ebook img

Multilinear operator integrals: theory and applications PDF

200 Pages·2019·1.115 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multilinear operator integrals: theory and applications

Lecture Notes in Mathematics 2250 Anna Skripka Anna Tomskova Multilinear Operator Integrals Theory and Applications Lecture Notes in Mathematics 2250 Editors-in-Chief: Jean-MichelMorel,Cachan BernardTeissier,Paris AdvisoryEditors: KarinBaur,Leeds MichelBrion,Grenoble CamilloDeLellis,Princeton AlessioFigalli,Zurich AnnetteHuber,Freiburg DavarKhoshnevisan,SaltLakeCity IoannisKontoyiannis,Cambridge AngelaKunoth,Cologne ArianeMézard,Paris MarkPodolskij,Aarhus SylviaSerfaty,NewYork GabrieleVezzosi,Florence AnnaWienhard,Heidelberg Moreinformationaboutthisseriesathttp://www.springer.com/series/304 Anna Skripka (cid:129) Anna Tomskova Multilinear Operator Integrals Theory and Applications 123 AnnaSkripka AnnaTomskova DepartmentofMathematicsandStatistics SchoolofComputerScienceand UniversityofNewMexico Engineering Albuquerque,NM,USA InhaUniversityinTashkent Tashkent,Uzbekistan ISSN0075-8434 ISSN1617-9692 (electronic) LectureNotesinMathematics ISBN978-3-030-32405-6 ISBN978-3-030-32406-3 (eBook) https://doi.org/10.1007/978-3-030-32406-3 Mathematics Subject Classification (2010): Primary: 46L51, 47B49, 47A60, 47A63, 47B10, 47C15, 47A55,15A60;Secondary:46N50,58J30,46L87,46G12,46H10,47L25,26A16 ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface A multilinear operator integral is a powerful tool in noncommutative analysis and its applications. Theory underlying multilinear operator integration has been developing since the 1950s, with a number of amazing advancements made in recentyears.Thefieldhasaccumulatedmanydeeptheoreticalresultsandimportant applications, but no book on this beautiful and important subject appeared in the literature. This book provides a brief yet comprehensive treatment of multilinear operator integral techniques and their applications, partially filling the gap in the literature.Theexpositionisstructuredtobesuitableforbothatopicscourseanda researchaidonmethods,results,andapplicationsofmultilinearoperatorintegrals. We survey on earlier ideas and contributions to the field and then present in greaterdetailthebestup-to-dateresultsandmodernmethods.Thecontentincludes mostpractical,refinedconstructionsofmultipleoperatorintegralsandfundamental technicalresultsalongwithmajorapplicationsofthistooltosmoothnessproperties of operator functions (Lipschitz continuity, Hölder continuity, differentiability), approximation of operator functions, spectral shift functions, spectral flow in the settingofnoncommutativegeometry,quantumdifferentiability,anddifferentiability ofnoncommutativeLp norms.Wedemonstrateideasandincludeproofsinsimpler cases, while highly technical proofs are outlined and supplemented with a list of references.Wealsostateselectedopenproblemsinthefield. Albuquerque,NM,USA AnnaSkripka Tashkent,Uzbekistan AnnaTomskova September2019 v Acknowledgements TheauthorsthankFedorSukochevforinspirationtowriteanoverviewofmultilin- earoperatorintegration,whichhasultimatelygrownintothisbook.Theauthorsare also gratefulto the three refereesfortheir valuablecommentsandsuggestions.In particular,Theorems5.1.12and5.1.13,Sects.5.1.6and5.3.7,andtheexampleafter Theorem3.3.11weresuggestedbythereferees. ResearchofthefirstauthorwassupportedinpartbyNSFgrantDMS-1554456. vii Contents 1 Introduction .................................................................. 1 2 NotationsandPreliminaries................................................ 7 2.1 SpacesofFunctions ................................................... 7 2.2 DividedDifferences ................................................... 10 2.3 LinearOperators....................................................... 11 2.4 Schatten-vonNeumannClasses....................................... 12 2.5 ProductofSpectralMeasures......................................... 15 2.6 ClassicalNoncommutativeLp-SpacesandWeakLp-Spaces....... 18 2.7 TheHaagerupLp-Space .............................................. 22 2.8 SymmetricallyNormedIdeals ........................................ 24 2.9 TracesonL1,∞(M,τ) ................................................ 26 2.10 BanachSpacesandSpectralOperators............................... 29 2.11 DifferentiabilityofMapsonBanachSpaces......................... 32 3 DoubleOperatorIntegrals.................................................. 35 3.1 DoubleOperatorIntegralsonFiniteMatrices........................ 35 3.1.1 Definition...................................................... 36 3.1.2 RelationtoFinite-DimensionalSchurMultipliers........... 36 3.1.3 PropertiesofFiniteDimensionalDoubleOperator Integrals........................................................ 37 3.2 DoubleOperatorIntegralsonS2 ..................................... 41 3.2.1 Definition...................................................... 41 3.2.2 RelationtoSchurMultipliersonS2.......................... 43 3.2.3 BasicPropertiesofDoubleOperatorIntegralsonS2 ....... 44 3.3 DoubleOperatorIntegralsonSchattenClassesandB(H).......... 45 3.3.1 Daletskii-Krein’sApproach................................... 45 3.3.2 ExtensionfromtheDoubleOperatorIntegralonS2 ........ 46 3.3.3 ApproachviaSeparationofVariables........................ 47 3.3.4 ApproachWithoutSeparationofVariables .................. 50 3.3.5 PropertiesofDoubleOperatorIntegralsonSp andB(H)...................................................... 51 ix x Contents 3.3.6 SymbolsofBoundedDoubleOperatorIntegrals ............ 54 3.3.7 TransferencePrinciple ........................................ 58 3.4 Nonself-adjointCase .................................................. 60 3.5 DoubleOperatorIntegralsonNoncommutativeLp-Spaces......... 60 3.5.1 ExtensionfromtheDoubleOperatorIntegral onL2(M,τ)................................................... 61 3.5.2 ApproachviaSeparationofVariables........................ 61 3.5.3 ApproachWithoutSeparationofVariables .................. 61 3.5.4 PropertiesofDoubleOperatorIntegralsonLp(M,τ)...... 62 3.6 DoubleOperatorIntegralsonBanachSpaces........................ 63 4 MultipleOperatorIntegrals................................................ 65 4.1 MultipleOperatorIntegralsonFiniteMatrices ...................... 65 4.1.1 Definition...................................................... 65 4.1.2 RelationtoMultilinearSchurMultipliers.................... 66 4.1.3 PropertiesofFiniteDimensionalMultipleOperator Integrals........................................................ 67 4.1.4 EstimatesofMultipleOperatorIntegralsviaDouble OperatorIntegrals............................................. 74 4.2 MultipleOperatorIntegralsonS2 .................................... 74 4.2.1 Pavlov’sApproach ............................................ 74 4.2.2 Coine-LeMerdy-Sukochev’sApproach...................... 75 4.3 MultipleOperatorIntegralsonSchattenClassesandB(H)......... 77 4.3.1 ApproachviaSeparationofVariables........................ 77 4.3.2 ApproachWithoutSeparationofVariables .................. 79 4.3.3 PropertiesofMultipleOperatorIntegralsonSp andB(H)...................................................... 81 4.3.4 Nonself-adjointCase.......................................... 93 4.3.5 ChangeofVariables........................................... 99 4.4 MultipleOperatorIntegralsonNoncommutativeandWeak Lp-Spaces.............................................................. 100 4.4.1 ApproachviaSeparationofVariables........................ 100 4.4.2 ApproachWithoutSeparationofVariables .................. 100 4.4.3 PropertiesofMultipleOperatorIntegrals onLp,∞(M,τ)................................................ 101 5 Applications .................................................................. 113 5.1 OperatorLipschitzFunctions ......................................... 113 5.1.1 CommutatorandLipschitzEstimatesinS2.................. 114 5.1.2 CommutatorandLipschitzEstimatesinSp andB(H) ..... 115 5.1.3 CommutatorandLipschitzEstimates:Nonself-adjoint Case............................................................ 119 5.1.4 LipschitzTypeEstimatesinNoncommutative Lp-Spaces ..................................................... 121 5.1.5 LipschitzTypeEstimatesinBanachSpaces ................. 122 5.1.6 OperatorI-LipschitzFunctions .............................. 123 Contents xi 5.2 OperatorHölderFunctions............................................ 128 5.3 DifferentiationofOperatorFunctions................................ 129 5.3.1 DifferentiationofMatrixFunctions.......................... 129 5.3.2 DifferentiationinB(H)AlongMultiplicativePaths ofUnitaries .................................................... 132 5.3.3 DifferentiationinB(H)andS1 AlongLinearPaths ofSelf-adjoints ................................................ 135 5.3.4 DifferentiationinSp AlongLinearPaths ofSelf-adjoints ................................................ 137 5.3.5 Differentiationof Functionsof Contractiveand DissipativeOperators ......................................... 140 5.3.6 DifferentiationinNoncommutativeLp-Spaces.............. 141 5.3.7 GâteauxandFréchetI-DifferentiableFunctions............ 142 5.4 TaylorApproximationofOperatorFunctions........................ 145 5.4.1 TaylorRemaindersofMatrixFunctions ..................... 145 5.4.2 TaylorRemaindersforPerturbationsinSp andB(H)...... 149 5.4.3 TaylorRemaindersforUnsummablePerturbations ......... 153 5.5 SpectralShift........................................................... 154 5.5.1 SpectralShiftFunctionforSelf-adjointOperators .......... 155 5.5.2 SpectralShiftFunctionforNonself-adjointOperators...... 162 5.5.3 SpectralShiftMeasureintheSettingofvonNeumann Algebras ....................................................... 165 5.6 SpectralFlow .......................................................... 166 5.7 QuantumDifferentiability............................................. 170 5.8 DifferentiationofNoncommutativeLp-Norms...................... 172 References......................................................................... 179 Index............................................................................... 189

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.