ebook img

Multinucleon-Transfer Reactions as a Gateway to Neutron-Rich Actinides and Nuclei near the N ... PDF

159 Pages·2017·17.01 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multinucleon-Transfer Reactions as a Gateway to Neutron-Rich Actinides and Nuclei near the N ...

Multinucleon-Transfer Reactions as a Gateway to Neutron-Rich Actinides and Nuclei near the = = N 82 and Z 50 Shell Closures Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt von Andreas Günter Heinz Vogt aus Köln Köln 2017 Berichterstatter: Prof. Dr. Peter Reiter Prof. Dr. Andreas Zilges Prof. Dr. Rolf-Dietmar Herzberg Tag der letzten mündlichen Prüfung: 10. Juli 2017 | Abstract Multinucleon-transferreactionsareacompetitiveandpromisingtooltoprovideaccesstohard-to-reach andexoticnuclei. Inthepresentwork,reactionproductsinthe136Xe+238Umultinucleon-transfer reaction at 1 GeV were investigated employing the high-resolution position-sensitive γ-ray track- ing array AGATA coupled to the large-solid-angle mass spectrometer PRISMA at the Laboratori NazionalidiLegnaro(INFN,Italy). Beam-likereactionproductswereidentifiedandselectedbythe PRISMA spectrometer. Recoils and fission fragments were tagged by DANTE micro-channel plate detectorsinstalledwithinthescatteringchamber. Fissionandtransfereventsarediscriminatedby exploiting kinematic coincidences between the binary reaction products. Mass yields and relative cross-section distributions are extracted and compared with calculations based on the GRAZING modelformultinucleon-transferreactions. Furthermore,populationyieldsfornucleiintheactinide regionareobtainedandcomparedtoX-rayyieldsmeasuredbyAGATA.Perspectivesandlimitations for the production of the hard-to-reach neutron-rich isotopes are discussed. A Doppler correction forthetarget-likenucleienablesγ-rayspectroscopyoftheheavyreactionpartner. Nuclearstructure informationofneutron-richactinidenucleiareabenchmarkfortheoreticalmodelsprovidingpredic- tions for the heaviestnuclei. An extension ofthe ground-state rotational band in240U is achieved andevidenceforanextendedfirstnegative-paritybandin240Uisfound. Theresultsarecomparedto recent mean-field and density-functional theory calculations. Furthermore, multinucleon-transfer reactions are a gateway to nuclei in the vicinity of the Z = 50 and N = 82 shell closures. Nuclei inthisregionserveasabenchmarkfornuclearshell-modelcalculationsbasedonmoderneffective interactions,butaredifficulttopopulateduetoalackofsuitablebeam-targetcombinations. Excited reactionproductsweremeasuredaftermultinucleontransferin136Xe+238Uat1GeVand136Xe+ 208Pbat930MeVwiththeAGATAtrackingarraycoupledtoPRISMAatLNL(INFN,Italy)aswellas inthe136Xe+198Ptmultinucleon-transferreactionemployingthehigh-efficiencyγ-rayspectrometer GAMMASPHERE in combination with the gas-detector array CHICO at LBNL. Moreover, Xe and Ba isotopes were populated in fusion-evaporation reactions using the HORUS γ-ray array at the University of Cologne. The high-spin level schemes of 132Xe, 133Xe, 134Xe, 135Xe and 137Ba were considerablyextendedtohigherenergies. The2058-keVstatein135Xeisidentifiedasa9.0(9)-ns isomer,closingagapinthesystematicsalongthe N =81isotones. Latestshell-modelcalculations reproducetheexperimentalfindings. Theexperimentally-deducedreducedtransitionstrengthsof the isomer decays are compared to shell-model predictions. A detailed picture of the lower-mass N 82, Z 50regionoftheSegrèchartisdrawn. Anotherpartofthisthesiscoversdouble-sided sili≤constrip≥detectors(DSSSD)whichareemployedforthedetectionofchargedparticlesproviding positionandenergyinformation. Intersectingareasofbothp-andn-sidestripsformindividualpixel segments resulting in a high detector granularity. However, due to limitations in fabrication and theresponseofthereadoutelectronics,theperformanceofdifferentchannelsmayvary. Typically, chargedparticlesdonotilluminatehomogeneouslythedetectorsurfaceduringin-beamexperiments. Consequently, radiation damages of the detector are distributed non-uniformly. Position-resolved charge-collectionlossesforfront-andback-sidesegmentswereinvestigatedforanin-beamexper- iment and by performing radioactive source measurements. A novel position-resolved calibration methodforradiation-damagedDSSSDs,basedonmutualconsistencyofp-sideandn-sidecharges, wasdeveloped. Ityieldsasignificantenhancementoftheenergyresolutionandtheperformanceof radiation-damagedpartsofthedetector. iii | Zusammenfassung MultinukleontransferreaktionensindeinvielversprechenderZugangzurProduktionschwerzugängli- cherundexotischerAtomkerne.DerersteTeilderArbeitumfassteineReaktionsstudiezurSchwe- rionenkollisionzwischen136Xeund238UbeieinerStrahlenergievon1GeV,durchgeführtmitdem hochauflösendenundpositionssensitivenGamma-Tracking-ArrayAGATAamLaboratoriNazionalidi Legnaro (INFN, Italien). Strahlähnliche Reaktionsprodukte wurden mit dem Massenspektrometer PRISMA identifiziert und selektiert. Targetähnliche Teilchen und Spaltfragmente wurden mittels DANTE-MikrokanalplattendetektoreninnerhalbderStrahlkammerdetektiert.KinematischeKoinzi- denzenzwischendenverschiedenenReaktionsproduktenerlaubeneineDiskriminierungzwischen SpaltungunderwünschtemMultinukleontransfer.MassenspektrenundrelativeWirkungsquerschnitte wurdenausdenDatenextrahiertundmitModellrechnungendesGRAZING-Codesverglichen.Die AusbeuteanüberlebendenAktinidenkernenwurdemitdervonAGATAgemessenenRöntgenstrah- lung,einemcharakteristischenFingerabdruckdesjeweiligenElements,verglichen.DieDiskussion derErgebnissezeigtPerspektivenundLimitierungenfürdieProduktionvonschwerzugänglichen neutronenreichenIsotopeninderAktinidenregionauf.DieKernstrukturneutronenreicherAktinideist einewichtigeRichtgrößezurBewertungtheoretischerModellezurBeschreibungschwersterTransak- tinide.DieGrundzustandsbandevon240U konntezuhöherenEnergienerweitertwerden.Weiterhin gelangderNachweiseinernegativenParitätsbande.DieErgebnissewerdenmitjüngstpublizierten Mean-Field-undFunktionaldichtetheorie-Rechnungenverglichen.Multinukleontransferrreaktionen eignen sich ebenfalls als Zugang zu Kernen in der Region der magischen Schalenabschlüsse bei Z =50und N =82.Kernenordwestlichvon132SnsindwichtigePrüfmarkenfürmoderneeffektive Schalenmodellinteraktionen.BedingtdurchdasFehlengeeigneterStrahl-Target-Kombinationenist dieProduktiondieserKernejedochoftmalssehranspruchsvoll.Multinukleontransfer-Experimente anAGATA+PRISMA(136Xe+238U sowie136Xe+208Pb),undanGAMMASPHERE+CHICOamLBNL (136Xe+198Pt)erlaubeneinedetaillierteSpektroskopievondiversenschwerzugänglichenIsotopen in dieser Region der Nuklidkarte. Ferner wurden Xenon- und Bariumisotope mittels Fusionsver- dampfungsreaktionenamHORUS-AufbauanderUniversitätzuKölnspektroskopiert.DieHochspin- Termschemata von 132Xe, 133Xe, 134Xe, 135Xe und 137Ba wurden signifikant zu höheren Energien erweitert. Im Kern 135Xe wurde der Zustand bei 2058 keV als Isomer mit einer Halbwertszeit von 9.0(9)nsidentifiziert.DiesesErgebnisschließteineletzteverbliebeneLückeinderSystematikder IsotonenkettemitNeutronenzahlN =81undergibteindetaillierteresBildderIsotopenregion.Dieex- perimentellbestimmtenreduziertenÜbergangswahrscheinlichkeitenderisomerenZuständewerden mitVorhersagenvonSchalenmodellrechnungenkonfrontiert.EinweitererTeilderArbeitbehandelt doppelseitigsegmentierteSiliziumstreifen-Detektoren,welcheinderNiederenergie-Kernphysikhäufig zurDetektiongeladenerTeilcheneingesetztwerden.DieseDetektorenstellennichtnureineEnergie-, sondernaucheineOrtsinformationmithoherDetektorgranularitätzurVerfügung.Überkreuzende Flächenvonp-undn-dotiertenStreifenformenhierbeieinzelnePixel.BedingtdurchFabrikations- beschränkungen und Limitierungen der Ausleseelektronik kann die Leistungsfähigkeit einzelner Kanäle drastisch variieren. Weiterhin illuminieren geladene Teilchen die Detektoroberfläche nicht gleichmäßig.DieskannzuinhomogenenStrahlenschädenführen.PositionsabhängigeVerlustebeider LadungssammlungwerdenineinemIn-Beam-ExperimentsowieineinemdediziertenTestexperiment durchBestrahlungmiteinemradioaktivenPräparatuntersucht.IndiesemZusammenhangwurde eine neuartige positionsabhängige Kalibrierungsmethode entwickelt, die auf der wechselseitigen Abhängigkeit der Ladungssammlung in der jeweils p- und n-dotierten Detektorseite beruht. Diese KalibriermethodeerzielteinesignifikanteVerbesserungderEnergieauflösungundMessbefähigung vonstrahlengeschädigtenTeilendesDetektorsystems. iv | Contents 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1 NuclearreactionscloseandabovetheCoulombbarrier . . . . . . . . . . . . . . . . . 7 1.1.1 Theoryofmultinucleon-transferreactions . . . . . . . . . . . . . . . . . . . . 10 1.2 Nuclearstructurenorthwestof132Sn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.2.1 Reactionpathwaysforthestudyofhigh-spinstates . . . . . . . . . . . . . . 13 1.2.2 Isomericstatesnorthwestof132Sn . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.2.3 Existingexperimentaldatainthe50 Z,N 82region . . . . . . . . . . . 19 1.2.4 Shell-modelinteractionsforthedescr≤iptiono≤f50 Z,N 82nuclei . . . 21 1.3 Outlineofthisthesis . . . . . . . . . . . . . . . . . . . . . . . .≤. . . .≤. . . . . . . . . . . 25 2 Light and heavy transfer products in the 136Xe + 238U multinucleon transfer reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Addendum: SimulationofthePRISMAspectrometer. . . . . . . . . . . . . . . . . . . . . . . 41 3 Spectroscopy of the neutron-rich actinide nucleus 240U . . . . . . . . . . . . . . . . . . . 47 4 High-spin structure of 134Xe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5 Isomers and high-spin structures in the N =81 isotones 135Xe and 137Ba . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6 Characterization and calibration of radiation-damaged double-sided silicon strip detectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7 High-spin structures in 132Xe and 133Xe and evidence for isomers along the N =79 isotones . . . . . . . . . . . . . . . . . . . . . 105 8 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Curriculum vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Erklärung zur Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 v | Introduction 1.1 Nuclear reactions close and above the Coulomb barrier CollisionsbetweenheavyionscloseandabovetheCoulombbarrieryieldavastanddiversespectrum of reaction modes. Nuclear reactions can be classified by timescales, involved masses and kinetic energies,andbytheimpactparameterb. Simplifiedsketchesofthedifferentreactionmechanismswith varyingpenetrationenergyandimpactparameteraregiveninFig.1andinFig.2. ElasticRutherford scatteringandCoulombexcitationdominatefordistantcollisions,i.e.largeimpactparameters. Ifthe energiesofthecollidingnucleidonotreachtheCoulombbarrier,thetrajectoriesaremostlygoverned bytheelectromagneticinteractionandarecalculablewithahighprecision[1,2]. At low impact parameters, a di-nuclear system is formed as a basic transitional stage between the entrance channel and the formation of reaction products [4]. At this initial phase of the reaction, the two fragments are linked by a neck [5]. In a head-on collision scenario at energies above the Coulomb barrier, fusion-evaporation reactions take place. The projectile is incorporated into the targetnucleusandahotcompoundnucleus,inwhichalldegreesoffreedomarepopulated,isformed. This highly-excited system reaches thermodynamic equilibrium in timescales of t > 10 20 s and, − subsequently,within10 15s,itevaporatesnucleonsandhigh-energyγraysuntiltheexcitationenergy − issmallerthantheparticle-separationenergyabovetheyrastline[6]. Dependingonthenumberof emittedparticles,variousresidualnucleiarepopulatedwhichmayfurtherdecayviaγ-rayemission. Formationanddecayofthecompoundnucleusareindependent;theinitialidentitiesofprojectile and target are lost. The excitation energy depends on the initial kinetic energy and the Q value Inelastic scattering (Coulomb excitation) Deep-inelastic transfer & incomplete Fusion Complete fusion b Quasi-elastic scattering Elastic (Rutherford) scattering Figure 1: Reactionchannelsdependingontheimpactparameter. Inthetworegimesofmultinucleon transfer,quasi-elasticanddeep-inelastictransfer,beam-andtarget-likefragmentsretaina partialmemoryoftheinitialreactionchannel. Productioncrosssectionsaremaximized aroundareaction-specificgrazingangle. AdaptedfromRef.[3]. 7 n n Entrance channel γ γ γ γ γ γ n Spectator/participant Quasi-elastic Quasi-fission fragmentation γ Compound n thermalization γ Di-nuclear γ γ phase n n p γ γ n n γ n γ γ n γ Deep-inelastic γ n transfer γ p n Fusion Fusion-fission Fragmentation Vaporization evaporation Excitation energy 0-3 MeV/nucleon 3-10 MeV/nucleon >10 MeV/nucleon Figure 2: Regimesofnuclearreactionsbetweenheavyions. Quasi-elasticreactions,deep-inelastic transferandquasi-fissionprocesseshappenwithinsmalltimescalesintheearlystagesof thereaction,theso-calleddi-nuclearphase. Fusion-evaporationorfusion-fissionreactions requiretheformationofacompoundsystem. Seetextfordetails. forthecompoundformation. Ifthetransferredangularmomentumisaboveacertaincriticallimit givenbythemassofthecompoundnucleus,thecompoundsystemmightalsoundergofission. Tobe differentiatedfromthisstatisticalfissionistheso-calledquasi-fission(QF)process[7]whichoccurs intheearlydi-nuclearstageofthecollisioninnon-equilibriumbeforeformingacompoundnucleus: a nucleon transfer occurs from the heavy fragment toward the lighter one and the two fragments re-separatewithagreatermasssymmetrythanintheinitialentrancechannel. Between the two extremes of elastic scattering and fully-damped collisions leading to compound nuclei,thereisawealthofpartially-dampedinelasticcollisionsatintermediateimpactparametersthat areoftenreferredtoasmultinucleon-transferreactions[8]. Tworegimes,nonethelesstransitional innature[9–12],canbedistinguished: (i)quasi-elasticprocessesincludinginelasticscatteringand thetransferoffewnucleons,accompaniedbysmallenergylossesand(ii)deep-inelasticreactions withsmallerimpactparametersenablinglarger-scalenucleonflowbetweenthefragments. Latteris characterizedbyhighvaluesoftotalkineticenergyloss. Generally,essentialfeaturesarethetransfer of nucleons (from simple one-step transfers to complicated multistep reactions) and the partial conversionofkineticenergyoftheprojectileintointernalexcitationenergyofthereactionresidues. 8 The collisions keep the binary character of the system and the ejectiles retain some resemblance with the initial nuclei. Therefore, the reaction products are often called beam- and target-like fragments. Thereisafastredistributionandrearrangementofnucleonsamongthecollidingnuclei (N/Z equilibration),governedbystrongdrivingforcesassociatedwithsurfacemodes,single-particle degreesoffreedomandtunnelingprobabilitiesinthedi-nuclearcomplex. Thereactionstakeplace withinapprox.10 22 s[6],similartotransferreactionsutilizingverylightions. − Sincemultinucleon-transferreactionsareperipheralcollisions,therelative-motionangularmomentum is dissipated into intrinsic spin of the reaction partners, although not as efficiently as in fusion- evaporation reactions. Experimentally, a precise knowledge of the grazing angle θ is crucial grazing sinceitisthescatteringangleatwhichthebinaryreactioncrosssectionismaximized,ratherthanthe onesofinelasticCoulomborelasticinteractions. Thus,toproperlymeasurethehighestproduction yieldsofreactionproducts,thesolid-angleofamassspectrometermeasuringeitherofthereaction partnersshouldcoverarangearoundthatspecificangle. θ isapproximatedasthescattering grazing angle that corresponds to the impact parameter when the two nuclei are just touching each other. There,thedistance d isthesumoftheradiiofthenucleiparticipatinginthereaction: d =(cid:18) ZtZpe2 (cid:19)(cid:18)1+cscθgrazing(cid:19) 1.2(cid:128)A1/3+A1/3(cid:138) [fm] (1.1) 4πε E 2 t p 0 kin ≈ Z e and Z e correspondtothenuclearchargesoftheprojectileandthetarget,A andA aretheir p t p t respective masses. E is the kinetic energy of the impinging beam. The angular distributions kin of the reaction products are bell-shaped around the grazing angle [14, 15]. The evaporation of lightparticlesfromtheprimaryfragments,especiallyneutrons,stronglyinfluencesthefinalisotopic yield distribution [8]. Figure 3 displays a typical production yield distribtion of the 40Ca+208Pb multinucleon-transfer reaction at E = 235 MeV. Pure proton stripping and neutron pickup are lab ) s el n n a h c ( Z M (channels) Figure 3: Distribution of mass and nuclear charge for the beam-like products of the 40Ca+208Pb reactionatabeamenergyof235MeV.Thedashedlineslabelpureprotonstrippingand neutronpickup. Thesolidlinedepictsthe N/Z chargeequilibration. Reprintedfigurewith permissionfromRef.[13]. CopyrightbytheAmericanPhysicalSociety. 9 labeledbydashedlines;thesolidlinedepictstheconfinementimposedby N/Z chargeequilibration as well as by the optimum Q-value of the reaction. In this case, massive transfer of protons is accompaniedbyadrifttowardslowermasses,illustratingtheroleofparticle(inthiscaseneutron) evaporation. Thus,aspecificreactionproductmaybeaccompaniedbyseveralbinarypartners. Inthe caseofreactionsystemsinvolvingheaviernuclei,especiallyactinidetargets,thepresenceoffission maycontaminatethegenuinetransferchannels[16]. For beam energies of 30 MeV/nucleon and above, so-called intermediate to relativistic energies, nuclearfragmentationisfavored,populatingalargerangeofexoticnuclei. Theseviolentcollisions can be described by the abrasion-ablation model in which the incoming projectile shears off the overlappingsectorofthetargetnucleus(abrasion). Thenon-overlappingpartsremainundisturbedin thecollisionandareoftencalledspectators. Thehighly-excited,hotfragmentoftheoverlapregion (participant)decaysviatheemissionofnucleonsorfurtherfragments;thespectatorexcesssurface energyafterthesuddenabrasionistransformedintoexcitationenergy[17]. Beam-likefragments carry on with a velocity similar to that of the initial beam. Projectile fragmentation is of interest in the production of radioactive ion beams employing large fragment separators [18] at in-flight fragmentationfacilitieslikeRIKEN,Japan[19],atthefuturefacilityFAIRinDarmstadt,Germany[20] oratitsU.S.counterpartFRIB.Highercenter-of-massenergiesleadtoevenmoreviolentreactions suchasvaporization,leavingtheareaoflow-energynuclear-structurephysics. 1.1.1 Theory of multinucleon-transfer reactions The transfer of several nucleons between beam and target isotopes is a non-equilibrium quantum transport phenomenon which is not trivially computable. Several models aim for a description of partially-damped reactions in both the quasi-elastic and deep-inelastic regimes. Models with a reasonablepredictivepowershouldespeciallybeabletopredicthowthetotalreactioncrosssection is shared among the different reaction channels. Multinucleon-transfer reactions have also been extensively analyzed by direct-reaction theories such as GRAZING and complex Wentzel-Kramers- Brillouin(CWKB)theory[21]. Inthesetheories,therelativemotionofthereactionpartnersistreated inasemi-classicalapproximation. The GRAZING model,basedontheframeworkofdirectreaction theory,isabletocomputetotalreactioncrosssections,angulardistributions,excitationfunctions,and isotopicdistributionsforbothpre-andpost-neutronevaporation. Thefundamentalsofthismodel arebrieflydiscussedinthefollowingsection. Severalmodelshavebeenproposedforthedescriptionofdeep-inelasticheavy-ioncollisions,such as Fokker-Planck [22] equations, the so-called master equations [23], or the improved quantum moleculardynamics(ImQMD)model[24]. Asuccessfuldescriptionofmasstransferinmultinucleon transferwasachievedwithinthetime-dependentHartree-Fock(TDHF)theory. Thismean-fieldtheory offersamicroscopicframeworkyieldingafulldescriptionofnotonlytransfer,butallstagesinthe evolutionofanuclearcollision. RecentdevelopmentswerepursuedbySekizawaandYabana[25, 26] employing the particle-number projection method [27, 28] for various reaction systems like 40Ca+208Pb, 58Ni+208Pb, 40,48Ca+124Sn, or 136Xe+198Pt. The colliding nuclei are treated as compositesystemsofindividualneutronsandprotonsintheirrespectiveorbitals. Calculationsare 10

Description:
reactions are a gateway to nuclei in the vicinity of the Z = 50 and N = 82 shell closures. Nuclei in this region serve as a benchmark for nuclear shell-model calculations based on modern effective interactions 11Department of Physics and Astronomy, Uppsala University, SE-75121 Uppsala, Sweden.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.