ebook img

Multiple Agrochemicals in Honeybees PDF

29 Pages·2013·0.32 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multiple Agrochemicals in Honeybees

Effects  of  Exposure  to  Multiple  Agrochemicals  in   Honeybees  (Apis  mellifera)     Tommaso  Ignesti                                       Page  1  of  29 Abstract     The   Honeybee   (Apis   mellifera)   is   one   of   the   most   economically   and   environmentally  valuable  pollinators  today.  Beekeepers  have  often  been  threatened   by  periodic  high  colony  losses,  but  the  ability  to  attribute  them  to  specific  practices   or  pathogens  and  parasites  has  allowed  for  the  mitigation  of  such  losses  fairly   efficiently  and  quickly.  However,  this  has  not  been  the  case  with  the  more  recent   losses  that  have  decimated  North  American  and  European  apiaries  since  2006.  The   phenomenon   has   been   named   Colony   Collapse   Disorder   and   it   differs   from   previously   described   losses   in   that   it   is   characterized   by   the   unexplained   disappearance  of  large  numbers  of  individuals  from  seemingly  healthy  hives.  In  this   study  it  was  hypothesized  that  an  increased  mortality  is  expected  as  the  number  of   agrochemicals  to  which  individuals  are  exposed  increases.  Data  on  colony  losses   and   pesticide   use   was   gathered   for   49   Californian   counties,   and   a   correlation   analysis  performed.  A  significance  of  0.086  suggested  that  a  moderate  relationship   could  be  demonstrated,  meaning  that  the  threat  posed  by  pesticides  to  honeybees  is   expected  to  rise  as  the  variety  of  these  pesticides  is  increased,  possibly  due  to   synergism.   In   light   of   such   results,   further   investigation   of   the   problem   is   recommended,  and  the  development  of  a  better  understanding  of  the  impacts  of   sublethal  doses  of  pesticides  on  honeybees,  as  well  as  of  the  ways  these  interact  to   possibly  increase  their  toxicity  to  beneficial  species  is  necessary.     Introduction   Perhaps  one  of  the  properties  of  honeybees  that  have  given  them  worldwide   fame  is  their  ability  to  produce  honey,  a  widely  enjoyed  sweetener  used  by  human   beings  since  the  time  of  the  Ancient  Egyptian  Civilizations.    Honey  production  is  only   one  of  the  services  provided  by  bees,  and  this  currently  amounts  to  an  estimated   value  of  $1.25  billion  worldwide  (vanEngelsdorp,  2009).  Although  this  is  not  at  all   insignificant,  the  most  essential  role  of  honeybees  is  that  of  pollinators  of  a  great   variety  of  plants.  Not  only  are  these  insects  required  for  the  reproduction,  and  thus   survival  of  a  number  of  species  in  the  wild,  they  also  play  a  fundamental  role  in   modern  agriculture.  “Fifty  two  of  the  115  leading  global  food  commodities  depend   on  honeybee  pollination,”  a  few  of  which  would  experience  a  90%  or  greater  yield   reduction  in  their  absence  (Klein  et  al.,  2007  as  found  in  vanEngelsdorp,  2009).  It  is   consequently   estimated   that   the   annual   value   of   agricultural   bee   pollination   Page  2  of  29 worldwide   approximates   $212   billion   (9.5%   of   total   agricultural   value),   $15-­‐20   billion  of  which  is  in  the  United  States  alone  (vanEngelsdorp  et  al.,  2009).   Honeybee  Ecology   The  genus  Apis  includes  a  total  of  10  species  found  throughout  the  world  in  a   variety  of  climatic  regions  (Le  Conte,  2008).  This  study  focuses  on  Apis  mellifera,  the   European  honeybee,  whose  importance  is  not  only  limited  to  honey  production,  but   extends  especially  to  its  role  as  natural  pollinator  of  both  human  raised  crops  and  a   variety  of  wild  plant  species.  The  domestication  of  the  European  honeybee  traces   back  to  the  Ancient  Egyptians  for  whom  honey  was  the  only  sweetener  available,   and   was   subsequently   transferred   to   Greek   and   Roman   civilizations,   until   it   eventually  spread  throughout  the  world  (Ransome,  1937).  This  domestication,  as   Crane  (1975)  has  pointed  out,  can  be  compared  in  magnitude  to  that  of  the  dog,  as   both  accompanied  man  since  the  first  major  migrations  (Crane,  1975).  On  the  other   hand,  the  remaining  nine  species  of  the  Apis  genus  have  for  the  most  part  remained   in  Asia,  where  the  genus  is  thought  to  have  originated  (Le  Conte,  2008).  What   differentiated  A.  mellifera  from  other  species  of  the  Apis  genus  was  the  evolution  of  a   total  of  22  subspecies  that  stemmed  from  various  waves  of  colonization  to  parts  of   Europe,  Africa,  the  Middle  East,  and  Russia.  Unlike  the  Asian  species,  the  western   honeybees  were  thus  often  subject  to  cold  winters  and  had  to  develop  strategies  to   survive  colder  periods.  This  was  done  by  the  accumulation  and  storage  of  sufficient   amounts  of  food  to  sustain  the  colony  when  flowers  were  not  blooming,  and  thus  a   greater  amount  of  work  was  required  throughout  the  year,  and  the  supplemental   source  of  nutrition  had  to  be  stored  in  the  form  of  honey.   Colony  Structure   Honeybees  organize  in  colonies,  each  including  one  queen,  20  to  80  thousand   females,  and  a  few  hundred  males,  or  drones.  Males  only  live  for  a  few  weeks  in  the   summer,   their   only   role   being   mating   with   the   queen   in   a   phenomenon   called   swarming.  In  swarming  the  queen  leaves  the  hive  with  half  the  colony,  mates,  and   relocates  to  a  new  hive,  while  a  new  queen  will  emerge  in  the  previous  one,  swarm,   and  return  to  the  same  hive  where  she  will  start  laying  eggs.  The  queen  usually   stores  enough  sperm  within  her  abdomen  to  last  for  about  2  years  of  constant  egg   Page  3  of  29 laying,  after  which  swarming  and  relocation  will  take  place.  The  queen  has  the   ability  to  either  fertilize  an  egg  before  laying  it,  thus  producing  a  female  worker  bee,   or  lay  an  unfertilized  egg,  which  will  result  in  a  drone.  Each  egg  is  laid  in  a  cell   within  the  hive,  although  new  queens  might  accidentally  lay  more  than  one  per  cell,   and  the  larva  will  feed  on  food  provided  by  adult  workers,  grow,  and  undergo   pupation  within  the  cell.  The  cell  is  capped  by  an  adult  worker  and  will  be  uncapped   by  the  emerging  young  bee.  This  developmental  process  will  take,  on  average,  two   to  three  weeks  (https://agdev.anr.udel.edu/maarec/honey-­‐bee-­‐biology/the-­‐colony-­‐ and-­‐its-­‐organization/).   The  totality  of  the  work  needed  for  the  proper  functioning  and  survival  of  the   colony,  with  the  exception  of  mating  and  egg  production,  is  carried  out  by  worker   bees,  which  are  sterile  females.  Their  tasks  depend  on  both  age  and  the  time  of  year.   For  the  first  few  days  after  emerging,  bees  stand  still  within  the  hive  and  are  fed  by   others.  A  special  kind  of  glands  will  activate  after  a  few  days  which  is  used  to   produce  brood  food,  and  the  young  workers  will  use  these  to  feed  developing  larvae.   Once   these   glands   stop   functioning   properly,   wax-­‐producing   glands   will   have   developed,  and  they  begin  their  tasks  of  hive  building  and  maintenance,  together   with  taking  the  first  journeys  outside  the  hive  during  which  individuals  learn  the   location   of   the   hive   and   get   accustomed   to   the   surroundings.   Before   becoming   foragers,  workers  within  the  hive  will  also  aid  in  the  collection  and  storage  of  pollen   and  nectar  from  incoming  foragers,  and  in  the  production  of  honey.  Finally,  about   three  weeks  after  emerging  from  their  original  cell,  the  workers  will  be  ready  do   serve  as  foragers,  leaving  the  hive  during  the  day  for  food  and  water  collection   unceasingly,   until   they   die   within   the   next   three   weeks   (http://www.biology-­‐ resources.com/bee-­‐01.html).   During  the  coldest  months  of  the  year  the  colony  will  stop  its  usual  activities.   At  this  time  a  sufficient  amount  of  food  will  be  stored  and  the  drones  will  be  forced   out  of  the  colony  as  to  reduce  the  amount  of  food  that  will  be  consumed  during  the   winter.  As  temperatures  drop,  cracks  within  the  hive  are  sealed,  and  the  entrance   tightened  as  to  minimize  the  amount  of  in-­‐coming  cold  air.  As  the  temperature   within  the  hive  should  not  drop  below  32°C,  adult  workers  form  a  tight  cluster   Page  4  of  29 around  brood  cells  and  the  queen,  regulating  the  temperature  using  their  body  heat.   The  cluster  will  be  tighter  or  looser  according  to  outside  temperature,  and  will  move   during  warmer  moments  as  to  always  be  within  reach  of  honey  supplies.  In  this   period  the  older  bees  progressively  die,  and  by  late  winter  the  hive  will  almost   entirely  consist  of  young  individuals.  As  days  become  longer,  and  temperature  rise,   the  queen  begins  laying  eggs  anew,  and  the  population  is  normally  restored  within   the   following   months.   (Information   from   Mid-­‐Atlantic   Apiculture,   British   Beekeepers’  Association,  Biology  Teaching  and  Learning  Resources  websites)   The  colony  structure  of  honeybees  is  worth  mentioning  not  only  because  of  its   fascinating  complexity,  but  because  it  will  also  help  in  understanding  how  certain   factors  that  will  be  discussed  later  might  be  contributing  in  the  Colony  Collapse   Disorder  phenomenon  that  will  be  investigated  in  this  thesis.   Colony  Collapse  Disorder   Colony  losses  have  not  been  an  uncommon  phenomenon  throughout  history,   and  a  number  of  instances  have  been  documented  starting  in  1896.  At  the  same   time,  large  increases  in  bee  populations  have  been  experienced  elsewhere  which   often  were  more  substantial  than  decreases.  Fluctuations  have  thus  been  affecting   different  continents  in  different  ways,  and  even  within  each  continent  there  has   been  high  variation  from  one  region  to  the  next.  In  the  past  50  years  for  instance,   the  global  bee  stock  has  increased  by  an  estimated  45%  (Aizen  and  Harder,  2009).   Although  this  may  be  considered  a  positive  fact,  managed  honeybee  populations  in   North   America   and   Europe   have   declined   by   49.5%   and   26.5%   respectively   (vanEngelsdorp,  2009).  At  the  same  time  the  demand  for  pollinators  for  agricultural   needs  has  seen  a  300%  increase  or  greater  (Aizen  and  Harder,  2009).  Even  more   alarming  is  the  impact  of  a  fairly  new  condition,  named  Colony  Collapse  Disorder,   which  since  2006  has  caused  substantial  losses  in  North  American  apiaries,  mostly   in  those  found  within  the  United  States.   Colony  Collapse  Disorder  (CCD)  has  been  the  object  of  detailed  investigation   and  although  a  definite  cause  has  not  yet  been  isolated,  those  characters  that  seem   to  be  common  of  all  hives  affected  by  the  condition  have  been  well  described.  These   are:  (1)  “Rapid  losses  of  adult  worker  bees  from  affected  colonies  as  evidenced  by   Page  5  of  29 weak   or   dead   colonies   with   excess   brood   populations   relative   to   adult   bee   populations,”  (2)  “Noticeable  lack  of  dead  worker  bees  both  within  and  surrounding   the  affected  hive,”  (3)  and  “Delayed  invasion  of  hive  pests  and  kleptoparasitism   from   neighboring   honey   bee   colonies.”   (vanEngelsdorp,   2009)   Kleptoparasitism   refers  to  the  practice  of  stealing  previously  gathered  or  prepared  food  from  another   organism.  Thus,  in  affected  hives  a  small  cluster  of  adult  bees  and  the  queen  are   present,  and  honey  and  pollen  are  not  missing  (Johnson,  2010).  While  the  condition   might  not  seem  particularly  alarming,  the  colony  structure  is  modified  to  such  an   extent  that  makes  it  impossible  for  the  remaining  individuals  to  both  fight  diseases   and  pest  invasions,  and  to  carry  out  those  activities  required  for  their  survival,   including  food  collection  and  storage,  rearing  larvae,  and  survive  unexpected  drops   in  temperature.   One  of  the  main  reasons  CCD  has  become  an  alarming  issue  not  only  for   beekeepers,   but   for   scientists   and   politicians   also,   is   that   it   differs   in   some   significant  ways  from  previous  incidences  of  colony  losses,  and  while  remaining  for   the  most  part  unknown,  its  causes  seem  to  have  coincided  with  the  significant   changes  caused  by  an  expanding  global  economy.  The  major  difference  between   past  colony  losses  and  CCD  is  that  for  the  former  clear  causes  had  been  evident  and   clearly  detected  through  scientific  inquiry.  These  included  increasing  number  of   pests,  parasites,  diseases,  habitat  losses,  reduction  in  pollen  and  nectar  availability,   and  exposure  to  toxic  pesticides  (Johnson,  2010).     In  contrast,  a  correlation  between  any  of  these  factors  and  current  losses  has   not   yet   been   found   for   CCD   even   though   substantial   studies   have   been   done.   Furthermore,   the   disorder   has   coincided   with   the   radical   agricultural   changes   driven  by  the  fast  increase  in  human  population  and  the  development  of  a  global   economy.  This  led  to  a  significant  modification  of  the  habitat  honeybees  are  exposed   to  both  because  of  the  increasing  ease  with  which  non-­‐native  species  are  carried   from   place   to   place,   and   because   of   the   implementation   of   poorly   understood   agricultural  practices  focused  on  increasing  productivity,  including  the  introduction   of  genetically  engineered  crops  and  an  expanding  arsenal  of  agrochemicals  (Johnson   et  al.,  2010).   Page  6  of  29 Because   no   single   cause   has   been   isolated   in   studies   on   CCD   to   date,   scientists  were  led  to  believe  that  a  number  of  factors  are  acting  simultaneously  and   contributing  in  the  losses.  These  include  both  pathogenic  factors  such  as  diseases   and  pests,  as  well  as  non-­‐disease  factors  such  as  pesticide  exposure,  genetically   modified  organisms,  and  climate  change.   The  Threats  and  Their  Origins   It  should  be  clear  that  the  environment  to  which  bees  are  exposed  has  a   substantial   impact   on   their   ability   to   perform   well.   In   addition,   the   effects   of   environmental  changes  on  honeybee  populations  become  threatening  relatively  fast,   despite  beekeepers’  attempts  to  moderate  them.  This  can  largely  be  explained  by   the  colony  being  an  organism  onto  itself  which  relies  on  the  delicate  interaction  of  a   multitude  of  individual  parts  governed  by  a  variety  of  behaviors.  These  behaviors   are  not  merely  the  individual’s  reactions  to  its  environment  as  driven  by  its  own   needs.  Rather,  individuals  understand  themselves  as  necessary  components  of  a   colony,  understand  the  needs  of  the  colony  as  their  own,  and  their  behaviors  are   governed  by  the  colony’s  needs.  As  a  result,  a  colony  can  survive  only  because,  and   as  long  as  these  behaviors  are  not  radically  modified.  Behavioral  modifications  can   either  be  due  to  the  physical  unsuitability  of  the  individual,  as  when  a  failure  to   perform  foraging  activities  is  determined  by  the  malfunctioning  of  the  wings  and   therefore  an  inability  to  fly,  or  to  cognitive  impairment,  as  when  an  individual  fails   to  return  to  the  hive  due  to  memory  loss,  or  when  an  individual  fails  to  recognize  its   role  within  the  colony.  Both  physical  suitability  and  cognitive  functions  are  in  turn   largely  influenced  by  both  biotic  and  abiotic  factors  present  within  the  colony’s   environment,  and  the  threat  they  pose  to  the  species  will  be  related  to  the  degree  by   which  they  deviate  from  the  norm.  At  the  same  time,  this  deviation  is  strongly   determined  by  climatic  conditions  and  weather  patterns.  It  can  thus  be  concluded   that  colonies  are  threatened  mostly  by  changes  in  climatic  and  weather  events,   followed  by  changes  among  single  environmental  (biotic  or  abiotic)  factors  to  which   bees  are  exposed  to.  This  notion  will  aid  in  the  understanding  of  the  following   discussion.   Parasites  and  Pathogens   Page  7  of  29 Parasites  and  pathogen  are  among  the  biotic  factors  mentioned  previously,   and  they  can  impact  behavior  by  impairing  individuals  either  physically,  cognitively,   or  both.   One  of  the  main  parasites  that  have  contributed  to  colony  losses  over  the   past   30   years   is   the   mite   Varroa   destructor.   Varroa   destructor   is   a   known   ectoparasite  (a  parasite  that  only  remains  on  the  skin  of  the  host,  not  attacking  it   internally)   of   the   Eastern   honeybee   (Apis   cerana)   and   was   first   discovered   in   European  honeybees  in  the  first  half  of  the  last  century  (Rosenkranz,  2009).  Since   then  it  has  spread  worldwide,  and  has  been  one  of  the  major  threats  to  beekeepers   because  of  its  ability  to  transfer  a  variety  of  viruses  to  their  host,  and  because  of   their  use  of  substantial  amounts  of  hemolymph  from  both  adult  bees  and  broods,   thus  greatly  weakening  the  host  since  its  early  life  stages.  The  mites  attach  to  adult   bees  and  feed  on  their  hemolymph,  reproducing  by  entering  the  capped  brood  cells   within  the  hive  where  they  can  lay  eggs  and  have  enough  food  from  the  brood’s   hemolymph  to  sustain  their  offspring  (Rosenkranz,  2009).  This  loss  of  hemolymph   since  early  developmental  stages  results  in  significant  weight  loss  for  the  hatching   bees  and  drones,  and  consequently  a  reduced  flight  performance  is  experienced   (Duay  et  al.,  2002).  Parasitism  has  also  been  related  to  reduced  life  span  (Amdam  et   al.,   2004),   reduced   learning   capability,   increased   absence   from   the   colony,   and   reduced  ability  to  return  to  the  colony  (Kralj  et  al.,  2007).  Finally  a  decreased  chance   of  mating  is  experienced  by  parasitized  drones  (Duay  et  al.,  2002).  In  addition  to  the   transfer  of  several  viruses  to  their  host,  and  the  damage  caused  at  both  an  individual   and  the  colony  level,  the  threat  is  increased  by  several  other  factors;  (1)  being  a  new   parasite  to  European  honeybees  “a  balanced  host-­‐parasite  relationship  is  lacking   and  beekeepers  do  not  have  long-­‐term  experience  in  dealing  with  this  pest,”  (2)  “it   has  spread  almost  worldwide  within  a  short  time  period  and  it  may  now  be  difficult   to   find   a   Varroa   free   honeybee   colony   anywhere,   other   than   in   Australia,”   (3)   “without  periodic  treatment,  most  of  the  honey  bee  colonies  in  temperate  climates   would  collapse  within  a  2-­‐3  year  period,”  (4)  “regular  treatments  increase  the  cost   for  beekeeping  and  the  risk  of  chemical  residues  in  bee  products”  (Rosenkranz,   2009).   Page  8  of  29 Another  pathogen  that  has  been  related  to  reduced  lifespan,  reduced  colony   performance,  and  increased  winter  mortality  (Fries  et  al.,  1984)  is  the  microsporidia   of  the  genus  Nosema.  One  species  of  Nosema,  N.  apis  has  been  a  known  pathogen  of   the  European  honeybee  for  a  long  time,  and  thus  has  not  been  the  object  of  intensive   studies   regarding   recent   colony   collapse.   On   the   other   hand,   the   fairly   new   introduced  N.  ceranae  from  Asia,  has  posed  a  much  greater  hazard  to  beekeepers   since  1995  (vanEngelsdorp,  2009).  Not  only  have  beekeepers  been  unable  to  treat   this  new  pest  properly  due  to  their  inexperience  with  it,  N.  ceranae  also  seems  to  be   more   virulent   than   its   predecessor   (vanEngelsdorp,   2009).   This   species   is   transmitted   through   the   ingestion   of   spores   to   which   bees   are   exposed   in   the   environment  or  within  the  hive,  as  housecleaning  bees  remove  infected  feces  and   other   unwanted   residues   (vanEngelsdorp,   2009).   While   Nosema   infestation   has   been  correlated  with  heavy  losses  in  some  European  countries  such  as  Spain,  a   recent   study   conducted   in   the   United   States   found   that   only   about   half   of   the   sampled  colonies  were  infected  with  Nosema  ceranae,  and  there  wasn’t  a  significant   difference  between  populations  with  CCD  and  control  populations  (vanEngelsdorp,   2009).  Subsequently,  hives  that  have  been  affected  by  Colony  Collapse  Disorder   typically  do  not  have  populations  of  Varroa  and  Nosema  that  are  known  to  cause   economic  injury  or  population  decline  (vanEngelsdorp,  2009).     In  addition  to  the  negative  effects  related  to  the  presence  and  activity  of   these   pests   within   hives   and   individuals,   the   risk   of   virus   transmission   is   also   significantly  increased  when  infestation  occurs.  Of  the  18  viruses  that  have  so  far   been  discovered  to  affect  honeybees  (Chen  and  Siede,  2007),  five  have  been  shown   to  be  vectored  by  Varroa  mites.  These  include  the  Kashmir  bee  virus,  Sacbrood   virus,  Acute  bee  paralysis  virus,  Israeli  acute  paralysis  virus,  and  Deformed  wing   virus  (Boecking  and  Genersch,  2008),  all  of  which  had  been  a  minor  problem  for   honeybee  health  before  the  introduction  of  Varroa  mites  (Allen  et  al.,  1986).  Even   though   none   of   these   viruses   have   been   described   as   a   major   cause   of   Colony   Collapse  Disorder,  their  presence  decreases  the  colony  strength  and  speeds  the   collapse  process,  especially  in  later  stages  and  over  winter  months.   Page  9  of  29 One  of  the  viruses  impacting  honeybees  mostly  at  the  individual  level  is  the   Deformed  Wing  Virus  (DWV),  an  RNA  virus  that  mainly  affects  bees  on  the  pupal   stage,  but  does  not  usually  result  in  colony  failure  (Martin,  2001).    The  virus  is   vectored  by  Varroa  mites,  which  transfer  it  to  their  host  while  feeding  on  them,  and   it  is  now  one  of  the  most  widespread  viruses  in  colonies  parasitized  by  these  mites   (Martin,  2001).  As  demonstrated  by  Martin  et  al.  (2001),  the  virus  is  especially   damaging  to  bees  encountering  it  in  the  pupal  stage,  resulting  in  higher  pupae   mortality  (20%  of  infected  individuals),  and  reduced  longevity  of  emerging  adults,   while  individuals  becoming  infected  as  adults  are  not  affected  in  any  significant  way   other   than   becoming   potential   vectors   until   they   die   (Martin,   Ball   &   Carreck,   unpublished  data).  Under  field  conditions,  many  of  the  pupae  that  have  become   infected  will  survive,  thus  leaving  the  colony  in  a  seemingly  healthy  status  by  the   end   of   the   fall,   with   a   sufficient   number   of   emerging   adults   to   withstand   overwintering.  But  being  infected  by  the  virus,  the  majority  of  these  adults  die   prematurely,  thus  leading  to  an  imbalance  in  age  structure  and  inability  to  perform   the  activities  necessary  for  the  survival  of  the  colony  (such  as  maintaining  a  suitable   temperature)  (Martin,  2001).  Thus,  the  negative  effects  of  the  virus  on  the  colony   are   amplified   when   Varroa   mites   are   present,   as   the   parasite   feeds   on   pupae   hemolymph  and  reproduces  within  the  brood  cell,  resulting  in  higher  infection  rates.   This  overwintering  collapse  of  seemingly  healthy  colonies,  together  with  evidence   indicating   DWV   presence   in   a   large   number   of   CCD   colonies,   lead   to   the   investigation  of  a  possible  correlation  between  the  two  phenomena.  However,  such   correlation  has  not  been  established  (Cox-­‐Foster  et  al.,  2007).     Another   virus   associated   with   Varroa   presence   and   potentially   a   factor   playing  a  role  in  Colony  Collapse  Disorder  is  the  Israeli  Acute  Paralysis  Virus  (IAPV).   This  virus  is  part  of  a  larger  complex  of  similarly  acting  viruses  including  the  Acute   Bee  Paralysis  Virus,  and  Kashmir  Bee  Virus.  The  viruses  persist  within  the  colony   usually   without   presenting   apparent   signs   of   infection   at   either   the   colony   or   individual  level,  but  are  highly  virulent  in  both  larvae  and  adults,  causing  paralysis,   trembling,  and  inability  to  fly  soon  followed  by  death  (de  Miranda,  2009).  IAPV  has   been  the  subject  of  recent  investigation  both  because  it  is  known  to  be  vectored  by   Page  10  of  29

Description:
As discussed in the description of the honeybee colony structure and . users are asked to submit monthly a report detailing pesticide information,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.