ebook img

Multimodal AI in Healthcare. A Paradigm Shift in Health Intelligence PDF

417 Pages·2023·9.015 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multimodal AI in Healthcare. A Paradigm Shift in Health Intelligence

Studies in Computational Intelligence 1060 Arash Shaban-Nejad Martin Michalowski Simone Bianco   Editors Multimodal AI in Healthcare A Paradigm Shift in Health Intelligence Studies in Computational Intelligence Volume 1060 SeriesEditor JanuszKacprzyk,PolishAcademyofSciences,Warsaw,Poland The series “Studies in Computational Intelligence” (SCI) publishes new developments and advances in the various areas of computational intelligence—quickly and with a high quality. The intent is to cover the theory, applications, and design methods of computational intelligence, as embedded in the fields of engineering, computer science, physics and life sciences, as well as themethodologiesbehindthem.Theseriescontainsmonographs,lecturenotesand editedvolumesincomputationalintelligencespanningtheareasofneuralnetworks, connectionist systems, genetic algorithms, evolutionary computation, artificial intelligence, cellular automata, self-organizing systems, soft computing, fuzzy systems,andhybridintelligentsystems.Ofparticularvaluetoboththecontributors and the readership are the short publication timeframe and the world-wide distribution,whichenablebothwideandrapiddisseminationofresearchoutput. This series also publishes Open Access books. A recent example is the book Swan,Nivel,Kant,Hedges,Atkinson,Steunebrink:TheRoadtoGeneralIntelligence https://link.springer.com/book/10.1007/978-3-031-08020-3 IndexedbySCOPUS,DBLP,WTIFrankfurteG,zbMATH,SCImago. AllbookspublishedintheseriesaresubmittedforconsiderationinWebofScience. · · Arash Shaban-Nejad Martin Michalowski Simone Bianco Editors Multimodal AI in Healthcare A Paradigm Shift in Health Intelligence Editors ArashShaban-Nejad MartinMichalowski Oak-RidgeNationalLaboratory(ORNL) SchoolofNursing CenterforBiomedicalInformatics UniversityofMinnesota TheUniversityofTennesseeHealth Minneapolis,MN,USA ScienceCenter(UTHSC) Memphis,TN,USA SimoneBianco ResearchCenter IBMAlmaden SanJose,CA,USA ISSN 1860-949X ISSN 1860-9503 (electronic) StudiesinComputationalIntelligence ISBN 978-3-031-14770-8 ISBN 978-3-031-14771-5 (eBook) https://doi.org/10.1007/978-3-031-14771-5 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SwitzerlandAG2023 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Multimodal Artificial Intelligence is a relatively new concept in high performance computational sciences that aims at integrating multiple data streams in different formats(e.g.,text,image,video,audio,andnumericaldata)toimprovetheaccuracy ofinformationextractionandinference,reducebias,andgenerateanoverallbetter representationofthephysical,medical,orsocietalprocessesdescribedbythedata. IncorporatingmultimodalAItoprocessmultidimensionalandmultimodaldatasets inmissioncriticaldomainssuchashealthandmedicinecanadvancehealthanalytics, improve case finding/prediction, diagnosis, risk stratification, referrals, and follow upanddecision-makingbyhealthprofessionalsandpolicymakers. ThisbookaimstohighlightthelatestachievementsintheuseofAIandmultimodal artificial intelligence in biomedicine and healthcare. The edited volume contains selectedpaperspresentedatthe2022HealthIntelligenceworkshopandtheassociated DataHackathon/Challenge,co-locatedwiththe36thAssociationfortheAdvance- mentofArtificialIntelligence(AAAI)conference,andpresentsanoverviewofthe issues,challenges,andpotentialsinthefield,alongwithnewresearchresults.This book provides information for researchers, students, industry professionals, clini- cians,andpublichealthagenciesinterestedintheapplicationsofAIinpublichealth andmedicine. Memphis,USA ArashShaban-Nejad Minneapolis,USA MartinMichalowski SanJose,USA SimoneBianco v Contents Multimodal Artificial Intelligence: Next Wave of Innovation inHealthcareandMedicine ........................................ 1 ArashShaban-Nejad,MartinMichalowski,andSimoneBianco Unsupervised Numerical Reasoning to Extract Phenotypes fromClinicalTextbyLeveragingExternalKnowledge ................ 11 AshwaniTanwar,JingqingZhang,JuliaIve,VibhorGupta,andYikeGuo Domain-specific Language Pre-training for Dialogue ComprehensiononClinicalInquiry-AnsweringConversations ......... 29 ZhengyuanLiu,PavitraKrishnaswamy,andNancyF.Chen ClinicalDialogueTranscriptionErrorCorrectionUsingSeq2Seq Models ........................................................... 41 GayaniNanayakkara,NirmalieWiratunga,DavidCorsar,KyleMartin, andAnjanaWijekoon CustomizedTrainingofPretrainedLanguageModelstoDetect PostIntentsinOnlineHealthSupportGroups ....................... 59 TootiyaGiyahchi,SameerSingh,IanHarris,andCorneliaPechmann EXPECT-NLP: An Integrated Pipeline and User Interface forExploringPatientPreferencesDirectlyfromPatient-Generated Text .............................................................. 77 DavidJohnson, NickDragojlovic, NicolaKopac, YifuChen, MarilynLenzen,SarahLeHuray,SamanthaPollard,DeanRegier, MarkHarrison, AmyGeorge, GiuseppeCarenini, RaymondNg, andLarryLynd MedicationErrorDetectionUsingContextualLanguageModels ....... 91 YuJiangandChristianPoellabauer vii viii Contents LatentRepresentationWeightsLearningoftheIndefiniteLength ofViewsforConceptionDiagnosis .................................. 101 BoLi,MengzeSun,YuanYu,YuanyuanZhao,ZhongliangXiang, andZhiyongAn PhenotypingwithPositiveUnlabelledLearningforGenome-Wide AssociationStudies ................................................ 117 AndreVauvelle,HamishTomlinson,AaronSim,andSpirosDenaxas Out-of-Distribution Detection for Medical Applications: GuidelinesforPracticalEvaluation ................................. 137 KarinaZadorozhny,PatrickThoral,PaulElbers,andGiovanniCinà ARobustSystemtoDetectandExplainPublicMaskWearing Behavior .......................................................... 155 AkshayGuptaandBiplavSrivastava AFederatedCoxModelwithNon-proportionalHazards .............. 171 D.KaiZhang,FrancescaToni,andMatthewWilliams AStepTowardsAutomatedFunctionalAssessmentofActivities ofDailyLiving .................................................... 187 BappadityaDebnath, MaryO’brien, SwagatKumar, andArdhenduBehera TheInterpretationofDeepLearningBasedAnalysisofMedical Images—An Examination of Methodological and Practical ChallengesUsingChestX-rayData ................................. 203 SteinarValssonandOgnjenArandjelovic´ Predicting Drug Functions from Adverse Drug Reactions byMulti-labelDeepNeuralNetwork ................................ 215 PranabDasandDilwarHussainMazumder PatternDiscoveryinPhysiologicalDatawithBytePairEncoding ...... 227 NazgolTavabiandKristinaLerman PredictingICUAdmissionsforHospitalizedCOVID-19Patients withaFactorGraph-basedModel ................................... 245 YuruiCao, PhuongCao, HaotianChen, KarlM.Kochendorfer, AndrewB.Trotter, WilliamL.Galanter, PaulM.Arnold, andRavishankarK.Iyer SemanticNetworkAnalysisofCOVID-19VaccineRelatedText fromReddit ....................................................... 257 ChadA.Melton,JintaeBae,OlufuntoA.Olusanya,JonHaelBrenas, EunKyongShin,andArashShaban-Nejad Contents ix TowardsProvidingClinicalInsightsonLongCovidfromTwitter Data .............................................................. 267 RohanBhambhoria,JadSaab,SaraUppal,XinLi,ArturYakimovich, JunaidBhatti, NirmaKhatriValdamudi, DianaMoyano, MichaelBales,ElhamDolatabadi,andSedefAkinliKocak PredictingInfectionsintheCovid-19Pandemic—LessonsLearned ..... 279 SharareZehtabian, SiavashKhodadadeh, DamlaTurgut, andLadislauBölöni ImprovingRadiologyReportGenerationwithAdaptiveAttention ..... 293 LinWangandJieChen InstantaneousPhysiologicalEstimationUsingVideoTransformers ..... 307 AmbareeshRevanur, AnanyanandaDasari, ConradS.Tucker, andLászlóA.Jeni Automated Vision-Based Wellness Analysis for Elderly Care Centers ........................................................... 321 XijieHuang,JeffryWicaksana,ShichaoLi,andKwang-TingCheng Efficient Extraction of Pathologies from C-Spine Radiology ReportsUsingMulti-taskLearning ................................. 335 ArijitSehanobish, NathanielBrown, IshitaDaga, JayashriPawar, DanielleTorres, AnasuyaDas, MurrayBecker, RichardHerzog, BenjaminOdry,andRonVianu Benchmarking Uncertainty Quantification on Biosignal ClassificationTasksUnderDatasetShift ............................. 347 TongXia,JingHan,andCeciliaMascolo MiningAdverseDrugReactionsfromUnstructuredMediums atScale ........................................................... 361 HashamUlHaq,VeyselKocaman,andDavidTalby AGraph-basedImputationMethodforSparseMedicalRecords ....... 377 RamonViñas,XuZheng,andJerHayes UsingNursingNotestoPredictLengthofStayinICUforCritically IllPatients ........................................................ 387 SudeshnaJana,TirthankarDasgupta,andLipikaDey AutomaticClassificationofDementiaUsingTextandSpeechData ..... 399 HeeJeongHan,SuhasB.N.,LingQiu,andSaeedAbdullah UnifiedTensorNetworkforMultimodalDementiaDetection .......... 409 TruongHoang,Thuy-TrinhNguyen,andHoangD.Nguyen Contributors AbdullahSaeed College of Information Sciences and Technology, Pennsylvania StateUniversity,UniversityPark,PA,USA AnZhiyong SchoolofComputerScienceandTechnology,ShandongTechnology andBusinessUniversity,Yantai,PR,China; School of Statistics, Shandong Technology and Business University, Yantai, PR, China Arandjelovic´ Ognjen UniversityofStAndrews,StAndrews,Scotland,UK ArnoldPaulM. CarleFoundationHospital,Urbana,IL,USA B.N.Suhas CollegeofInformationSciencesandTechnology,PennsylvaniaState University,UniversityPark,PA,USA BaeJintae KoreaUniversity,Seoul,SouthKorea BalesMichael Hoffmann-LaRocheLtd.,Mississauga,ON,Canada BeckerMurray CoveraHealth,NYC,NewYork,USA BeheraArdhendu EdgeHillUniversity,Ormskirk,UK BhambhoriaRohan Queen’sUniversity,Kingston,ON,Canada BhattiJunaid Manulife,Toronto,ON,Canada BiancoSimone Altos Labs—Bay Area Institute of Science, BAI Computational InnovationHub,RedwoodCity,CA,USA BrenasJonHael SangerInstitute,Cambridge,UK BrownNathaniel CoveraHealth,NYC,NewYork,USA BölöniLadislau DepartmentofComputerScience,UniversityofCentralFlorida, Orlando,FL,USA CaoPhuong UniversityofIllinoisUrbana-Champaign,Champaign,IL,USA xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.