 c X applied along the ab-direction [9]. The shift decreases below which has Cu Sb type tetragonal structure, was discovered to 2 T and goes to zero at the T=0 limit. The Knight shift of arshowsuperconductivityeveninstoichiometriccomposition[4]. Bca K Fe As with H parallel to the c-axis [10] also de- Thecommonfeatureofthesethreesystemsaretheironarsenide 0.72 0.28 2 2 creases below T , as seen in Fig. 2. The behavior is quite planewhichdominatesthepropertiesofthesecompoundsand c similartothePrFeAs F case. Theseresultsindicatespin- hoststhesuperconductivity. 0.89 0.11 singletsuperconductivity. We have used nuclear magnetic resonance (NMR) and nu- However,the detailedT variationof theKnightshift isdif- clearquadrupoleresonance(NQR)techniquestostudythepair- ferentfromthatseeninusualspin-singletsuperconductorssuch ingsymmetryandspinfluctuationsinthenormalstate. Wefind ascopper-oxides,whereKdecreasesrapidlybelowT whichis c thatthesesupercondutorsareinthespin-singletstatewithmul- followedbyamilderdecreaseatlowtemperatures,asillustrated tiple gaps, and the latter property is quite different from the bythebrokencurveinFig. 1. Incontrast, thedecreaseofthe cupratecase. Theantiferromagneticspinfluctuationisweaker Knightshiftshowsastep-wisebehavioratatemperatureabout thanthecupratesandareanisotropicinthespinspace. halftheT . c PreprintsubmittedtoJournalofPhysicsandChemistryofSolids January27,2011 0.4 %) 0.3 hift ( T S c ght 0.2 PrFeAsO F ni 0.89 0.11 K H//ab experiment 0.1 two-gap fit one-gap fit 10 20 30 40 50 60 70 80 Temperature (K) Figure 1: (color online) The temperature variation of 75As Knight shift of PrFeAs0.89F0.11 withH ab. Thesolidcurveisafittingoftwod-wavegaps k with∆1(T = 0) = 3.5kBTC andarelative weightof0.4, and∆2(T = 0) = 1.1kBTCwitharelativeweightof0.6(seetext). ThebrokencurvebelowTcis asimulationforthelargergapalone. Figure3:(coloronline)Thetemperaturedependenceof19Fspin-latticerelax- 0.3 ationrate1/T1inPrFeAs0.89F0.11measuredatµ0H=1.375T.Thebrokenline indicatesarelationofT1T =constwhichholdsforaweaklycorrelatedelectron %) system.ThethinstraightlineillustratesthetemperaturedependenceofT3 (0.2 c K a”concave”shapeofT-variation. Wefindthatatwo-gapmodelcanreproducethestep-wiseT 0.1 variationof1/T andtheKnightshift. Theunderlyingphysics 1 is that the system is dominantly governed by a larger gap for 0 T near Tc while at sufficiently low T it starts to ”notice” the 0 10 20 30 40 50 existence of a smaller gap, resulting in another drop in 1/T 1 T (K) belowT Tc/2. Inthed-wavecasewithtwogaps,wherethe ∼ densityofstates(DOS)isN (E)=N E ,theKnightshift Faxigisu.reT2h:e(acrorloowroinnldinicea)teTsheTcK.nTighhetcsuhrifvtedbatealoowfBTac0.i7s2Ka0fi.2t8tFoea2Atws2o-wgiatphmHokdce-l and1/T1sinthesupercondus,citingstat0e,ia√reE2w−∆r2iittenas (seetext). K ∂f(E) s = N (E) dE (1) K Z s ∂E N 3.2. T inthesuperconductingstate 1 The step-wise decrease of the Knight shift is also reflected T1N = 2 N (E)N (E ) in the temperature dependence of the 19F spin-lattice relax- T1s XkBT Z Z s,i s,i ′ ationrate1/T [9],andisalsoseeninLaFeAsO F (T =23 1 0.92 0.08 c K)[11]andthehole-dopedBa0.72K0.28Fe2As2(Tc=31.5K)[10]. f(E) 1 f(E′) δ(E E′)dEdE′ (2) Figure3showsthetemperaturedependenceof1/T measured − − 1 (cid:2) (cid:3) by19FNMRinPrFeAs F (T =45K),andFig. 4shows where f(E)istheFermidistributionfunction. Wefindthatthe 0.89 0.11 c thetemperaturedependenceof1/T1measuredby75AsNQRin parameters2∆1(0) = 7.0kBTc, 2∆2(0) = 2.2kBTc and κ = 0.4 LaFeAsO0.92F0.08 (Tc=23K). Below Tc, thereis nocoherence canfit thedata ofboththeshiftand1/T1 verywell, asshown peak for both samples. Moreover, a bending feature is seen bythesolidcurvesinFig. 1andFig. 3,where around T T /2 [9, 11]. This behavior is not expected in a single-gap∼supecrconductor. κ= N0,1 (3) N +N Figure 5 shows the temperature dependence of 1/T mea- 0,1 0,2 1 sured by75As NMR with the magneticfield appliedalongthe is the relative DOS of the band(s) with larger gap to the total c-axis in Ba K Fe As (T = 31.5 K) single crystal [10]. DOS. 0.72 0.28 2 2 c 1/T also shows a ”knee”-shape around T T /2. Namely, Application of the same model to LaFeAsO F gives 1 c 0.92 0.08 ∼ the sharp drop of 1/T just below T is gradually replaced by 2∆ (0)= 8.4k T ,2∆ (0)= 3.2k T ,andκ = 0.6[11]. Onthe 1 c 1 B c 2 B c a slower change below T 15 K, then followed by another otherhand,forBa K Fe As ,2∆ (0)=9.0k T ,2∆ (0)= 0.72 0.28 2 2 1 B c 2 ∼ steeper drop below. This ”convex” shape is clearly different 1.62k T ,andκ=0.69wasobtained[10]. Thesamemodelcan B c fromthecaseofsuperconductorswithasinglegapwhichshows alsofittheKnightshiftdata,asseeninFig. 2. 2 10 100 T c Tc 10 ) 1 1 -c e 1 ) (s - c 1 e T (s 1/ 1 Ba0.72K0.28Fe2As2 T1 H//c / 1 two-gap d-wave two-gap s(+-) with impurity 0.1 0.1 LaFeAsO0.92F0.08 75 10 100 As-NQR T (K) d-wave (2 gap fit) 0.01 –s-wave Figure 5: (color online) T-dependence of 1/T1 in Ba0.72K0.28Fe2As2. The (Bang et al.) curvesbelowTc(indicatedbythearrow)arefitstotwo-gapmodels(seetext). 10 100 wavemodelshowsthatthegapvalueofLiFeAsissmallerthan Temperature (K) other compounds, but the impurity scattering is much larger Figure4: (coloronline)75As(1/T1)inLaFeAsO0.92F0.08. Thesolidcurveis atwogapfitassumingad-wavesymmetrywithparameters,∆1(0)=4.2kBTc, (η = 0.26kBTc) [16]. The gap parameters for all Fe-arsenide ∆2(0)=1.6kBTc,andκ =0.6(seetext). Thedottedcurveisasimulationas- samples are summarized in Tab. 1. To summarize, the multi- sumingtwos-wavegapsthatchangesignswithparameters,∆1(0)=3.75kBTc, ple gap featureis universalto all Fe-arsenids, which probably ∆2(0)=1.5kBTc,andκ=0.38. associatedwiththemultipleelectronicbands[18]. By strong contrast, the nickel analog of LaFeAsO F , 1 x x For the case of s±-gap [12, 13], recent calculations have namely,LaNiAsO0.9F0.1 hasdifferentbehavior.[19]Asse−enin shown that scattering between the differentbands may reduce Fig. 7, 1/T shows a well-defined coherence peak just below 1 thecoherencepeakjustbelowTc [14,15]. FollowingRef.[15], Tc,whichisafingerprintofsuperconductorswithanisotropic wecalculated1/T1forthes±-gapmodel,byintroducingtheim- gap. Thisis insharpcontrastto variousFe-arsenidesreported purityscatteringparameterηintheenergyspectrum,E =ω+iη. so far[9, 11, 10, 20, 21, 22]. At low temperatures, 1/T de- 1 Theparameters2∆1(0)= 7.5kBTc,2∆2(0)= 3.0kBTc,κ = 0.38 creasesasanexponentialfunctionofT.ThesolidcurvesinFig. andη=0.15kBTc,canwellfitthedata,asshowninFig.4.where 7arecalculationsusingtheBCSmodel.FollowingHebel[23], weconvoluteN (E)withabroadeningfunction B(E)whichis πn (N +N )V2 s η= imp 1 2 (4) approximatedwitharectangularfunctioncenteredat E witha 1+π2(N +N )2V2 1 2 heightof 1/2δ. The solid curvesbelow T shown in Fig. 7 is c In the equation, nimp is the impurity concentration and V is calculationwith2∆(0) = 3.2kBTc andr ≡ ∆(0)/δ=5. SuchT- the scattering potential at the impurity. A similar set of pa- dependenceof 1/T1 in the superconductingstate is in striking rameters(2∆ (0) = 7.2k T , 2∆ (0) = 1.68k T , κ = 0.6 and contrast to that for Fe-arsenide where no coherence peak was 1 B c 2 B c η=0.22k T )canfitthedataofBa K Fe As ,seeFig. 5. observedandtheT-dependenceatlow-T doesnotshowanex- B c 0.72 0.28 2 2 The results for LiFeAs[16] (Fig. 6) are shown in Fig. 6. ponentialbehavior. Thestrikingdifferencemaybeascribedto We measuredtwoLi FeAssampleswithnominal x = 0.8and thedifferenttopologyoftheFermisurfaces.ForFe-arsenides,it x 1.1. ThephysicalpropertiesincludingtheNMRresultsarethe hasbeenproposedthatd-wave[24,25]orsignreversals-wave same. Thissupportsthatonlystoichiometriccompoundcanbe gap[12,13]canbestabilizedduetonestingbytheconnecting formed.[17] 1/T1 below Tc shows a qualitatively similar be- wave vector Q = (π,0). In LaNiAsO0.9F0.1, however,there is havior as the previous three samples, but the behavior at low nosuchFermisurfacenesting[26],andthusthemechanismfor temperaturesis a little different. Namely, 1/T1 becomesto be the proposed gap symmetry does not exist. Given that the Tc proportional to T below T Tc/4, which indicates that a fi- ismuchlowerinLaNiAsO1 xFx,ourresultsuggeststheimpor- ≤ − niteDOSisinducedbytheimpurityscattering.Obviously,this tantroleoftheFermi-surfacetopologyinthesuperconductivity would occur in a d-wave case. On the other hand, it is also ofFe-arsenides. possible in the s case provided that the scattering between Finally,forcomparison,1/T normalizedbythevalueatT ± 1 c theelectron-andhole-pocketisstrong. Calculationbythe s - areshowninFig. 8asafunctionofreducedtemperatureforall ± 3 Table1:Thegapparameters.κ=N1/(N1+N2),η= 1π+nπim2p(N(N11++NN22)2)VV22,wherenimpistheimpurityconcentrationandVisthescatteringpotentialattheimpurity. d-wave s -wave ± ∆ /k T ∆ /k T κ ∆ /k T ∆ /k T κ η/k T 1 B c 2 B c 1 B c 2 B c B c PrFeAsO F 3.5 1.1 0.4 0.89 0.11 LaFeAsO F 4.2 1.6 0.6 3.75 1.5 0.38 0.15 0.92 0.08 Ba K Fe As 4.5 0.81 0.69 3.6 0.84 0.6 0.22 0.72 0.28 2 2 LiFeAs 3.0 1.3 0.5 0.26 100 10 LaNiAsO F T 0.9 0.1 c 75 As - NQR ~ T 10 1 1 ) Tc -1 T (sec) 1 1 - 1 / T (s 1 0.1 1/ 0.1 LixFeAs 0.01 experiment s-wave fit nominal x=0.8 (0) = 3.2 k T B c nominal x=1.1 0.001 0.01 s(+-)-wave 1 10 T (K) 1 10 100 Figure7: (coloronline)TheT dependenceofthespinlatticerelaxationrate, T (K) 1/T1,forLaNiAsO0.9F0.1. ThearrowsindicateTc. Thebrokenstraightlines Figure 6: (color online) The T-dependence of 1/T1 measured by NQR for showtherelation1/T1∝T,andthecurvesbelowTcarefitstotheBCSmodel Li0.8FeAsandLi1.1FeAs. ThecurvesbelowTcarefitstothes±-wavemodel withthegapsizeindicatedinthefigure. with∆+1 =3.0kBTc,∆−2 =1.3kBTc,andtheimpurityscatteringrateη=0.26 kBTc(seetext). the increasing is very small. The 1/T T of stoichiometric 1 LiFeAs is almost constant. While 1/T T of LaNiAsO F samples. 1 0.9 0.1 decrease with decreasing temperature. These results sug- 3.3. Normalstateproperties gest that the antiferromagnetic spin fluctuations are stronger in Ba K Fe As and LaFeAsO F , but quite weak in Next, we discuss on the character of spin fluctuations. 0.72 0.28 2 2 0.92 0.08 LiFeAs and LaNiAsO F . This difference may be under- Figure 9 shows the temperature variation of 1/T T in 0.9 0.1 1 stoodbythedifferenceoftheFermisurfacetopology.Thereare Ba K Fe As . Onenoticesthat,inthenormalstateabove 0.72 0.28 2 2 notonlyhole-pocketsandelectron-pocketsbutalsonestingbe- T , 1/T T increaseswith decreasingT, whichisanindication c 1 ofantiferromagneticelectroncorrelation,sincebothKaandKc tweentheminBa0.72K0.28Fe2As2 andLaFeAsO0.92F0.08 ,which can promote spin fluctuations. While in LiFeAs there is no slightlydecreasewithdecreasingT,butbecomesaconstantbe- suchnesting,althoughtherearestillhole-pocketsandelectron- lowT 70K[10],whichresemblescloselythecuprate[27]or ∼ pockets. Lackingofsuchnestingmakethespinfluctuationbe- cobaltatecases[28]. comeweakerthanBa K Fe As andLaFeAsO F . In Figure 10 compares 1/T T for four samples. The data 0.72 0.28 2 2 0.92 0.08 1 LaNiAsO F there is no hole-pockets, then nesting can not for LaFeAsO F , LiFeAs, LaNiAsO F are measured 0.9 0.1 0.92 0.08 0.9 0.1 happen,thereforethespinfluctuationsarenotexpected. by NQR, which correspond to H c-axis, since the princi- ple axis of the NQR tensors is alokng the c-axis. The data Finally,wediscusstheanisotropyofthespinfluctuations.In for Ba0.72K0.28Fe2As2 is measured by NMR with H c- ageneralform,1/T1T iswrittenas k axis. The 1/T T of hole-doped Ba K Fe As increase 1 0.72 0.28 2 2 1 πk γ2 χ (q,ω) wdoitpheddeLcareFaesAinsgOt0e.9m2Fp0e.0r8atualrseoasshdoiwscussimseidlaarbboevhea.vTiohre,eallethcotruognh- T1T = (γeB~)n2 Xq A2hf ′⊥′ω , (5) 4 2.0 As H//a 1 1.5 Fe -1K) H//c Fe 1 -c 75As NMR in e T (s 1.0 H//a Ba1-xKxFe2As2 T 1 0.1 T1 )/ Tc 1/ H//c x=0.28 1 0.50 T ( x=0 PrFeAsO0.89F0.11 LaFeAsO0.92F0.08 0.0 0.01 0 50 100 150 200 250 300 Ba0.72K0.28Fe2As2 T (K) LiFeAs LaNiAsO0.9F0.1 s-wave fit Figure 9: (color online) The quantity 75(1/T1T) in the normal state of Ba0.72K0.28Fe2As2 (circles) andintheparamagnetic state ofBaFe2As2 (dia- monds).Thearrowsintheinsetillustratethelargercomponentofthefluctuat- 0.001 ingfieldofFeandthatseenbytheAssite. 0.1 1 4. Conclusion T/Tc Figure 8: (color online) The normalized T-dependence of 1/T1 for In summary, we have presented the NMR and NQR results PrFeAs0.89F0.11 (Tc=45K), LaFeAsO0.92F0.08 (Tc=23 K),Ba0.72K0.28Fe2As2 (Tc=31.5K).LiFeAs(Tc=17K),LaNiAsO0.9F0.1(Tc=4.0K). on the electron-doped Fe-arsenides PrFeAs0.89F0.11 (Tc = 45 K), LaFeAsO F (T = 23 K), stoichiometric LiFeAs(T 0.92 0.08 c c =17K),andthehole-dopedFe-arsenideBa K Fe As (T 0.72 0.28 2 2 c = 31.5 K). We find there are multiple gaps in iron arsenides where Knightshift and 1/T does not follow a simple power- 1 lawnorexponentialfunction. However,the1/T oftheNickel 1 whereχ′′(q,ω)istheimaginarypartofthedynamicalsuscepti- analog LaNiAsO0.9F0.1 shows a well-defined coherence peak bilitype⊥rpendiculartotheappliedfield. Theanisotropicratioin just below Tc and an exponential behavior at lower tempera- theformof qAchf(q)2χ′c′(q) forBa K Fe As andparentcom- tures. These properties indicate that it is a conventionalBCS PqAahf(q)2χ′a′(q) 0.72 0.28 2 2 superconductor. The difference between the Fe-arsenides and pound are sPhown in Fig.11. The larger magnitude of 1/T T 1 theNi-analogmaybeunderstoodbythediffereneoftheFermi along the a-axis direction than that along the c-axis direction surfacetopology,andthereforehighlightstheimportantroleof indicates that there are stronger fluctuations along the c-axis theFermi-surfacetopologyinpairingsymmetryoftheironar- direction seen by the As-site. Neutronexperimentfoundthat, senidessuperconductors. intheundopedBaFe As compound,theorderedFemagnetic 2 2 In the normalstate, all iron arsenides show weak antiferro- momentisalongthea-directionandformsastripe[29]. Since magneticspincorrelations. Ourdataalsoshowthatthesample the As atom sits in the position above (below) the middle of withweakercorrelationshasalowerT ,andthismayimplythe c fourFe-atoms,ourresultimpliesthat,intheFesite,astronger T hasarelationshipwiththestructureofFermisurface.More- c fluctuatingfieldsexistalongthea-axisdirection,asillustrated over,thespinfluctuationsareanisotropicinspinspace,which intheinsetofFig.9.Itisremarkablethattheantiferromagnetic isdifferentfromcuprates. fluctuationsofFeareanisotropicinspinspace. Namely,χ (Q) ′′ WegratefullyacknowledgethesupportfromCAS,National ismuchlargerthanχ (Q),wherezisalongthec-axisdirec±tion ′z′z ScienceFoundationofChina,JSPSandMEXTofJapan. and Q is the spin fluctuation wave vector. This is in contrast tothehigh-T cuprateswherethespinfluctuationsarebelieved c tobeisotropic,butsimilarsituationwasencounteredincobal- References tatesuperconductor[30]. Therelationshipbetweentheenergy- [1] Y.Kamiharaetal,J.Am.Chem.Soc.130,3296(2008). andq-dependenceofthespinfluctuations(SF)andpossibleSF- [2] Z.-A.Renetal,Chin.Phys.Lett.25,2215(2008). induced superconductivityhas been studied both theoretically [3] M.Rotteretal,Phys.Rev.Lett.101,107006(2008). [31]andexperimentally[32]. Toourknowledge,however,the [4] X.C.Wangetal,SolidStateCommun.148,538(2008). [5] Z.-A.Renetal,MaterialsResearchInnovations12,105(2008). relationshipbetweentheanisotropyofSFandsuperconductiv- [6] G.F.Chenetal,Phys.Rev.Lett.101,057007(2008). ityhasbeenlessexploredsofar. Wehopethatourresultswill [7] Z.Lietal,Phys.Rev.B78,060504(R)(2008). stimulatemoretheoreticalworkinthisregard. [8] G.L.Sunetal,arXiv:0901.2728(2009). 5 [30] K.Matanoetal,Europhys.Lett.84,57010(2008). 1.5 [31] T.MoriyaandK.Ueda,J.Phys.Soc.Jpn.63,1871(1994);D.Monthoux LaFeAsO0.92F0.08 andD.Pines,Phys.Rev.B49,4261(1994). Ba K FeAs [32] G.-q.Zhengetal,J.Phys.Soc.Jpn.64,3184(1995). 0.72 0.28 2 2 LiFeAs LaNiAsO F 0.9 0.1 1 T 1 T 1/ 0.5 0 0 50 100 150 200 250 T Figure 10: (color online) TheT-dependence of1/T1T forLaFeAsO0.92F0.08 (Tc=23 K),Ba0.72K0.28Fe2As2 (Tc = 31.5 K), LiFeAs(Tc = 17 K), LaNiAsO0.9F0.1(Tc=4.0K). 3.0 T N ac T)-(1/TT)/21 c 1/TT)/2122..05 TC BaFe2As2 45 qcq"(q) / T1 ( a" 1/ (q ( ) 1.5 Ba K FeAs 3 0.72 0.28 2 2 1.0 2 0 50 100 150 200 250 300 T (K) Figure11:(coloronline)TheTdependenceoftheanisotropyofthespinfluctu- ationsseenattheAssiteintermsof qAchf(q)2χ′c′(q)fortheleftaxisand qχ′c′(q) PqAahf(q)2χ′a′(q) Pqχ′a′(q) fortherightaxis. P P [9] K.Matanoetal,Europhys.Lett.83,57001(2008). [10] K.Matanoetal,Europhys.Lett.87,27012(2009). [11] S.Kawasakietal,Phys.Rev.B78,220506(R)(2008). [12] I.I.Mazinetal,Phys.Rev.Lett.101,057003(2008). [13] K.Kurokietal,Phys.Rev.Lett.101,087004(2008). [14] A.V.Chubukovetal,Phys.Rev.B78,134512(2008).D.Parkeretal, ibid,134524(2008).M.M.Parishetal,ibid,144514(2008). [15] Y.BangandH.-Y.Choi,Phys.Rev.B78,134523(2008);Y.Nagaietal, NewJ.Phys.10,103026(2008). [16] Z.LietalJ.Phys.Soc.Jpn.79,083702(2010). [17] X.C.Wangetal,SolidStateCommun.148,538(2008)J.H.Tappetal, Phys.Rev.B78,060505(2008). [18] D.J.SinghandM.H.Du,Phys.Rev.Lett.100,237003(2008). [19] T.Tabuchietal,Phys.Rev.B81,140509(2010). [20] Y.Nakaietal,J.Phys.Soc.Jpn.77,073701(2008). [21] H.-J.Grafeetal,Phys.Rev.Lett.101,047003(2008). [22] H.Fukazawaetal,J.Phys.Soc.Jpn.78,033704(2009). [23] L.C.Hebel,Phys.Rev.116,79(1959). [24] S.Graseretal,NewJ.Phys.11,025016(2009). [25] K.Kurokietal,Phys.Rev.B79,224511(2009). [26] G.Xuetal,Europhys.Lett,82,67002(2008). [27] G.-q.Zhengetal,Phys.Rev.Lett.90,197005(2003). [28] G.-q.Zhengetal,Phys.Rev.B73,180503(R)(2006). [29] Q.Huangetal,,Phys.Rev.Lett.101,257003(2008) 6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.