ebook img

Multiphase Flow Dynamics 4: Turbulence, Gas Adsorption and Release, Diesel Fuel Properties PDF

337 Pages·2011·4.419 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multiphase Flow Dynamics 4: Turbulence, Gas Adsorption and Release, Diesel Fuel Properties

Multiphase Flow Dynamics 4 Nikolay Ivanov Kolev Multiphase Flow Dynamics 4 Turbulence, Gas Adsorption and Release, Diesel Fuel Properties ABC Author Dr.NikolayIvanovKolev Möhrendorferstr.7 91074Herzogenaurach Germany E-mail:[email protected] ISBN978-3-642-20748-8 e-ISBN978-3-642-20749-5 DOI10.1007/978-3-642-20749-5 LibraryofCongressControlNumber:2011934153 (cid:2)c 2011Springer-VerlagBerlinHeidelberg Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthemate- rialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting, reproduction onmicrofilmor inanyother way, andstorage indatabanks. Dupli- cationofthispublicationorpartsthereof ispermittedonlyunder theprovisions oftheGerman CopyrightLawofSeptember9,1965,initscurrentversion,andpermissionforusemustalways beobtainedfromSpringer.ViolationsareliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoes notimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Typeset&CoverDesign:ScientificPublishingServicesPvt.Ltd.,Chennai,India. Printedonacid-freepaper 987654321 springer.com To Iva, Rali and Sonja with love Balkan, Bulgaria (painting by Nikolay Ivanov Kolev, 2000) My first physics teacher, my father Ivan Gutev (drawing by Nikolay Ivanov Kolev, 2000) (cid:586)(cid:616)(cid:606)(cid:610)(cid:615)(cid:602) (cid:593)(cid:607)(cid:619)(cid:610)(cid:615)(cid:607)(cid:627)(cid:616)(cid:617)(cid:616)(cid:604)(cid:607)(cid:625)(cid:607)(cid:606)(cid:628)(cid:613)(cid:603)(cid:616)(cid:612)(cid:616)(cid:604)(cid:614)(cid:607)(cid:615)(cid:607)(cid:619)(cid:607)(cid:627)(cid:602)(cid:614), (cid:616)(cid:620)(cid:612)(cid:616)(cid:613)(cid:612)(cid:616)(cid:620)(cid:616)(cid:609)(cid:607)(cid:614)(cid:633)(cid:604)(cid:605)(cid:618)(cid:602)(cid:615)(cid:610)(cid:624)(cid:610)(cid:616)(cid:603)(cid:605)(cid:628)(cid:618)(cid:615)(cid:602)(cid:620)(cid:602), (cid:617)(cid:616)(cid:620)(cid:618)(cid:628)(cid:617)(cid:615)(cid:607)(cid:627)(cid:602)(cid:620)(cid:602)(cid:603)(cid:616)(cid:613)(cid:612)(cid:602),(cid:612)(cid:616)(cid:633)(cid:620)(cid:616)(cid:625)(cid:607)(cid:619)(cid:620)o(cid:625)(cid:621)(cid:604)(cid:619)(cid:620)(cid:604)(cid:602)(cid:614), (cid:619)(cid:612)(cid:616)(cid:619)(cid:621)(cid:618)(cid:610)(cid:620)(cid:607)(cid:620)(cid:610)(cid:619)(cid:617)(cid:616)(cid:618)(cid:607)(cid:611)(cid:612)(cid:610)(cid:610)(cid:619)(cid:604)(cid:633)(cid:618)(cid:602)(cid:620)(cid:602)(cid:615)(cid:607)(cid:604)(cid:628)(cid:618)(cid:615)(cid:602)(cid:620)(cid:602). (cid:583)(cid:602)(cid:614)(cid:610)(cid:618)(cid:602)(cid:614)(cid:620)(cid:607)(cid:604)(cid:610)(cid:609)(cid:605)(cid:602)(cid:618)(cid:633)(cid:627)(cid:610)(cid:633)(cid:617)(cid:616)(cid:618)(cid:610)(cid:604) (cid:606)(cid:602)(cid:620)(cid:607)(cid:604)(cid:610)(cid:606)(cid:633)(cid:612)(cid:616)(cid:604)(cid:633)(cid:627)(cid:602)(cid:614)(cid:616)(cid:627)(cid:615)(cid:610)(cid:620)(cid:607)(cid:623)(cid:615)(cid:616)(cid:613)(cid:616)(cid:605)(cid:610)(cid:610) (cid:610)(cid:615)(cid:616)(cid:604)(cid:616)(cid:620)(cid:616)(cid:617)(cid:616)(cid:606)(cid:619)(cid:610)(cid:615)(cid:610)(cid:633)(cid:620)(cid:610)(cid:617)(cid:616)(cid:612)(cid:618)(cid:610)(cid:604), (cid:606)(cid:602)(cid:617)(cid:616)(cid:614)(cid:610)(cid:620)(cid:602)(cid:622)(cid:618)(cid:602)(cid:609)(cid:607)(cid:616)(cid:613)(cid:616)(cid:605)(cid:610)(cid:610)(cid:610)(cid:606)(cid:607)(cid:614)(cid:602)(cid:605)(cid:616)(cid:605)(cid:610)(cid:610). (cid:583)(cid:602)(cid:614)(cid:610)(cid:618)(cid:602)(cid:614)(cid:620)(cid:607)(cid:604)(cid:617)(cid:621)(cid:613)(cid:619)(cid:610)(cid:618)(cid:602)(cid:627)(cid:602)(cid:620)(cid:602)(cid:614)(cid:610)(cid:619)(cid:628)(cid:613) (cid:616)(cid:620)(cid:619)(cid:604)(cid:616)(cid:633)(cid:610)(cid:615)(cid:620)(cid:607)(cid:613)(cid:607)(cid:612)(cid:620)(cid:615)(cid:607)(cid:627)(cid:616)(cid:606)(cid:602)(cid:620)(cid:610)(cid:606)(cid:602)(cid:614), (cid:625)(cid:607)(cid:614)(cid:621)(cid:619)(cid:612)(cid:621)(cid:613)(cid:610)(cid:610)(cid:613)(cid:602)(cid:612)(cid:620)(cid:610)(cid:608)(cid:610)(cid:604)(cid:616)(cid:620)(cid:628)(cid:620)(cid:607)(cid:616)(cid:620)(cid:617)(cid:610)(cid:619)(cid:602)(cid:613) (cid:616)(cid:620)(cid:619)(cid:618)(cid:607)(cid:606)(cid:619)(cid:604)(cid:602)(cid:620)(cid:602)(cid:605)(cid:618)(cid:602)(cid:606)(cid:633)(cid:627)(cid:610)(cid:617)(cid:618)(cid:616)(cid:605)(cid:618)(cid:607)(cid:619)(cid:602)(cid:620)(cid:628)(cid:611)(cid:608)(cid:607)(cid:613)(cid:602)(cid:615). (cid:572)(cid:616)(cid:615)(cid:607)(cid:609)(cid:610)(cid:623)(cid:616)(cid:618)(cid:602)(cid:620)(cid:607)(cid:615)(cid:602)(cid:614)(cid:610)(cid:618)(cid:602)(cid:614), (cid:612)(cid:616)(cid:610)(cid:620)(cid:616)(cid:619)(cid:604)(cid:628)(cid:609)(cid:618)(cid:616)(cid:608)(cid:606)(cid:607)(cid:615)(cid:619)(cid:612)(cid:610)(cid:606)(cid:621)(cid:623)(cid:605)(cid:616)(cid:618)(cid:633)(cid:620) (cid:610)(cid:619)(cid:617)(cid:613)(cid:602)(cid:614)(cid:628)(cid:612)(cid:602)(cid:619)(cid:610)(cid:603)(cid:628)(cid:606)(cid:615)(cid:616)(cid:620)(cid:616)(cid:620)(cid:618)(cid:602)(cid:619)(cid:610)(cid:618)(cid:602)(cid:620), (cid:607)(cid:606)(cid:615)(cid:610)(cid:625)(cid:612)(cid:602)(cid:617)(cid:616)(cid:613)(cid:609)(cid:602)(cid:620)(cid:607)(cid:609)(cid:602)(cid:620)(cid:607)(cid:603)(cid:606)(cid:602)(cid:610)(cid:609)(cid:604)(cid:613)(cid:607)(cid:612)(cid:602)(cid:620). (cid:588)(cid:607)(cid:625)(cid:607)(cid:619)(cid:620)(cid:616)(cid:619)(cid:610)(cid:616)(cid:619)(cid:620)(cid:602)(cid:604)(cid:602)(cid:620)(cid:615)(cid:607)(cid:618)(cid:602)(cid:609)(cid:603)(cid:618)(cid:602)(cid:615)(cid:610), (cid:617)(cid:616)(cid:615)(cid:633)(cid:612)(cid:616)(cid:605)(cid:602)(cid:605)(cid:610)(cid:619)(cid:614)(cid:602)(cid:609)(cid:604)(cid:602)(cid:617)(cid:618)(cid:616)(cid:619)(cid:620)(cid:616)(cid:620)(cid:610)(cid:633), (cid:615)(cid:616)(cid:614)(cid:602)(cid:612)(cid:602)(cid:618)(cid:610)(cid:619)(cid:613)(cid:607)(cid:606)(cid:605)(cid:616)(cid:606)(cid:610)(cid:615)(cid:610),(cid:613)(cid:607)(cid:612)(cid:621)(cid:604)(cid:602)(cid:611)(cid:612)(cid:610)(cid:620)(cid:607)(cid:609)(cid:618)(cid:602)(cid:615)(cid:610), (cid:617)(cid:618)(cid:607)(cid:604)(cid:618)(cid:628)(cid:627)(cid:602)(cid:626)(cid:606)(cid:607)(cid:613)(cid:616)(cid:620)(cid:616)(cid:610)(cid:614)(cid:604)(cid:619)(cid:604)(cid:607)(cid:620)(cid:610)(cid:615)(cid:633). 1983 Sofia Nikolay Ivanov Kolev, PhD, DrSc (born 1/8/1951, Gabrowo, Bulgaria) Summary This monograph contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations. It is intended to help applied scientists and practicing engineers to better understand natural and industrial processes containing dynamic evolutions of complex multi- phase flows. It is also intended to be a useful source of information for students in the high semesters and in PhD programs. The monograph consists of five volumes: • Volume 1, Fundamentals. • Volume 2, Mechanical interactions. • Volume 3, Thermal interactions. • Volume 4, Turbulence, gas absorption and release, diesel fuel properties. • Volume 5, Nuclear thermal hydraulics. In Volume 1 the concept of three-fluid modeling is presented in detail “from origin to applications.” This includes the derivation of local volume- and time- averaged equations and their working forms, the development of methods for their numerical integration and, finally, a variety of solutions for problems of practical interest. Special attention is paid in Volume 1 to the link between the partial differential equations and the constitutive relations called closure laws, without providing too much information on the closure laws. Volumes 2 and 3 are devoted to these important constitutive relations for the mathematical description of mechanical and thermal interactions. The structure of these two volumes is in fact a state-of-the-art review and selection of the best available approaches for describing interfacial transfer processes. In many cases the original author’s contribution is incorporated in the overall presentation. The most important aspects of the presentation are that they stem from the author’s long years of experience developing computer codes. The emphasis is on the prac- tical use of these relationships: either as stand-alone estimation methods or within a framework of computer codes. This book, Volume 4, is devoted to turbulence in multiphase flows as well as selected subjects in multiphase fluid dynamics that are very important for practical applications but could not find place in the first three volumes of this work. The state-of-the-art of turbulence modeling in multiphase flows is presented. First, some basics of single-phase boundary layer theory, including important scales and flow oscillation characteristics in pipes and rod bundles, are presented. Then the scales characterizing dispersed flow systems are presented. The description of the VIII Summary turbulence is provided at different levels of complexity: simple algebraic models for eddy viscosity; algebraic models based on the Boussinesq hypothesis; modification of the boundary layer shear due to modification of the bulk turbulence; and modification of the boundary layer shear due to nucleate boiling. Then the role of the following forces on the mathematical description of turbulent flows is discussed: the lift force; the lubrication force in the wall boundary layer; and the dispersion force. A pragmatic generalization of the k-eps models for a continuous velocity field is proposed, covering flows in large volumes and flows in porous structures. Its large eddy simulation variant is also presented. A method of how to derive source and sink terms for multiphase k-eps models is also presented. A set of 13 single- and two-phase benchmarks for verification of k-eps models in system computer codes are provided and reproduced with the IVA computer code as an example of the application of the theory. This methodology is intended to help other engineers and scientists to introduce this technology step- by-step into their own engineering practice. In many practical applications, gases are dissolved in liquids under certain con- ditions and released under other conditions, and therefore affect technical proc- esses in many ways, both good and bad. There is almost no systematic description of this subject in the literature. That is why I decided to collect in Volume 3 useful information on the solubility of oxygen, nitrogen, hydrogen and carbon dioxide in water, valid within a large range of pressures and temperatures, providing appro- priate mathematical approximation functions and validating them. In addition, methods for computation of the diffusion coefficients are described. With this in- formation, the solution and dissolution dynamics of multiphase fluid flows can be analyzed. For this purpose the non-equilibrium absorption and release on bubble, droplet and film surfaces under different conditions is mathematically described. In order to allow the theory from all four volumes to be applied to processes in combustion engines, a systematic set of internally consistent state equations for diesel fuel, gas and liquid, valid over a broad range of pressures and temperatures, are also provided in Volume 4. Nuclear thermal hydraulics provides a description of the physical processes that occur in structural materials during the release of fission heat from nuclear reac- tions. During its release to the environment, the thermal energy can be harnessed to provide useful mechanical work or heat, or both. Volume 5 is devoted to nu- clear thermal hydraulics. In a way this is the most essential application of multi- phase fluid dynamics in analyzing steady and transient processes within nuclear power plants. December 2010 Nikolay Ivanov Kolev Herzogenaurach Table of Contents 1 Some single-phase boundary layer theory basics..……..............................1 1.1 Flow over plates, velocity profiles, shear forces, heat transfer................1 1.1.1 Laminar flow over one site of a plane..........................................1 1.1.2 Turbulent flow parallel to plane...................................................3 1.2 Steady state flow in pipes with circular cross sections............................4 1.2.1 Hydraulically smooth wall surface....................................................7 1.2.2 Transition region........................................................................16 1.2.3 Completely rough region............................................................17 1.2.4 Heat transfer to fluid in a pipe....................................................18 1.3 Transient flow in pipes with circular cross sections..............................30 Nomenclature........................................................................................................32 References.............................................................................................................34 2 Introduction to turbulence of multi-phase flows.......................................39 2.1 Basic ideas.............................................................................................39 2.2 Isotropy.................................................................................................50 2.3 Scales, eddy viscosity............................................................................51 2.3.1 Small scale turbulent motion......................................................51 2.3.2 Large scale turbulent motion, Kolmogorov-Pandtl expression...................................................................................52 2.4 k-eps framework....................................................................................54 Nomenclature........................................................................................................59 References.............................................................................................................63 3 Sources for fine resolution outside the boundary layer............................67 3.1 Bulk sources..........................................................................................67 3.1.1 Deformation of the velocity field................................................67 3.1.2 Blowing and suction...................................................................67 3.1.3 Buoyancy driven turbulence generation.....................................68 3.1.4 Turbulence generated in particle traces......................................69 3.2 Turbulence generation due to nucleate boiling......................................73 3.3 Treatment of the boundary layer for non-boiling flows........................74 3.4 Initial conditions....................................................................................79 Nomenclature........................................................................................................80 References.............................................................................................................87 X Table of Contents 4 Source terms for k-eps models in porous structures.................................89 4.1 Single-phase flow.................................................................................89 4.1.1 Steady developed generation due to wall friction......................89 4.1.2 Heat transfer at the wall for steady developed flow...................92 4.1.3 Heat transfer at the wall for non-developed or transient flow....94 4.1.4 Singularities................................................................................94 4.2 Multiphase flow...................................................................................96 4.2.1 Steady developed generation due to wall friction......................96 4.2.2 Heat transfer at the wall for forced convection without boiling........................................................................................98 4.2.3 Continuum-continuum interaction...........................................103 4.2.4 Singularities.............................................................................104 4.2.5 Droplets deposition at walls for steady developed flow..........106 4.2.6 Droplets deposition at walls for transient flow........................106 Nomenclature......................................................................................................107 References...........................................................................................................110 5 Influence of the interfacial forces on the turbulence structure..............113 5.1 Drag forces.........................................................................................113 5.2 The role of the lift force in turbulent flows........................................113 5.3 Lubrication force in the wall boundary layer.....................................118 5.4 The role of the dispersion force in turbulent flows............................119 5.4.1 Dispersed phase in laminar continuum....................................119 5.4.2 Dispersed phase in turbulent continuum.................................120 Nomenclature......................................................................................................125 References...........................................................................................................126 6 Particle-eddy interactions..........................................................................129 6.1 Three popular modelling techniques...................................................129 6.2 Particle-eddy interaction without collisions........................................130 6.2.1 Response coefficient for single particle....................................130 6.2.2 Response coefficient for clouds of particles.............................132 6.2.3 Particle-eddy interaction time without collisions.....................133 6.3 Particle-eddy interaction with collisions.............................................134 Nomenclature......................................................................................................135 References...........................................................................................................137 7 Two group k-eps models............................................................................139 7.1 Single phase flow................................................................................139 7.2 Two-phase flow...................................................................................140 Nomenclature......................................................................................................141 References...........................................................................................................143 8 Set of benchmarks for verification of k-eps models in system computer codes...........................................................................................145 8.1 Introduction.........................................................................................145

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.