ebook img

Multiple Components in Narrow Planetary Rings PDF

3.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multiple Components in Narrow Planetary Rings

MultipleComponents inNarrow Planetary Rings L. Benet∗ and O. Merlo† InstitutodeCienciasF´ısicas,UniversidadNacionalAuto´nomadeMe´xico(UNAM),Cuernavaca, Mor.,Me´xico (Dated:February6,2008) Thephase-spacevolumeofregionsofregularortrappedmotion,forboundedorscatteringsystemswithtwo degreesoffreedomrespectively, displaysuniversal properties. Inparticular, drasticreductionsinthevolume (gaps)areobservedatspecificvaluesofacontrolparameter. Usingthestabilityresonancesweshowthatthey, and not the mean-motion resonances, account for the position of these gaps. For more degrees of freedom, excitingtheseresonancesdividestheregionsoftrappedmotion. Forplanetaryrings,wedemonstratethatthis mechanismyieldsringswithmultiplecomponents. 8 PACSnumbers:05.45.-a,05.45.Jn,95.10.Ce,96.30.Wr 0 0 2 TheCassinimissionisprovidingunprecedentedamountsof scatteringdynamicsofa(ring)particleinaplanarsystemwith data on the structureof Saturn rings[1]. As usual, surprises someintrinsicrotation(externalforce). Intheplanetarycase, n a and new questions emerge which call for theoretical under- this rotation comes from the orbital motion of one or sev- J standing. Beyondtheintrinsicinterestonplanetaryrings[2], eral satellites. This rotation creates generically phase-space 9 thesearenowtheonlyexamplesofflatastrophysicalsystems regionsof dynamicallytrappedmotion, in what otherwise is for which such detailed data is available. This makes their dominatedby unboundedtrajectories; “generic” implies that ] analysis paradigmatic [2], which serves as analog for other it holds for a wide class of rotating potentials [14], includ- D systemslikegalaxiesandplanet-formingdisks. Afirstorder inggravitationalinteractions[9,15]. Forauniformlycircular C understandingofthedynamicsandprocessesinringshasbeen rotation, the system has two degrees of freedom (DOF) and . n obtained,butimportantquestionsremainunanswered[2]. In a constant of motion, the Jacobi integral. For these scatter- i particular, narrow planetary rings are eccentric and display ingsystemstheorganizingperiodicorbitsgenericallyappear l n multiplecomponents(orstrands),kinks,clumpsandarcs(or in pairs throughsaddle-centerbifurcations,one is stable and [ patches); the F ring of Saturn is a magnificent case [1, 2]. theotherunstable. Themanifoldsoftheunstableorbitinter- 2 Therefore, these narrow rings pose interesting questions in sect, isolating a region where trapped motion is of nonzero v dynamicalastronomyandnonlineardynamicsrelatedtotheir measure if stable orbits exist. By changing the Jacobi inte- 9 stability,confinementandstructuralproperties. gral,thecentrallinearlystableperiodicorbitbecomesunsta- 3 0 Recentlyitbecameclearthatthephase-spacevolumeasso- bleandaperioddoublingcascadesetsin. Thisscenarioturns 2 ciatedtoregularorbitsforboundedsystemswithtwodegrees eventuallythehorseshoe(invariantset)intoahyperbolicone, 0 offreedom(DOF)displaysuniversalpropertiesasafunction thus destroyingany regionof trappedmotion [16]. Then, in 7 of a control parameter [3, 4]. For scattering systems such the Jacobi constant space, the regionsof trapped motion are 0 quantity is related to the trapped orbits. In particular, there bounded. Particles with initial conditions outside these re- / n arelocationswhereadrasticreductionofthephase-spacevol- gionsescaperapidlyalongscatteringtrajectories;thoseinside li umeoccupiedbytheregularortrappedorbitsisobserved,i.e., remain dynamically trapped. Consider now an ensemble of n gaps. Herewe showthatthesegapsarerelatedto theoccur- initialconditionsofindependentparticlesdistributedoverthe : v rence of stability resonances (SR), and not to mean-motion extendedphase space, which contains entirely one region of Xi resonances(MMR).TheMMRcorrespondtolocationswhere trappedmotion.Then,duetotheintrinsicrotation,thepattern the period of the particle is a rational of the orbital period formedbyprojectingthetrappedparticlesintotheX−Y plane r a of a satellite or planet. Examples include Kirkwood gaps in atagiventimeformsaring[14].Theringistypicallynarrow, the asteroid main belt [5, 6] and the Cassini division in Sat- sharp-edgedandnoncircular;thisscenarioisgeneric[14].For urn rings [7], where very few particles are observed. Other morethantwo DOF, e.g., a nonuniformrotationona Kepler casesofMMRexistwhereparticlesaccumulatelocally,asthe ellipticorbit,theringdisplaysfurtherstructure[9]. Jupiter Trojans or the Hilda group [8]. The SR are defined The simplest example to illustrate the occurrence of rings byaresonantconditioninthe(linear)stabilityexponentsofa is a planar scattering billiard: a disk on a Kepler orbit [10]. centralstableperiodicorbit. WeshowinthisLetterthatnon- Thissystemconsistsofapointparticlemovingfreelyunless linear and higher-dimensionaleffectsrelated to the SR yield it collides with an impenetrable disk of radius d, which or- ringswith two or morecomponents, or strands, as those ob- bitsaroundtheoriginonaKeplerorbitofsemi-majoraxisR servedintheFring[1,2]. Weusethescatteringapproachto (d<R). Collisionswiththediskaretreatedasusual[10];no narrowplanetaryrings[9]andadiskrotatingonaKeplerorbit collisionsleadtoescape. Forthediskonacircularorbit,the asexample[10]. Ourresultscanbeusedinothercases,rang- simpleperiodicorbitsaretheradialcollisionorbits.Theyand ingfromparticleaccelerators[11]togalacticdynamics[12], theirlinearstabilityaregivenby[9] whereresonancesandtransportpropertiesareimportant[13]. The scattering approach to narrow rings [9] considers the J=2w 2(R−d)2(1+D f tanq )cos2q (D f )−2, (1) d 2 TrDPJ=2+(cid:2)(D f )2(1−tan2q )−4(1+D f tanq )(cid:3)R/d. (2) )02 )32 )62 )92 )23 )53 )44 :3 :5 :7 :9 :1 :3 :9 1 1 1 1 2 2 2 ( ( ( ( ( ( ( 1 6 5 4 3 2 Equation(1)definesthevalueoftheJacobiintegralJ forthe 700 :1 :1 :1 :1 :1 :1 radial collision orbits in terms of q , the outgoing angle of a) the particle’s velocity after a collision with the disk. Here, 600 D f =(2n−1)p +2q istheangulardisplacementofthedisk 500 betweenconsecutiveradialcollisionsandn=0,1,2,... isthe number of full turns completed by the disk before the next collision. Theperiodofthedisk’sorbitisTd =2p (w d =1). t>)400 Equation(2)providesthetraceofthelinearizedmatrixDPJ N(<D 300 aroundthe radialcollision orbits. Being a two DOF system, periodicorbitsarelinearlystableiff|TrDP |≤2. 200 J Tounderstandthephase-spacepropertiesthatdefinethedy- 100 namics, in particular, for many DOF, we consider a relative measure of the phase-space volume occupied by the regions 0 4,08 4,1 4,12 4,14 4,16 oftrappedmotion[3,4]. Thisquantityisafunctionofsome <D t> controlparameterandtunesthehorseshoedevelopment[16]. ForthediskonacircularorbitagoodchoiceisJ. However, thisquantityisnotconservedfornonzeroeccentricitye ,thus beinguselessformorethantwoDOF.Aconvenientquantity 0.2 b) is the average time between consecutive collisions with the disk, hD ti. The average is defined, for a given initial condi- tion(ringparticle),overthesuccessiveconsecutivecollisions 0.1 times; in addition,we consideran ensembleof them. In our numericalcalculationsweconsideredanorbittobetrappedif itdisplaysmorethan20000collisionswiththedisk;thenext Y 0 200000reflectionswereusedtoimprovethestatistics. In Fig. 1(a) we show the histogram of hD ti for the n=0 trapped region; Fig. 1(b) shows a detail of the correspond- -0.1 ing ring [9]. We note that Fig 1(a) displays some structure, namely, some rather well localized positions where there is essentially no trapped motion in phase space or, at least, a -0.2 -0.34 -0.32 -0.3 -0.28 drasticreductionofitssize. Thisstructureissimilartothose X inRef.[3],andisuniversal[3,4]. Then,universalityextends to scattering systems in terms of the phase-space volume of FIG. 1: (Color online) (a) Histogram of hD ti showing the relative the regionsof trappedmotion. We note that the structure of phase-spacevolumeoftheregionoftrappedmotionforthescatter- Fig. 1(a) also resembles the structure of the population his- ing billiard on a circular orbit. The continuous lines represent the togramofasteroidsintermsoftheirsemimajoraxis[6],which positionofthelowestMMR,indicatedinparentheses,thatoccurin uncoverstheKirkwoodgapsandtheroleofMMR. theintervalofhD ti;dash-dottedlinescorrespondtothelower-order Guidedbythesimilaritywiththeasteroids,weaskwhether SR. (b) Detail of the ring corresponding to this region of trapped thegapsinFig.1(a)arerelatedtoMMR.Thequestioncanbe motion. answered analytically for the radial collision periodic orbits whicharetheorganizersofthedynamics.Theircollisiontime istcol=D f /w d, hencetheMMRconditionistcol/Td = p/q, withthediskinarotatingframe(see[9]). Thus,theaverage with pandqincommensurateintegers. InFig.1(a),wehave return time to the surface of section is precisely hD ti. Fig- indicatedthe locationof the lowest mean-motionresonances ures2displaythesurfacesofsectionforthreevaluesoftheJa- in the hD ti interval of interest; the actual resonances are in- cobiintegralaroundthelocationofthemaingapinFig.1(a). dicatedinparentheses. We havealsoincludedthe29:44res- Satellite period-threeislands squeeze the centralstable fixed onance because of its proximity to the position of the main point, reducing efficiently the region of trapped motion. At gap. Whiletheseresonancesaredefinitelynotlow-orderres- some value of J there is a bifurcation with the central point onances, we note that some may be very close to the gaps, being unstable. After this value, the whole structure reap- whileothersarenot. Therefore,low-ordermean-motionres- pears with some symmetric inversion. This phenomenon is onances are not related to the reduction of the phase-space intrinsicallynonlinearandisuniversal[17]. Notethattheex- volume(gaps)oftheregionsoftrappedmotion. istenceoftheperiod-threeislandsinthesurfaceofsectionis TounderstandthegapsofFig.1(a),weconsiderthephase- notequivalenttoa1:3MMR.Theperiod-threefixedpointsin- space structuredefining a surface of section at the collisions volvedifferentcollisiontimes. Addingtheseindividualtimes 3 3,16 3,16 3,16 3,15 Wu 3,15 Wu 3,15 Wu 3,14 3,14 3,14 a a a Ws Ws Ws 3,13 3,13 3,13 3,12 3,12 3,12 0,796 0,798 0,8 0,802 0,804 0,796 0,798 0,8 0,802 0,804 0,796 0,798 0,8 0,802 0,804 p p p FIG.2: (Coloronline)SurfacesofsectionforthescatteringbilliardonacircularorbitfordecreasingvaluesofJ. Thesequenceillustratesthe reductionofthephase-spacevolumeofthetrappedregionduetothe1:3SRcorrespondinginFig.1(a),fromlefttoright,tohD ti≈4.1382, hD ti≈4.1409, andhD ti≈4.1445. Theblack/redcurvesarethestable/unstablemanifoldsoftheunstableperiodicorbit. Theblueregions correspondtoregionsthatrepresentmorethan90%ofthephase-spacevolumeoccupiedbythetrappedorbits. matches a multiple of the collision time of the central fixed ture remains. The histogram is divided in three distinct re- point,whichingeneralisnotarationalofT . gions separated by those SR; e tunes the width of the gaps. d Thegapsin Fig.1(a)arethusrelatedtoa reductionofthe Weconstructtheringusingdifferentcolorsfortheinitialcon- phase-spacevolume occupiedby trappedorbitsdue to satel- ditions in the different hD ti regions. The ring displays two liteislands(seealso[18]).In [17]itisshownthatthepassage well–separatedcomponents.Eachoneisrelatedtoadifferent throughsuch1:3resonances(Fig.2)leadsuniversallytoinsta- regionin phasespace; thisis a consequenceofthe largegap bilities,whileresonancesoforderhigherthan4donotinduce opened by the 1:3 SR. These componentsare entangled and instability;fortheresonanceoforder4thebehaviordepends formabraidedring[9]. uponwhichcontribution(resonantornonresonant)dominates We note in Fig. 3(b) that there are only two independent thenormalform[17,18]. Theseresultsfollowfromthestruc- ringcomponentsinsteadofthree, asexpectedfromthethree tureoftheresonantnormalform,i.e.,therelevant(nonlinear) disjointintervalsinhD tidefinedbythe1:3and1:6resonance. contributionstothestabilityanalysisofacentrallinearlysta- Thisfollowsfromthefactthatthe1:6resonancedoesnotsep- bleperiodicorbit.Wethusconsiderwhethertheseresonances arate enough the phase-space regions around it, so the pro- arerelatedtothestructureofFig.1(a).Wewritetheeigenval- jections into the X−Y plane of these two intervals overlap uesofthelinearizedmapDP aroundthestableradialcolli- and do not manifest two components. Yet, as observed in J sionorbitasl =e±ia . Weareinterestedinvaluesofa that Fig.3(b), thecorrespondingringcomponentdisplaysa clear ± arerationalmultiplesof2p ,i.e.,a /(2p )= p/qwith pandq separation of the ring particles, except for a thin common incommensurateintegers. The eigenvaluesl are related to strip,dependingonwhichsideofthe1:6resonancetheycome ± eachotherbycomplexconjugation;byconsequence,the p:q from. For larger values of e we have observed rings with resonance is related to the q−p:q resonance. Since these three strands [9]. Therefore, multiple ring components are resonances involve the stability exponents, we refer to them obtained by exciting SR through nonzero eccentricity. Note asstabilityresonances. thatthesepropertiesfollowfromthehigherdimensionalityof Fromthedefinitionofthepurelyimaginaryeigenvaluesl , phasespaceandnonlineareffects. ± |TrDP |≤2,wehavecosa =TrDP /2. Thiscanbewrit- Thefactthattheoverallstructureof Fig.3(a)is similar to J J tenintermsofthecollisiontimet =D f /w usingEq.(2). thetwoDOFcaseandtothepopulationhistogramofasteroids col d In Fig. 1(a), we have indicated the lower-order SR as dash- may be an indication of universality for higher dimensions. dottedlines.Thecorrespondencewiththegapsisastonishing. Yet,ourresultsareinconclusiveforthisissue:Fig.3(a)repre- Therefore,weattributethegapsinFig.1(a)tocrossingaSR. sentsthe firstresultsof thephase-spacevolumeoccupiedby The SR, and, in particular, the 1:3, have interesting con- trappedorbitsforasystemofmorethantwoDOF. sequences in the context of rings when we consider a small Tosummarize,wehavestudiedthephase-spacevolumeoc- nonvanishing eccentricity of the disk’s orbit. Note that, for cupiedbytrappedorbitsusingascatteringbilliard,adiskro- nonzeroe , the system is explicitlytime dependent, has two- tatingonaKeplerorbit,andsucceededinrelatingsomeofits and-half DOF and cannot be handled with the usual tech- structuretotheoccurrenceofSR.FortwoDOFtheuniversal niques. In Fig. 3(a) we illustrate the phase-space volume of structureof the phase-spacevolumeoccupiedby trappedor- the trappedregionfor e =0.0001, indicating the location of bits is extendedto scattering systems [3, 4]. For more DOF somee =0resonancesasa guide,andinFig. 3(b)we show thequalitativesimilarityofFig.3(a)andFig.1(a)isthefirst a detailof the resultingring. In comparisonto Fig. 1(a), the indication that universality may hold also for higher dimen- gaps at the 1:3 and 1:6 SR are wider, but the overall struc- sions; yet, this issue remains open. Stability resonances are 4 )0 )3 )6 )9 )2 )5 )4 yieldsaringwithtwoormorecomponentsorstrands,which 2 2 2 2 3 3 4 :31 :51 :71 :91 :12 :32 :92 may entangle and form a braidedring. This providesa sim- ( ( ( ( ( ( ( 1 6 5 4 3 2 700 :1 :1 :1 :1 :1 :1 pleexplanationofrecentobservationsofplanetaryringswith a) multiplecomponents[2]. Theseresultsshouldbeinteresting 600 beyondthecontextofplanetaryrings,insystemswherereso- nancesandthephase-spacestructurearesignificant;examples 500 includeparticleaccelerators[11]andgalacticdynamics[12]. >)400 t N(<D 300 We thank to R. Dvorak, T.H. Seligman and C. Simo´ for usefuldiscussions,andthesupportbytheprojectsIN-111607 200 (DGAPA)and43375(CONACyT).O.Merloisapostdoctoral fellowoftheSwissNationalFoundation(PA002-113177). 100 0 4,08 4,1 4,12 4,14 4,16 <D t> ∗ Electronicaddress:benet@fis.unam.mx † Electronicaddress:merlo@fis.unam.mx [1] Seehttp://saturn.jpl.nasa.gov/home/index.cfm 0.2 b) [2] L.W. Esposito, Rep. Prog. Phys. 65, 1741 (2002); Planetary Rings(CambridgeUniversityPress,Cambridge,U.K.,2006). [3] G.Contopoulos,etal.,J.Phys.A:Math.Gen.325213(1999); 0.1 G.Contopoulos,etal.,Int.J.Bif.Chaos15,2865(2005). [4] R.DvorakandF.Freistetter,inChaosandStabilityinPlanetary Systems,editedbyR.Dvorak,F.FreistetterandJ.Kurths,Lect. NotesPhys.Vol.683(Springer,Berlin,2005),p.3. Y 0 [5] D. Kirkwood, Meteoric astronomy: a treatise on shooting- stars,fireballs,andaerolites,(J.B.Lippincott&Co.,Philadel- phia, 1867).A.MorbidelliandA.Giorgilli,Celest.Mech.47, -0.1 145(1990);47,173(1990).M.Moons,Celest.Mech.Dyn.As- tron.65,175(1997). [6] Seehttp://ssd.jpl.nasa.gov/?histo a ast [7] C.D.MurrayandS.F.Dermott,SolarSystemDynamics(Cam- -0.2 -0.34 -0.32 -0.3 -0.28 bridgeUniversityPress,Cambridge,U.K.,1999). X [8] R.Malhotra,inSolarSystemFormationandEvolution,edited byD.Lazzaroetal,ASPConferenceSeriesVol.149(ASP,San Francisco, 1998), p. 37; N. Murray and M. Holman, Nature FIG.3: (Coloronline)SameasFig.1forthebilliardonanelliptic (London)410,773(2001). Keplerorbitwitheccentricitye =0.0001. Theresonancesindicated [9] L. Benet and O. Merlo, Regul. Chaotic Dyn. 9, 373 (2004), correspondtoe =0. Incomparisontothecircularcase,thegapof arXiv:nlin.CD/0410028;O.MerloandL.Benet,Celest.Mech. the1:3SRiswider. Thiscausesatrueopeninginthecorresponding Dyn.Astron.97,49(2007),arXiv:astro-ph/0609627. ring, thusformingatwo-component ring. Theblackinner compo- [10] N.Meyer,etal.,J.Phys.A:Math.Gen.28,2529(1995). nentoftheringcorrespondstotheregionontheleftofthe1:6SR; [11] D. Robin, etal., Phys.Rev. Lett.85, 558(2000). L.Nadolski thegray(red)isassociatedtotheregionbetweenthe1:6and1:3res- andJ.Laskar,Phys.Rev.STAccel.Beams6114801(2003). onances.Notethatthe1:6resonancegapisnotwideenoughtohave [12] Y. Papaphilippou and J. Laskar, Astron. Astrophys. 307, 427 aprojectionwithanother(distinct)strand. (1996);329451(1998).G.ContopoulosandP.A.Patsis,MN- RAS3691039(2006). [13] V.Rom-KedarandG.M.Zaslavsky,Chaos9697(1999).G.M. definedbya resonantconditiononthe stability exponentsof Zaslavsky,Phys.Rep.371461(2002).G.M.ZaslavskyandM. the linearized dynamics around a central stable periodic or- Edelman,Phys.Rev.E72,036204(2005).CJungetal.,New bit. These resonances, andnotthe mean-motionresonances, J.Phys.648(2004). manifestlocallyasa reductionofthephase-spacevolumeof [14] L. Benet and T.H. Seligman, Phys. Lett. A 273, 331 (2000), arXiv:nlin.CD/0001018. the trapped trajectories due to nonlinear effects. While SR [15] L.Benet,Celest.Mech.Dyn.Astron.81,123(2001). have a local manifestation, they have global consequences: [16] B.Ru¨ckerlandC.Jung,J.Phys.A:Math.Gen.27,55(1994). Nonlinear and higher-dimensional effects (nonvanishing ec- [17] V.I. Arnold, Mathematical Methods of Classical Mechanics, centricityofthedisk’smotion)leadtoaneffectiveseparation (Springer-Verlag, New York, 1989). V. Gelfreich, Proc. Nac. ofthetrappingregioninphasespace[Fig.3(a)]. Inthe con- Acad.Sci.99,13975(2002). textofplanetaryrings,ifthisseparationislargeenough,this [18] C.Simo´andA.Vieiro,inpreparation.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.