ebook img

multiphysics simulation of pv modules PDF

82 Pages·2016·4.45 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview multiphysics simulation of pv modules

MULTIPHYSICS SIMULATION OF PV MODULES Pankaj Arora Thesis to obtain the Master of Science Degree in Energy Engineering and Management Supervisors: M.Sc. Matthieu Ebert Prof. Susana Isabel Pinheiro Cardoso de Freitas Examination Committee Chaiperson: Prof. Luís Filipe Moreira Mendes Supervisor: Prof. Susana Isabel Pinheiro Cardoso de Freitas Member of the Committee: Dr. Vânia Cristina Henriques Silvério October 2016 ABSTRACT Modeling and simulation of Photovoltaic (PV) modules play an important role for the development of the technology and evaluation of new designs. A Finite Element Method (FEM) based multiphysics simulation software package is used in this work to study and analyze optical, thermal and electrical behavior of PV modules. An increase in transmittance by 10-15% at low elevation angles and reduction in busbar/ribbon shadow loss by almost 3% of cell irradiance is calculated from optical simulations of structured glass models. To determine the temperature distribution in a PV module, a novel thermal model based on the optical properties of module components is presented. Electrical (ohmic) loss in the emitter for homogeneous and inhomogeneous cell illumination is studied. Using coupled optical and electrical simulations, performance of grid models is investigated. Validation of the multiphysics study comprising of ray-tracing and heat transfer tools is done by outdoor experiments. Experiment and simulation results lay within an average absolute temperature difference of 0.6 2⁰C for three different illumination cases investigated. Keywords- Photovoltaic (PV) modules; Finite Element Method; Multiphysics Simulation; Structured glass RESUMO A modelação e simulação de módulos fotovoltaicos são etapas importantes no desenvolvimento de tecnologias e qualificação de novos desenhos. Nesta tese aplicamos códigos de simulação baseados em métodos de elementos finitos para estudar e analizar as caracteristicas ópticas, térmicas e eléctricas de módulos fotovoltaicos. De acordo com os cálculos realizados com modelos baseados em vidro estruturado, é possível obter aumentos de transmitância na ordem de 10-15% em baixos ângulos e diminuição do efeito de sombra em quase 3% da célula. Apresentamos um modelo inovador para a distribuição de temperatura no módulo fotovoltaico, baseado nas propriedades ópticas dos componentes do módulo. Os efeitos dissipativos por condução de corrente eléctrica (perdas resistivas) são considerados no modelo, para perfis de iluminação homogénea e inhomogénea. Neste trabalho investigamos o desempenho dos modelos em rede, acoplando simulações ópticas e eléctricas. Finalmente, a validação dos modelos baseados em raios de luz e transferência de calor é feita com experiências no exterior. Os resultados experimentais estão concordantes com as simulações, indicando diferenças de temperatura de 0.6 2⁰C, para as três situações estudadas. Palavras-Chave- Módulos fotovoltaicos; Método de elementos finitos; Simulação Multiphysics; vidro estruturado 1 CONTENTS NOMENCLATURE .................................................................................................................. iii ABBREVIATIONS ................................................................................................................... v LIST OF FIGURES ................................................................................................................. vi LIST OF TABLES.................................................................................................................. viii 1 INTRODUCTION ............................................................................................................. 1 2 THEORETICAL BACKGROUND ........................................................................................ 5 2.1 Photovoltaic modules ............................................................................................................ 5 2.1.1 Standard modules: ........................................................................................................ 5 2.1.2 Relation between cell temperature and electrical efficiency .............................................. 8 2.2 Finite Element Method (FEM) ................................................................................................ 8 2.3 Ray optics .......................................................................................................................... 13 2.3.1 Reflection of light ........................................................................................................ 14 2.3.2 Refraction of light........................................................................................................ 14 2.3.3 Fresnel equations ........................................................................................................ 15 2.3.4 Absorption of light in a medium ................................................................................... 17 2.4 Heat transfer ...................................................................................................................... 18 2.4.1 Heat conduction .......................................................................................................... 18 2.4.2 Heat convection .......................................................................................................... 19 2.4.3 Radiation .................................................................................................................... 19 2.4.4 Heat balance equation ................................................................................................. 20 2.5 Electric (ohmic) losses ........................................................................................................ 21 Emitter power loss ..................................................................................................................... 22 3 OPTICAL MODEL .......................................................................................................... 25 3.1 Assumptions of the optical simulation: ................................................................................. 27 3.2 Boundary conditions ........................................................................................................... 27 3.3 Results and discussion ........................................................................................................ 28 3.4 Improvement in transmittance ............................................................................................ 30 3.4.1 Model designs (structure development) ........................................................................ 31 3.4.2 Assumptions and boundary conditions .......................................................................... 33 3.4.3 Results and discussion ................................................................................................. 33 3.5 Optical study to compute ribbon shadow loss ....................................................................... 37 i 4 THERMAL MODEL ......................................................................................................... 39 4.1 Model description and nomenclature:................................................................................... 39 4.2 Assumptions of the simulation ............................................................................................. 40 4.3 Results and discussion ........................................................................................................ 41 4.4 Thermal modeling for inhomogeneous irradiance .................................................................. 44 5 ELECTRICAL MODEL ..................................................................................................... 47 5.1 Simulation of a simple 3-D model ........................................................................................ 47 5.1.1 Model description and nomenclature: ........................................................................... 47 5.1.2 Assumptions and boundary conditions for the simulation: .............................................. 48 5.1.3 Simulation results for the simple 3-D model .................................................................. 48 5.2 Simulation of cells with inhomogeneous illumination ............................................................. 49 5.2.1 Model design .............................................................................................................. 50 5.2.2 Assumptions of the simulations .................................................................................... 53 5.2.3 Results and discussion ................................................................................................. 53 5.3 Coupled optical and electrical study of structured-glass modules ........................................... 55 6 EXPERIMENTAL VERIFICATION ................................................................................... 57 6.1 Experimental set-up ............................................................................................................ 57 6.2 Experiment results .............................................................................................................. 59 6.3 Multiphysics simulation ....................................................................................................... 60 6.3.1 Assumptions of the simulation: .................................................................................... 60 6.3.2 Boundary conditions of the simulation: ......................................................................... 61 6.4 Results and discussion ........................................................................................................ 61 7 CONCLUSIONS ............................................................................................................. 65 APPENDIX ........................................................................................................................... 67 REFERENCES ....................................................................................................................... 67 ii NOMENCLATURE Symbol Definition Unit Absorption coefficient 1/m Volumetric temperature coefficient 1/K Emissivity - Stefan-Boltzmann constant W/(m2K4) Standard deviation m Volumetric mass density kg/m3 Emitter sheet resistivity Ω/square λ Wavelength m Cell efficiency - Efficiency at reference temperature - Angle of incidence degree Angle of reflection degree Angle of refraction degree Temperature gradient K/m ΔT Temperature difference K c Speed of light in medium m/s c Speed of light in vacuum m/s 0 Specific heat capacity J/(kg K) d Distance travelled by light ray m Distance between alternate fingers m ds Differential length element m h Convective heat-transfer coefficient W/(m2K) Current A Irradiance intensity W/m2 Incident light intensity W/m2 Maximum power point current A Peak Irradiance intensity of distribution W/m2 Photocurrent A Diode saturation current A Short-circuit current A light intensity entering the loss material W/m2 J Current density A/m2 k Imaginary part of refractive Index - iii Thermal conductivity W/(mK) l Finger length m m Ideality factor - n Real part of refractive Index - N Complex representation of refractive index - oc Open-circuit - Emitter power loss W Maximum power W Conductive heat flux W/m2 Convective heat flux W/m2 Radiative heat flux W/m2 Useful heat energy W/m2 Q Internal heat generation W/m2 r Position vector m P-type reflection coefficient - S-type reflection coefficient - Emitter resistance Ω Shunt resistance Ω P-type reflection power coefficient - Series resistance Ω S-type reflection power coefficient - sc Short-circuit - P-type transmission coefficient - S-type transmission coefficient - T Temperature K T Ambient temperature K amb Cell temperature K P-type transmission power coefficient - Reference temperature K S-type transmission power coefficient - v Wind velocity m/s Maximum power point voltage V Open circuit voltage V Thermal voltage V y Distance of element from cell-center m iv ABBREVIATIONS AM Air Mass ratio AR Anti-Reflecting CPV Concentrated Photovoltaic CTM Cell-To-Module DNI Direct Normal Irradiance EVA Ethylene Vinyl Acetate FEA Finite Element Analysis FEM Finite Element Method FF Fill Factor GHI Global Horizontal Irradiance HPC High Performance Computing IEC International Electrotechnical Commission IR Infrared ISE Institute for Solar Energy Systems NOCT Nominal Operating Cell Temperature PDE Partial Differential Equations PV Photovoltaic STC Standard Testing Conditions UV Ultraviolet v LIST OF FIGURES Figure 1.1 Light trapping in a structured glass; ray undergoes multiple reflection due to 2 the pyramid-like glass structures, thereby reducing the solar energy finally lost in reflection Figure 2.1 Cut-section of a standard PV module showing the different components 5 Figure 2.2 Equivalent circuit of a solar cell as a double-diode model 6 Figure 2.3 Different steps involved to perform a Finite Element Analysis 9 Figure 2.2 Mesh of a model for FEM study; level of discretization in a specific part 11 depends on the importance of the part on the particular study Figure 2.5 Mesh convergence study for a numerical solution; increasing mesh density 12 reduces difference between numerical solution and exact solution Figure 2.6 Reflection and refraction of light on a plane surface when an incident ray 14 strikes an interface between two media of different refractive indices Figure 2.7 Relation of reflection and transmission power coefficients to Incidence angle 16 for media with refractive indices n=1 and n=1.5 1 2 Figure 2.8 Cross-section of a solar cell showing different series resistance contributors 21 Figure 2.9 A small cross-section of a solar cell. A relation of power loss due to lateral 22 current flow in the emitter layer of the cross-section is evaluated based on this figure Figure 3.1 Solar spectrum (AM 1.5) and silicon absorption spectrum 25 Figure 3.2 Transmittance of a 3.2 mm thick low-iron soda lime glass against wavelength 26 Figure 3.3 Depiction of incidence, elevation and azimuth angles 27 Figure 3.4 Comparison of glass transmittance values obtained from simulation and 28 analytical methods Figure 3.5 Simulation result showing rays incident on the glass medium from air at 29 elevation angle of 30⁰; rays undergo reflection and refraction at the media interface according to Fresnel’s equations Figure 3.6 Different glass models studied. An isometric view and top view for each model 30 type is shown Figure 3.7 Transmittance computed in the 5 different structured glass models at different 33 elevation and azimuth angles and their comparison to transmittance of flat glass Figure 3.8 Tracing of rays falling on the type 5 glass design at elevation angle of 60⁰ and 34 azimuth angle of 60⁰ at (a) flat plateau of the pyramids, (b) sides of the pyramids Figure 3.9 Simulation results showing irradiance profile at the base of type 5 glass when 35 (a) 3000 rays, (b) 12000 rays, and (c) 30000 rays are incident on the glass surface at (I) Elevation angle=0⁰, Azimuth angle=0⁰ and (II) Elevation angle=30⁰, Azimuth angle=60⁰ Figure 3.10 Module with busbar/ribbons placed under the groove of glass pyramid 36 structures (a) isometric view of the model (b) side view of the structure showing location of busbar vi

Description:
A Finite Element Method (FEM) based multiphysics simulation desempenho dos modelos em rede, acoplando simulações ópticas e eléctricas.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.