ebook img

Multiple Instance Hybrid Estimator for Learning Target Signatures PDF

0.71 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multiple Instance Hybrid Estimator for Learning Target Signatures

MULTIPLEINSTANCEHYBRIDESTIMATORFORLEARNINGTARGETSIGNATURES ChangzheJiaoandAlinaZare ElectricalandComputerEngineering,UniversityofMissouri ElectricalandComputerEngineering,UniversityofFlorida ABSTRACT [1], training data is partitioned into sets of labeled bags (in- 7 Signature-based detectors for hyperspectral target detection steadofbeingindividuallylabeled).Apositivebagmustcon- 1 rely on knowing the specific target signature in advance. tain at least one true positive (target) data point and nega- 0 However, targetsignatureareoftendifficultorimpossibleto tivebagsarecomposedentirelyofnegativedata. Multiplein- 2 obtain. Furthermore, common methods for obtaining target stanceconceptlearningisabranchofMILthataimstolearn n signatures,suchasfromlaboratorymeasurementsormanual one or a set of concepts to describe the target class. For ex- a selection from an image scene, usually do not capture the ample,DiversityDensity(DD)[2]identifiesatargetconcept J discriminative features of target class. In this paper, an ap- thatisclosetotheintersectionofallpositivebagsandfarfrom 9 proach for estimating a discriminative target signature from negativeinstances. Theexpectationmaximizationversionof ] imprecise labels is presented. The proposed approach maxi- DD[3]improvesconvergence.PreviousmethodsforMILtar- V mizes the response of the hybrid sub-pixel detector within a getcharacterizationwereproposedin[4,5]. [4]combinesall C multiple instance learning framework and estimates a set of positive bags into one large positive bag and, thus, discards . discriminative target signatures. After learning target signa- bag-level label information. [5] does not assume a mixing s c tures,anysignaturebaseddetectorcanthenbeappliedontest model and, thus, may fail to take advantage of the mixing [ data. Both simulated and real hyperspectral target detection modelifitisknown. Incontrast,theproposedmethodmaxi- 1 experiments are shown to illustrate the effectiveness of the mizestheresponseofthehybridsub-pixeldetector,preserves v method. bag-levellabels,andassumesthelinearmixingmodel[6]. 8 5 IndexTerms— targetdetection,conceptlearning,hyper- 2 spectral,multipleinstance,targetcharacterization,subpixel. 2. MULTIPLEINSTANCEHYBRIDESTIMATOR 2 0 . 1. INTRODUCTION Let X = [x1,··· ,xN] ∈ Rd×N be training data where d 1 is the dimensionality of an instance and N is the total num- 0 The wealth of spectral information in hyperspectral imagery 7 ber of training instances. The data is grouped into K bags, providesfortheabilitytoperformsub-pixeltargetdetection. 1 B={B1,...,BK},withassociatedbinarybag-levellabels, : Signature-based hyperspectral target detectors need to know L = {L ,...,L } where L ∈ {0,1}; n is the number of v 1 K i i i thetargetsignatureinadvance. However,inanumberofsce- instancesinbagBi andxij ∈ Bi denotesthejth instancein X narios,obtaininganeffectivetargetsignatureisoftenachal- bag B with instance-level label l ∈ {0,1}. When identi- i ij r lenging problem. For instance, in some situations analysts fying the label on certain bag or instance is important, pos- a mayhaveapproximatelocationsofsub-pixeltargetsandwant itive bags will be indicated as B+ with associated bag level i toestimatetheirtargetsignatureandsearchforthetargetma- label L+ containing instances x+ with instance-level labels i ij terial elsewhere. In these situations, manual selection of a l+,j = 1,··· ,n+, where n+ is the number of instances in targetsignaturefromanimagecubewouldnotonlybediffi- ij i i positive bag B+. Similarly, B−, L−, x−, l− and n− rep- cult(asonlyapproximatelocationsareknown)butmayresult i i i ij ij i resent a negative bag, label for this negative bag, the jth in- inselectingamixed(asopposedtopuretarget)pixels. stanceinthisbag,labelforthejthinstanceandtotalnumber In this paper, we address this problem by proposing a ofinstancesinthisbag. Thenumberofpositiveandnegative methodtocharacterizeatargetsignaturefromimpreciselyla- bagsaredenotedasK+ andK−,N+ andN− representthe beled hyperspectral imagery. Specifically, we model the hy- totalnumberofpositiveandnegativeinstances,respectively. perspectraltargetestimationtaskasamultipleinstancecon- cept learning problem. In multiple instance learning (MIL) Thus N = N+ + N− = (cid:80)Ki=+1n+i + (cid:80)Ki=−1n−i and B+, B− representtheunionofallpositiveinstancesandnegative This material is based upon work supported by the National Science instances,respectively. Foundation under Grant IIS-1350078-CAREER: Supervised Learning for Given this notation, the proposed multiple instance hy- IncompleteandUncertainDataandascholarshipfromChinaScholarship Council(No.201206960005). brid estimator (MI-HE) aims to maximize the probability of the labels of the bags as in (1). Since, in MIL, each pos- whereD=(cid:2)D+ D−(cid:3)∈Rd×(T+M),D+ =(cid:2)d+,··· ,d+(cid:3) 1 T itive bag must contain at least one positive instance, we can isthesetofT targetsignaturesandD− = (cid:2)d−,··· ,d−(cid:3)is 1 M thensubstitutetheprobabilityforabagtobepositivewiththe thesetofM backgroundsignatures,βisascalingparameter; probability of the most likely point in the bag to be a target, α+ andα+b arethesparserepresentationofx+ givenentire i.e., max Pr(x+ = +|B+). Since each negative bag is ij ij ij j∈n+i ij i signaturessetDandbackgroundsignaturessetD−, respec- assumedtoonlycontainnon-targetinstances,thentheproba- tively. Specifically,solvingforasparseαgivenadictionary bilityforanegativebagtobenegativecanberepresentedby setDismodeledastheLassoproblem[8,9]shownin(8): thejointprobabilityofallinstancesinthisbagtobenegative, 1 J = K(cid:89)+Pr(L+ =+|B+)K(cid:89)−Pr(L− =−|B−). (1) αˆ =argmin2(cid:107)x−Dα(cid:107)22+λ(cid:107)α(cid:107)1, (8) 1 i i i i where λ is a scaling vector to control the sparsity of α. i=1 i=1 = K(cid:89)+maxPr(l+ =+|B+)K(cid:89)−(cid:89)n−i Pr(l− =−|x−).(2) H(ISerTeAw)e[1a0d]ofpotrtshoelvitienrgattihveesspharirnskeacgoed-ethsrαes.holdingalgorithm ij i ij ij i=1j∈n+i i=1j=1 Algorithm1MI-HEalgorithm Eq. (2)containsamaxoperationthatisdifficulttoopti- 1: InitializeD0,iter =0 mize numerically. Some algorithms in the literature adopt a 2: repeat noisy-OR model instead of a max [2, 3]. However, exper- 3: fort=1,··· ,T do imental results show that the noisy-OR is non-smooth and 4: Solving(cid:8)α+(cid:9)N ,(cid:8)α−(cid:9)N byISTA generally needs to be optimized repeatedly with many dif- i i=1 i i=1 ferent initializations to avoid local optima. In the proposed 5: Updatedtbyoptimizing(4)usinggradientdescent approach,weadoptthegeneralizedmeanasanalternative, 6: dt ← (cid:107)d1t(cid:107)2dt 7: endfor J2 =K(cid:89)+n1+ (cid:88)n+i Pr(li+j =+|B+i )pp1 K(cid:89)−(cid:89)n−i Pr(li−j =−|x−ij), 89:: forSkol=vin1g,·(cid:8)·α·+i,(cid:9)MNi=1d,o(cid:8)α−i (cid:9)Ni=1byISTA i=1 i j=1 i=1j=1 10: Updatedk byoptimizing(4)usinggradientdescent (3) fwrohmereapm∈in[−to∞a,+m∞ax],isreasppaercatmiveetleyr.thWatevathrieenstohpetiompiezreatitohne 11: dk ← (cid:107)d1k(cid:107)2dk 12: endfor negative logarithm of J and add a scaling factor, ρ < 1, to 2 13: iter ←iter+1 thesecondtermtocontroltheinfluenceofthenegativebags 14: untilStoppingcriterionmeets (whenN− (cid:54)=N+)asshownin(4). 15: return D We now must define Pr(l+ = +|B+) and Pr(l− = ij i ij −|x−). As in [7], each instance is modeled as a sparse lin- ij For points from negative bags, following (6), we model ear combination of target and/or background signatures D, the reconstruction error of points x− ∈ B+ as a zero mean ij i x ≈ Dα , where α is the sparse vector of weights. Each j j j Gaussiandistributionwithunknownvariance, positivebagcontainsatleastoneinstancewithtarget: Pr(l− =−|x−)=exp(cid:0)(cid:107)x− −D−α−(cid:107)2(cid:1), (9) ij ij ij ij ifL =1,∃x ∈B+s.t. i j i whereα− isthesparserepresentationofx− givenD−. The T M ij ij x =(cid:88)α d++(cid:88)α d−+ε ,α (cid:54)=0, (5) objective function (4) is then optimized by gradient descent j jt t jk k j jt withsparsecodingasoutlinedinAlg. 1 t=1 k=1 whereεj isanoiseterm.AnegativelylabeledbagB−i should 3. EXPERIMENTS notcontainanytarget: MI-HE was applied to simulated data generated from four M (cid:88) spectraselectedfromtheASTERspectrallibrary[11]shown ifL =0,∀x ∈B−,x = α d−+ε . (6) i j i j jk k j in Fig. 1. Specifically, the Red Slate, Verde Antique, Phyl- k=1 liteandPyroxenitespectrafromtherockclasswith211bands Giventhismodel,weintroducethehybridsubpixeldetec- andwavelengthsrangingfrom0.4µmto2.5µmwereusedas tortoestimatetheprobabilityinstancesfrompositivebagsare endmembers to generate hyperspectral data. Red Slate was positive. Specifically,theprobabilityforx+ inB+isatarget labeled as the target endmember. [4] provides a precise de- ij i pointisdefinedas: scriptionofhowthesimulateddatawasgenerated. Three sets of highly-mixed noisy data with varied mean (cid:32) (cid:33) (cid:107)x+ −Dα+(cid:107)2 Pr(l+ =+|B+)=exp −β ij ij , (7) target proportion value (ptmean) were generated. Specifi- ij i (cid:107)x+ −D−α+b(cid:107)2 cally, this synthetic data has 15 positive and 5 negative bags ij ij (cid:88)K+ 1  1 (cid:88)n+i  (cid:88)K−(cid:88)n−i −lnJ =− ln Pr(l+ =+|B+)p−ρ lnPr(l− =−|x−), (4) p n+ ij i ij ij i=1 i j=1 i=1j=1 1.2 Red Slate Verde Antique 1 1 PPhyryollxiteenite 00..1146 MeEFMI-UH-DMEDI 0.8 0.8 0.12 Truth Reflectance0.6 ecnatcelfeR00..000.681 DP00..46 MMeFII--UHHMEEI(((AHACDCE)E)) 0.4 0.04 0.2 eEFMU-DMDI((HADC)E) 0.02 mi-SVM 0.2 0 0 0.5 1 1.5 2 2.5 0 0.2 0.4 0.6 0.8 1 Wavelength (7m) PFA 0 0.5 1 1.5 2 2.5 (a) Estimatedtargetspectra (b) ROCcurves Wavelength (µm) Fig.1. Signaturesusedtogeneratesimulateddata Fig.2.ComparisonofMI-HE,eFUMI,EM-DDandmi-SVM onsyntheticdatawithmeantargetproportion0.3 Table1. ListofBackgroundEndmembersforSyntheticData BagNumber BagLabel BackgroundEndmember 1-5 + VerdeAntique,Phyllite,Pyroxenite Table2. SimulatedHyperspectralDataExperiments. Results 6-10 + Phyllite,Pyroxenite listedinMedianAUCover5Runs 11-15 + Pyroxenite P Algorithm tmean 16-20 − Phyllite,Pyroxenite 0.3 0.5 0.7 MI-HE(HD) 0.944 0.981 0.996 MI-HE(ACE) 0.974 0.997 0.999 eFUMI(ACE) 0.810 0.843 0.843 with each bag has 500 points. If it is positively labeled, eFUMI(HD) 0.471 0.467 0.504 thereare100targetpointscontainingmeantarget(RedSlate) EM-DD(ACE) 0.841 0.876 0.998 proportionp . Theparameterp thatcontrolsthe tmean tmean mean target proportion value was set to 0.3, 0.5 and 0.7 re- mi-SVM 0.834 0.884 0.891 spectively to vary the level of target presence from weak to high. Gaussianwhitenoisewasaddedsothatsignal-to-noise ratioofthedatawassetto30dB. Tohighlighttheabilityof algorithms eFUMI, EM-DD and mi-SVM [12]. For MI-HE MI-HE to leverage individual bag-level labels, we use dif- and eFUMI, both the structured-background adaptive coher- ferent subsets of background endmembers to build synthetic ence/cosine estimator (ACE) [13, 14] and Hybrid Sub-pixel dataasshowninTab. 1. Detector(HD)[6]wereapplied; forEM-DD,onlyACEwas MI-HE was compared to eFUMI and EM-DD. As we appliedsinceEM-DDdoesnotlearnasetofbackgroundsig- mentioned before, eFUMI combines all positive bags into natures simultaneously. The results reported are the median one big positive bag. Given the aforementioned synthetic resultsoverfiverunsofthealgorithmonthesamedata. data, eFUMI confuses both Red Slate and Verde Antique as For experiments on real hyperspectral target detection targetsignaturessinceVerdeAntiqueismissinginthetrain- data, theMUUFLGulfportHyperspectraldatasetwasused. ing negative bags (and eFUMI does not preserve bag-level This data set was collected over the University of Southern labels). However, the proposed MI-HE is able to learn the Mississippi-GulfparkCampusandcontains325×337pixels targetsignaturecorrectly. Fig. 2(a)showsthetargetsignature estimated by MI-HE and comparison algorithms eFUMI [4] and EM-DD [3]. We can see that MI-HE is able to learn a target signature that matches the groundtruth, but eFUMI Table3. GulfportBrownDetection. ResultslistedinMedian mistakesVerdeAntiqueastargetsignatureandEM-DDlearns NAUCover5RunsatFAR=1×10−3m2 onenoisy,non-puretargetsignature. Algorithm Train:Flight1,Test:Flight3 Train:Flight3,Test:Flight1 MI-HE(HD) 0.552 0.792 For quantitative evaluation, receiver operating curves MI-HE(ACE) 0.442 0.699 (ROC) from detection on testing data generated using the eFUMI(ACE) 0.437 0.746 eFUMI(HD) 0.417 0.765 samemethodareshowninFig. 2(b). Tab. 2showstheareaof EM-DD(ACE) 0.420 0.749 probability of detection (PD) under the curve (AUC), where mi-SVM 0.353 0.333 we can see proposed MI-HE outperforms the comparison Brown 5. REFERENCES Dark Green FVG 50 Pea Green [1] T. G. Dietterich et al., “Solving the multiple-instance 100 problemwithaxis-parallelrectangles,” ArtificialIntell., vol.89,no.1-2,pp.31–17,1997. 150 [2] O. Maron and T. Lozano-Perez, “A framework for 200 multiple-instancelearning.,” NIPS,vol.10,1998. 250 [3] Q. Zhang and S.A. Goldman, “EM-DD: An improved multiple-instancelearningtechnique,” NIPS,vol.2,pp. 300 1073–1080,2002. 50 100 150 200 250 300 [4] C. Jiao and A. Zare, “Functions of multiple instances Fig. 3. MUUFL Gulfport data set RGB image and the 64 for learning target signatures,” IEEE Trans. Geosci.e targetlocations RemoteSens.,vol.53,no.8,pp.4670–4686,2015. [5] A. Zare et al., “Multiple instance hyperspectral target characterization,” UnderReview. with 72 bands corresponding to wavelengths from 367.7nm [6] J.BroadwaterandR.Chellappa, “Hybriddetectorsfor to 1043.4nm at a 9.5 − 9.6nm spectral sampling interval. subpixeltargets,” IEEETrans.PatternAnal.Mach.In- The spatial resolution is 1 m. [15] provides more detailed tell.,vol.29,no.11,pp.1891–1903,Nov.2007. information about the data. Two flights over the area from this data (Gulfport Campus Flight 1 and Gulfport Campus [7] C.JiaoandA.Zare,“Multipleinstancedictionarylearn- Flight3)wereselectedascross-validatedtrainingandtesting ingusingfunctionsofmultipleinstances,” inInt.Conf. data.Throughoutthescene,thereare64emplacedman-made PatternRecognition(ICPR). targets shownin Fig. 3. The targets arecloth panels offour different colors: Brown (15 examples), Dark Green (15 ex- [8] R. Tibshirani, “Regression shrinkage and selection via amples),FauxVineyardGreen(FVG)(12examples)andPea the lasso,” J. of the Royal Statistical Society. Series B Green(15examples). WetakeBrownasourtargettypeand (Methodological),pp.267–288,1996. foreachtargetinthetrainingflight,a5×5rectangularregion [9] S.Chenetal.,“Atomicdecompositionbybasispursuit,” around each ground truth point for each target were labeled SIAMreview,vol.43,no.1,pp.129–159,2001. as positive bags to account the drift coming from inaccurate GPSgroundtruthing. [10] I. Daubechies et al., “An iterative thresholding algo- rithm for linear inverse problems with a sparsity con- For the quantitative analysis of the estimated brown sig- straint,” Commun.onPureandAppliedMath.,vol.57, natures,thenormalizedareaofprobabilityofdetection(PD) pp.1413–1457,2004. underthecurve(NAUC)atfalsealarmrate(FAR)1×10−3m2 werecomputedandwereshowninTab.3,wheretheproposed [11] AMBaldridgeetal., “TheASTERspectrallibraryver- MI-HE combined with HD preserves the best detection per- sion2.0,” RemoteSens.ofEnvironment,vol.113,no.4, formance. Results reported are the median results over five pp.711–715,2009. runs. [12] S. Andrews et al., “Support vector machines for multiple-instance learning,” in NIPS, 2002, pp. 561– 568. [13] S.KrautandL.L.Scharf,“TheCFARadaptivesubspace 4. CONCLUSIONANDFUTUREWORK detectorisascale-invariantGLRT,” IEEETrans.Signal Process.,vol.47,no.9,pp.2538–2541,Sept.1999. The proposed MI-HE is able to learn target signatures with [14] W.Basener,“Clutterandanomalyremovalforenhanced betterqualityandachievecompetitiveandstate-of-the-arthy- target detection,” in Proc. SPIE, 2010, vol. 7695, p. perspectraltargetdetectionresultswhencomparedtoexisting 769525. multipleinstanceconceptlearningmethods. Thefuturework includes optimizing the objective function by quasi-newton [15] P.Gaderetal., “MUUFLgulfporthyperspectralandli- methodtoimproveitsconvergenceandaddingadiscrimina- darairbornedataset,”Tech.Rep.,UniversityofFlorida, tive term to promote the discriminativeness of the estimated Gainesville,FL,REP-2013-570,Oct.2013. targetsignature.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.