ebook img

Multigrid methods for Hdiv-conforming discontinuous Galerkin methods for the Stokes equations PDF

0.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multigrid methods for Hdiv-conforming discontinuous Galerkin methods for the Stokes equations

Multigrid methods for Hdiv-conforming 5 discontinuous Galerkin methods for the Stokes 1 0 2 equations n a J G. Kanschat∗ Y. Mao† 4 2 March 17,2014 ] A N Abstract . h AmultigridmethodfortheStokessystemdiscretizedwithanHdiv-conforming t discontinuousGalerkinmethodispresented. Itactsonthecombinedvelocityand a m pressurespacesandthusdoesnotneedaSchurcomplementapproximation. The smoothers used are of overlapping Schwarz type and employ a local Helmholtz [ decomposition.Additionally,weusethefactthatthediscretizationprovidesnested 1 divergence free subspaces. We present the convergence analysis and numerical v evidence that convergence rates arenot only independent of mesh size, but also 1 reasonablysmall. 2 0 6 1 Introduction 0 1. TheefficientsolutionoftheStokesequationsisanimportantstepinthedevelop- 0 mentoffastflowsolvers. Inthispaperwepresentanalysisandnumericalresults 5 for amultigridmethod withsubspace correctionsmoother, whichperformsvery 1 efficientlyondivergence-conformingdiscretizationswithinteriorpenalty. Weob- : tainconvergenceratesfortheStokesproblemwhicharecomparabletothosefor v theLaplacian. i X Multigrid methods are known to be the most efficient preconditioners and r solversfordiffusionproblems. Nevertheless,forStokesequations,thedivergence a constraint makesthesolutionprocessmorecomplicated. Atypicalsolutionem- ploystheuseofblockpreconditioners,e.g.[13,22,27,28],buttheirdisadvantage is,thattheirperformanceislimitedbytheinf-supconstantoftheproblem. This could be avoided, if the multigrid method operated on the divergence free sub- spacedirectly, andthuswouldnothavetodealwiththesaddlepoint problemat all. Suchmethodshavebeendevelopedindifferentcontextandhaveprovenvery successfulasreportedforinstancebyHiptmair[18]forMaxwellequationsandby Scho¨berl[33]forincompressibleelasticitywithreducedintegration. ∗[email protected], Interdisziplina¨res Zentrum fu¨r Wissenschaftliches Rechnen (IWR),Universita¨tHeidelberg,ImNeuenheimerFeld368,69120Heidelberg,Germany †[email protected],DepartmentofMathematics,TexasA&MUniversity,3368TAMU,College Station,TX77843,USA 1 The main ingredients into such a method are a smoother which operates on thedivergencefreesubspaceandagridtransferoperatorfromcoarsetofinemesh which maps the coarse divergence free subspace into the fine one. The second objectivecanbeachievedbyusingamixedfiniteelementdiscretizationforwhich theweakly divergence freefunctions arepoint-wisedivergence free. For sucha discretization, thenatural finiteelement embedding operator fromcoarse tofine meshdoesnotincreasethedivergenceofafunction. Discretizationsofthistype areavailable,suchasforinstanceinScottandVogelius[36,39],Neilanandcoau- thors[14,16]andZhang[41,42].Here,wefocusonthedivergenceconformingdis- continuousGalerkin(DivDG)methodofCockburn,Kanschat,andScho¨tzau[11] duetoitssimplicity. FollowingtheapproachbyScho¨berl[33],inordertostudysmoothersforthe Stokes equations, we first consider a problem on the velocity space only with penaltyforthedivergence. Thisleadstoasingularlyperturbedproblemwithan operatorwithalargekernel.Whenitcomestosmoothersforsuchoperators,there aretwobasicoptions. Oneapproach istosmooththekernel spaceexplicitly, as proposedforinstancebyHiptmair[18]andXuin[19].Theotheroptionwaspre- sentedbyArnold,Falk,andWintherin[2,3]andsmoothensthekernelimplicitly, whileneveremployinganexplicitdescriptionofit. Wefollowtheimplicitapproachandusethesamedomaindecompositionprin- ciple (i.e additive and multiplicative Schwarz methods and vertex patches), but insteadoftheMaxwellordivergencedominatedmassmatrixasin[2,3]applyitto theDivDGStokesdiscretization.Then,weprovetheconvergenceofthemultigrid methodwithvariableV-cyclealgorithmforthesingularlyperturbedproblem.The second pillar we rest on is the equivalence between singularly perturbed, diver- gence dominated ellipticforms and mixed formulations established by Scho¨berl in[32,33]. Thisequivalenceallowsustoapplythesmoothertoamixedformula- tion of nearly incompressible elasticity and then to proceed to the Stokes limit. As far as we know, the combination of these techniques has not been applied the DivDG method in [11]. Since our analysis is based on domain decompo- sition, fundamental results are also drawn from the seminal paper by Feng and Karakashian [15]ondomain decomposition for discontinuous Galerkinmethods forellipticproblems. There is a close relation between our technique and the smoother suggested byVankain[38]fortheMACscheme: theMACschemecanbeconsideredthe lowest order case of the DivDG methods (see [23]). In this case, the subspace decomposition structure of Vanka smoother corresponds to Neumann problems on cells, while our smoother is based on Dirichlet problems for vertex patches. GeneralizationsoftheVankasmootherhavebeenappliedsuccessfullytodifferent other discretizations albeit their velocity-pressure spaces are not matched in the senseof(2)(seeforinstance[37,40]andliteraturecitedthere). Recently, analternativepreconditioning methodfor Stokesdiscretizationsof the same type as here has been introduced in [5] by Ayuso et al. Their method is based on auxiliary spaces introduced by Hiptmair and Xu in [19]. The exact sequencepropertyofthedivergence-conforming velocityelementplaysacrucial role as in our scheme, but their preconditioner uses a multigrid method for the biharmonic problem to solve the Stokes problem. As a consequence, it is not possible tousethepreconditioning method forno-slipboundary conditions. On theotherhand,ithasbeendemonstratedin[26]thatthemultigridmethodherecan be lifted to the biharmonic problem, providing an efficient method for clamped 2 boundaryconditions. The paper isorganized as follows. InSection2 wepresent the model prob- lemandtheDGdiscretization. Themultigridmethodanddomaindecomposition smootherarederivedinSection3.Section4isdevotedtotheconvergenceanalysis ofourpreconditioningtechniquewiththemanresultinTheorem1onpage9.The paperconcludeswithnumericalexperimentsinSection5. 2 The Stokes problem and its discretization WeconsiderdiscretizationsoftheStokesequations u + p = f in Ω, −△ ∇ u = 0 in Ω, (1) ∇· u = uB on ∂Ω, with no-slip boundary conditions on a bounded and convex domain Ω Rd ⊂ withdimensiond = 2,3. ThenaturalsolutionspacesforthisproblemareV = H1(Ω;Rd)forthevelocityuandthespaceofmeanvaluefreesquareintegrable 0 functionsQ = L2(Ω)forthepressurep,although wepoint outthatotherwell- 0 posedboundaryconditionsdonotposeaproblem. In order to obtain a finite element discretization, we partition the domain Ω intoahierarchyofmeshes T ofparallelogramandparallelepipedcells ℓ ℓ=0,...,L { } intwoandthreedimensions,respectively.Inviewofmultilevelmethods,theindex ℓreferstothemeshleveldefinedasfollows: letacoarsemeshT begiven. The 0 meshhierarchyisdefinedrecursively,suchthatthecellsofT areobtainedby ℓ+1 splittingeachcellofT into2dcongruentchildren(refinement).Thesemeshesare ℓ nestedinthesensethateverycellofT isequaltotheunionofitsfourchildren. ℓ Wedefinethemeshsizeh asthemaximumofthediametersofthecellsofT . ℓ ℓ Duetotherefinementprocess,wehaveh =2−ℓh . ℓ 0 Byconstruction, thesemeshesareconforminginthesensethateveryfaceof acelliseitherattheboundaryorawholefaceofanothercell;nevertheless,local refinementandhangingnodesdonotposeaparticularproblem,sincetheycanbe treatedfollowing[20,21]. ByF wedenotetheset of allfacesof themeshT , ℓ ℓ whichiscomposedofthesetofinteriorfacesFi andthesetofallboundaryfaces ℓ F∂. ℓ WeintroduceashorthandnotationforintegralformsonT andonF by ℓ ℓ (φ,ψ) = φ ψdx, φ,ψ = φ ψds, Tℓ TX∈TℓZT ⊙ (cid:10) (cid:11)Fℓ FX∈FℓZF ⊙ 1 1 2 2 φ = φ2dx , φ = φ2ds , (cid:13) (cid:13)Tℓ (cid:18)TX∈TℓZT| | (cid:19) (cid:13) (cid:13)Fℓ (cid:18)FX∈FℓZF | | (cid:19) (cid:13) (cid:13) (cid:13) (cid:13) Thepoint-wisemultiplicationoperatorφ ψreferstotheproductφψ,thescalar ⊙ productφ ψandthedoublecontractionφ :ψforscalar,vectorandtensorargu- · ments,respectively.Themodulus φ =√φ φisdefinedaccordingly. Inordertodiscretize(1)onthe| m|eshT ,⊙wechoosediscretesubspacesX = ℓ ℓ V Q ,whereQ Q.Following[11],weemploydiscretesubspacesV ofthe ℓ ℓ ℓ ℓ × ⊂ 3 spaceHdiv(Ω),where 0 Hdiv(Ω)= v L2(Ω;Rd) v L2(Ω) , ∈ ∇· ∈ H0div(Ω)=(cid:8)v∈Hdiv(Ω) v·(cid:12)(cid:12)n=0 on∂Ω(cid:9). Here, we choose the well-kn(cid:8)own Raviart–T(cid:12)homas space [30(cid:9)], but we point out (cid:12) thatanypairofvelocityspacesV andpressurespacesQ isadmissible,ifthekey ℓ ℓ relation V =Q (2) ℓ ℓ ∇· holds.ThedetailsofconstructingtheRaviart–Thomasspacefollow. Each cell T Tℓ can be obtained asthe image of a linear mapping ΨT of thereferencecell∈T = [0,1]d. Onthereferencecell, wedefinetwopolynomial spaces:first,Q ,thespaceofpolynomialsindvariables,suchthatthedegreewith k respecttoeachvaribabledoesnotexceedk.Second,weconsiderthevectorvalued spaceofRavibart–ThomaspolynomialsVk = Qdk+xQk. PolynomialspacesVT andQT onthemeshcellT areobtainedbythepull-backunderthemappingΨT (seeforinstance[4]). Thepolynomialdbegreekbisarbitbrary,butchosenuniformly onthewholemesh.Thus,wewillomittheindexkfromnowon. Concludingthis construction,weobtainthefiniteelementspaces Vℓ = v∈H0div(Ω) ∀T ∈Tℓ :v|T ∈VT , Qℓ =(cid:8)q∈L20(Ω) ∀(cid:12)(cid:12)T ∈Tℓ :q|T ∈QT (cid:9). (cid:8) (cid:12) (cid:9) 2.1 Discontinuous Galerk(cid:12)indiscretization WhilethefactthatV isasubspaceofHdiv(Ω)impliescontinuityofthenormal ℓ 0 componentofitsfunctionsacrossinterfacesbetweencells,thisisnottruefortan- gentialcomponents.Thus,V H1(Ω;Rd),anditcannotbeusedimmediatelyto ℓ 6⊂ discretize(1). Wefollowtheexampleinforinstance[11,24,25]andapplyaDG formulationtothediscretizationoftheellipticoperator. Here,wefocusonthein- teriorpenaltymethod[1,29].LetT andT betwomeshcellswithajointfaceF, 1 2 andletu andu bethetracesofafunctionuonF fromT andT ,respectively. 1 2 1 2 OnthisfaceF,weintroducetheaveragingoperator u +u u = 1 2. (3) {{ }} 2 Inthisnotation,theinteriorpenaltybilinearformreads aℓ(u,v)=(∇u,∇v)Tℓ +4 σL{{u⊗n}},{{v⊗n}} Fiℓ 2 u , n(cid:10) v 2 v , (cid:11)n u (4) − {{∇ }} {{ ⊗ }} Fiℓ − {{∇ }} {{ ⊗ }} Fiℓ +2(cid:10)σLu,v F∂ℓ − ∂n(cid:11)u,v F∂ℓ(cid:10)− ∂nv,u F∂ℓ. (cid:11) Theoperator“ ”denote(cid:10)stheKr(cid:11)onecke(cid:10)rprodu(cid:11)ctoftw(cid:10)ovecto(cid:11)rs. Wenotethatthe term4 u n⊗: v n actuallydenotestheproductofthejumpsofuandv. {{ ⊗ }} {{ ⊗ }} Thediscreteweakformulationof(1)readsnow:find(u ,p ) V Q ,such ℓ ℓ ℓ ℓ ∈ × thatforalltestfunctionsv V andq Q thereholds ℓ ℓ ℓ ℓ ∈ ∈ u v ℓ , ℓ a (u ,v )+(p , v ) (q , u )= (v ,q ) (f,v ). Aℓ pℓ qℓ ≡ ℓ ℓ ℓ ℓ ∇· ℓ − ℓ ∇· ℓ F ℓ ℓ ≡ ℓ (cid:18)(cid:18) (cid:19) (cid:18) (cid:19)(cid:19) (5) 4 Discussionontheexistenceanduniquenessofsuchsolutionscanbefoundfor instancein [11,12,17,24]. Here,wesummarize,thatissymmetric. IfσLissuf- ficientlylarge,theforma (.,.)ispositivedefiniteindependentlyofthemultigrid ℓ levelℓ [0,L],andthatthuswecandefineanormonV by ℓ ∈ v = a (v ,v ). (6) ℓ Vℓ ℓ ℓ ℓ (cid:13) (cid:13) p Inordertoobtainoptimalcon(cid:13)verg(cid:13)enceresultsandtosatisfyProposition2.2below, σL is chosen as σ/hL, where hL is mesh size on the finest level L and σ is a positiveconstantdependingonthepolynomialdegree.Bythischoice,thebilinear formsonlowerlevelsareinheritedfromfinerlevelsinthesense,that aℓ(uℓ,vℓ)=aL(uℓ,vℓ), uℓ,vℓ Vℓ. (7) ∀ ∈ Aparticularfeatureofthismethodis(see[10,11]),thatthesolutionu isin ℓ thedivergencefreesubspace V0 = v V v =0 , (8) ℓ ℓ ∈ ℓ ∇· ℓ wherethedivergenceconditionis(cid:8)tobeund(cid:12)erstoodin(cid:9)thestrongsense. (cid:12) Proposition 0.1 (Inf-sup condition). For any pressure function q Q , there ℓ ∈ existsavelocityfunctionv V ,satisfying ℓ ∈ (q, v) inf sup ∇· γℓ >0 (9) q∈Qℓv∈Vℓ v Vℓ q Qℓ ≥ (cid:13) (cid:13) (cid:13) (cid:13) whereγ = c hL = c√2ℓ−L a(cid:13)nd(cid:13)cis(cid:13)a(cid:13)constantindependentofthemultigrid ℓ hℓ levelℓ. q Proof. Theproofofthispropositioncanbefoundin[35,Section6.4]. Indeed,a different result is proven there, with γ 1/k, where k is the polynomial de- ℓ ≈ gree in the hp-method. Thorough study of the proof though reveals, that this k-dependence is due to the penalty parameter of the form σ k2/h . In our ℓ ℓ ≈ case,thepenaltyparameterdependsonthefinemesh,notonh ,suchthatσ ℓ ℓ (hℓ/hL)/hℓ, and that the role of the k2 in the penalty is taken by the facto≈r hℓ/hL. Foranyu V ,weconsiderthefollowingdiscreteHelmholtzdecomposition: ℓ ∈ u=u0+u⊥ (10) whereu0 V0isthedivergencefreepartandu⊥belongstoitsa (.,.)-orthogonal ∈ ℓ ℓ complement. Forfunctionsfromthiscomplementholdstheestimate: Lemma0.1. Letu⊥ V bea (.,.)-orthogonaltoV0,thatis, ∈ ℓ ℓ ℓ a (u⊥,v)=0 v V0. ℓ ∀ ∈ ℓ Then,thereisaconstantα>0suchthat α u⊥ 2 a (u⊥,u⊥) 1 u⊥ 2, (11) d2 ∇· ≤ ℓ ≤ γ ∇· ℓ (cid:13) (cid:13) (cid:13) (cid:13) γ istheinf-supcons(cid:13)tantfrom(cid:13)inequality(9). (cid:13) (cid:13) ℓ 5 Proof. Ontheleftside,wealreadyarguedabovethatσL ischosenlargeenough such that a (.,.) is uniformly positive definite. Thus, we have with a positive ℓ constantα αk∇u⊥k2Tℓ ≤aℓ(u⊥,u⊥). Butthen, d2 u⊥, u⊥ d2 u⊥, u⊥ a (u⊥,u⊥), ℓ ∇· ∇· Ω ≤ ∇ ∇ Tℓ ≤ α (cid:16) (cid:17) (cid:16) (cid:17) Ontherightside,letq = u⊥. Thenq Q dueto(2). From(9),weconclude ℓ ∇· ∈ that there isu V such that u = q and u 1/γ q . On theother ∈ ℓ ∇· Vℓ ≤ ℓk k hand,u⊥ istheerroroftheorthogonalprojecti(cid:13)on(cid:13)intoVℓ0. Thus,u⊥ mustbethe elementwithminimalnorm,andinparticular (cid:13)u⊥(cid:13) u . Vℓ ≤ Vℓ (cid:13) (cid:13) (cid:13) (cid:13) 2.2 The nearly incompressiblep(cid:13)ro(cid:13)blem(cid:13) (cid:13) Wearegoing toprove convergence uniform withrespect totherefinement level ℓ of the proposed multigrid method for the Stokes problem by deviating twice. First, we provide estimates robust with respect to the parameter ε of the nearly incompressible problem: find (u ,p ) V Q such that for all (v ,q ) ℓ ℓ ℓ ℓ ℓ ℓ ∈ × ∈ V Q thereholds ℓ ℓ × u v ℓ , ℓ +ε(p ,q )= (v ,q ). (12) Aℓ pℓ qℓ ℓ ℓ F ℓ ℓ (cid:18)(cid:18) (cid:19) (cid:18) (cid:19)(cid:19) Thisproblemisconnectedwiththesimplerpenaltybilinearform(seeforin- stancealso[17]) A (u ,v ) a (u ,v )+ε−1( u , v ) (13) ℓ,ε ℓ ℓ ℓ ℓ ℓ ℓ ℓ ≡ ∇· ∇· andthesingularlyperturbed,ellipticproblem: findu V suchthatforallv ℓ ℓ ℓ ∈ ∈ V thereholds ℓ A (u ,v )=(f,v ). (14) ℓ,ε ℓ ℓ ℓ Lemma0.2. Let(um,pm)bethesolutionto(12)anduebethesolutionto(14). Then,if (2)holds,thefollowingequationsholdtrue: um =ue, and εpm= um = ue. ∇· ∇· Proof. Testing(12)withv =0andq Q yields ℓ ℓ ℓ ∈ ( um,qℓ)+ε(pm,qℓ)=0 qℓ Qℓ. − ∇· ∀ ∈ Dueto(2),thistranslatestothepoint-wiseequalityεpm = um. Substituting ∇· pmin(12)andtestingwiththepair(vℓ, vℓ),whichispossibleagaindueto(2), ∇· weobtainthatumsolves(14). Ifontheotherhanduesolves(14),weintroducepe = 1ε∇·ue,whichtranslates to ( ue,qℓ)+ε(pe,qℓ)=0 qℓ Qℓ, − ∇· ∀ ∈ corresponding to (12) tested with (0,q ). On the other hand, (12) tested with ℓ (vℓ,0) is obtained directly from (14) substituting pe. Thus, the equivalence is proven. 6 Inordertohelpkeepingthenotationseparate,weadoptthefollowingconven- tion:thesubscriptεisdroppedwhereverpossible.Furthermore,curlylettersrefer tothemixedform,whilestraightcapitalsrefertooperatorsonthevelocityspace only.Thus: a (u,v)thevectorvaluedinteriorpenaltyform ℓ A (u,v)theformofthesingularlyperturbed,ellipticproblem(14) ℓ u v , themixedbilinearform(12) Aℓ p q (cid:18)(cid:18) (cid:19) (cid:18) (cid:19)(cid:19) Similarly, capital letters like in R for the smoother (26) refer to the singularly ℓ perturbed,ellipticproblem,while isthecorrespondingsymbolfortheStokes ℓ R smoother(24). Additionally,weassociateoperatorswithbilinearformsusingthe samesymbol: Aℓ,ε:Vℓ Vℓ (Aℓ,εu,v)=Aℓ,ε(u,v)=Aℓ(u,v)=AL(u,v) u,v Vℓ → ∀ ∈ ℓ,ε :Xℓ Xℓ ( ℓ,εx,y)= ℓ,ε(x,y)= ℓ(x,y)= L(x,y) x,y Xℓ A → A A A A ∀ ∈ 3 Multigrid method InSection2,weintroducedhierarchiesofmeshes T . Duetothenestednessof ℓ { } mesh cells, the finiteelement spaces associated withthesemeshes arenested as well: V0 V1 ... VL, ⊂ ⊂ ⊂ Q0 Q1 ... QL. ⊂ ⊂ ⊂ X0 =V0 Q0 X1 ... VL QL =XL. × ⊂ ⊂ ⊂ × Thisrelationalsoextendstothedivergencefreesubspaces,seeforinstance[26]: V0 V0 ... V0. (15) 0 ⊂ 1 ⊂ ⊂ L Thenestednessofthespacesimpliesthatthereisasequenceofnaturalinjec- tions :X X oftheform (v ,q )=(I v ,I q ),suchthat ℓ ℓ ℓ+1 ℓ ℓ ℓ ℓ,u ℓ ℓ,p ℓ I → I I : V V , I :Q Q , (16) ℓ,u ℓ ℓ+1 ℓ,p ℓ ℓ+1 → → I :V0 V0 . (17) ℓ,u ℓ → ℓ+1 TheL2-projectionfromX X isdefinedby t(v ,q ) = (It v ,It q ) ℓ+1 → ℓ Iℓ ℓ ℓ ℓ,u ℓ ℓ,p ℓ with v It v ,w =0 w V q It q ,r =0 r Q . ℓ+1− ℓ,u ℓ+1 ℓ ∀ ℓ ∈ ℓ ℓ+1− ℓ,p ℓ+1 ℓ ∀ ℓ∈ ℓ (18) (cid:0) (cid:1) (cid:0) (cid:1) The -orthogonalprojection ℓfrom(VL QL) (Vℓ Qℓ)isdefinedby A P × → × u v u v AL Pℓ p , qℓℓ =AL p , qℓℓ (19) (cid:18) (cid:18) (cid:19) (cid:18) (cid:19)(cid:19) (cid:18)(cid:18) (cid:19) (cid:18) (cid:19)(cid:19) for all (u,p) (VL QL),(vℓ,qℓ) Vℓ Qℓ. Similarly, TheA-orthogonal ∈ × ∈ × projectionPℓfromVL Vℓisdefinedby → AL(Pℓu,vℓ)=AL(u,vℓ) (20) forallu VL,vℓ Vℓ. ∈ ∈ 7 3.1 The V-cyclealgorithm Inthissubsection wedefineV-cyclemultigridpreconditioners andB for ℓ,ε ℓ,ε B theoperators andA , respectively. Forsimplicityofthepresentation, we ℓ,ε ℓ,ε A droptheindexε. First, we define the action of the multigrid preconditioner : X X ℓ ℓ ℓ B → recursivelyasthemultigridV-cyclewithm(ℓ) 1pre-andpost-smoothingsteps. Let beasuitablesmoother. Let = −1.≥Forℓ 1,definetheactionof Rℓ B0 A0 ≥ Bℓ onavector =(f ,g )by ℓ ℓ ℓ L 1. Pre-smoothing:beginwith(u ,p )=(0,0)andlet 0 0 ui = ui−1 + ui−1 i=1,...,m(ℓ), (21a) (cid:18)pi(cid:19) (cid:18)pi−1(cid:19) Rℓ(cid:18)Lℓ−Aℓ(cid:18)pi−1(cid:19)(cid:19) 2. Coarsegridcorrection: u u u m(ℓ)+1 = m(ℓ) + t m(ℓ) , (21b) (cid:18)pm(ℓ)+1(cid:19) (cid:18)pm(ℓ)(cid:19) Bℓ−1Iℓ−1(cid:18)Lℓ−Aℓ(cid:18)pm(ℓ)(cid:19)(cid:19) 3. Post-smoothing: ui = ui−1 + ui−1 , i=m(ℓ)+2,...,2m(ℓ)+1 pi pi−1 Rℓ Lℓ−Aℓ pi−1 (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:18) (cid:19)(cid:19) (21c) 4. Assign: u = 2m(ℓ)+1 (21d) BℓLℓ (cid:18)p2m(ℓ)+1(cid:19) We distinguish between the standard and variable V-cyclealgorithms by the choice m(L) standardV-cycle, m(ℓ)= (m(L)2L−ℓ variableV-cycle, wherethenumberm(L)ofsmoothingstepsonthefinestlevelisafreeparameter. Wereferto astheV-cyclepreconditionerof .Theiteration L L B A u u u (cid:18)pkk++11(cid:19)=(cid:18)pkk(cid:19)+BL(cid:18)LL−AL(cid:18)pkk(cid:19)(cid:19) (22) istheV-cycleiteration. ThedefinitionofthepreconditionerB :V V fortheellipticoperatorA ℓ ℓ ℓ ℓ → followsthesameconcept,butdroppingthepressurevariables. 3.2 Overlapping Schwarz smoothers Inthissubsection, wedefineaclassofsmoothing operators based onasub- ℓ R space decomposition of the space X . Let be the set of vertices in the tri- ℓ ℓ angulation T , and let T be theset of celNls inT sharing thevertex υ. They ℓ ℓ,υ ℓ formatriangulationwithN(N >0)subdomainsorpatcheswhichwedenoteby Ω N . { ℓ,υ}υ=1 8 ThesubspaceX =V Q consistsofthefunctionsinX withsupport ℓ,υ ℓ,υ ℓ,υ ℓ × inΩ .Notethatthisimplieshomogeneousslipboundaryconditionson∂Ω for ℓ,υ ℓ,υ thevelocitysubspaceV andzeromeanvalueonΩ forthepressuresubspace ℓ,υ ℓ,υ Q .TheRitzprojection :X X isdefinedbytheequation ℓ,υ ℓ,υ ℓ ℓ,υ P → u v u v v ℓ , ℓ,υ = ℓ , ℓ,υ ℓ,υ X . Aℓ Pℓ,υ pℓ qℓ,υ Aℓ pℓ qℓ,υ ∀ qℓ,υ ∈ ℓ,υ (cid:18) (cid:18) (cid:19) (cid:18) (cid:19)(cid:19) (cid:18)(cid:18) (cid:19) (cid:18) (cid:19)(cid:19) (cid:18) (cid:19) (23) Notethateachcellbelongstonotmorethanfour(eightin3D)patchesT ,one ℓ,υ foreachofitsvertices. ThenwedefinetheadditiveSchwarzsmoother =η −1 (24) Rℓ Pℓ,υAℓ υX∈Nℓ whereη (0,1]isascalingfactor, isL2symmetricandpositivedefinite. ℓ ∈ R Similarly,wedefinesmoothersofthesingularlyperturbedellipticoperatorA , ℓ namely,P :V V isdefinedas ℓ,υ ℓ ℓ,υ → A (P u ,v )=A (u ,v ) v V , (25) ℓ ℓ,υ ℓ ℓ,υ ℓ ℓ ℓ,υ ℓ,υ ℓ,υ ∀ ∈ andtheadditiveSchwarzsmootheris R =η P A−1. (26) ℓ ℓ,υ ℓ υX∈Nℓ 4 Convergence analysis In this section, we provide a proof of the convergence for the variable V-cycle iteration with additive Schwarz preconditioning method. Our proof is based on theassumptionthatthedomainΩisboundedandconvex,whichwillbeomitted forsimplicityinthestatementoffollowingtheoremsandpropositions. Ourmain resultis: Theorem1. Themultileveliteration fortheStokesproblem(5)with L L I −B A thevariableV-cycleoperator definedinSection3.1employingthesmoother L B definedinequation(24)withsuitablysmallscalingfactorη isacontraction ℓ R withcontractionnumberindependentofthemeshlevelL. Proof. First,weconsiderthenearlyincompressibleproblem(12). Forthisweak formulation,wehavebyTheorem3,thatthemultigridmethod is L,ε L,ε I −B A equivalenttothemethodI BL,εAL,εappliedtothesingularlyperturbedprob- − lem(14)inthevelocityspace. ConvergenceofthemultileveliterationI BL,εAL,εisshowninTheorem2 − forallε > 0withacontractionnumberδ < 1independentofLandε. Thus,by Theorem 3,thesameholdsfor L,ε L,εwithpositiveε. I−B A Finally,in(12)wecanletεconvergetozero. Thelimityieldsthewell-posed Stokesproblem (5), and sincethecontractionnumber δ isindependent of ε, we obtain uniform convergence with respect to the mesh level L in the limit ε → 0. Thetheoremsandlemmasofthefollowingsubsectionsservetoestablishthe buildingblocksoftheproofofTheorem1. 9 4.1 The singularly perturbed problem Theorem2. LetR bethesmootherdefinedin(26)withsuitablysmallscalingfac- ℓ torη.Then,themultileveliterationI BLALwiththevariableV-cycleoperator − BLdefinedinSection3.1isacontractionwithcontractionnumberindependentof themeshlevelLandtheparameterε. Theproofofthistheoremispostponedtopage12andrelieson Proposition2.1. IfR satisfiestheconditions: ℓ AL (I RℓAℓ)w,w 0, w Vℓ (27) − ≥ ∀ ∈ and (cid:0) (cid:1) (Rℓ−1[I−Pℓ−1]w,[I−Pℓ−1]w)≤βℓAL([I−Pℓ−1]w,[I−Pℓ−1]w), ∀w∈Vℓ (28) whereβ =O( 1 )isdefinedinequation(55)below.Then ℓ γℓ 0 AL (I BℓAℓ)w,w δAL(w,w), w Vℓ (29) ≤ − ≤ ∀ ∈ whereδ= Cˆ andC(cid:0)ˆaredefinedinLe(cid:1)mma2.3. 1+Cˆ Proof. Inthecaseofself-adjointoperatorsA whichareinheritedfromacommon ℓ bilinearforma(.,.),thispropositionwouldbepartofthestandardmultigridtheory ifβ wereconstant.Itsproofcanbeadaptedfromsimilartheoremsin[2,8,9].We ℓ willprovetheversionneededhereintheappendix. In the remainder of this section we use several propositions and lemmas to establishoursmoother R satisfiestheassumptions ofProposition2.1. Foru ℓ ∈ (I P )wwitharbitraryw V ,itfollowsfromthediscreteHelmholtzdecom- ℓ−1 ℓ − ∈ positioninSection2andtheprojectionoperatorP inSection3.2thatuadmits ℓ,υ alocaldiscreteHelmholtzdecomposition uυ =u0υ+u⊥υ (30) Lemma 2.1. Given L2-symmetric positive definite R defined in 3.2 and sym- ℓ metricpositivedefiniteAL(, )definedin(13),thereexistsaconstantη (0,1] · · ∈ independentofℓsuchthat η(Rℓ−1u,u)= inf AL(uυ,uυ) (31) Σuυυ∈uυVℓ=,υuυX∈Nℓ Proof. Thefollowingproofcanbefoundin[2]fortheL2-innerproductinsteadof a (.,.).Wecopyitheretoascertainthatitdoesnotdependontheactualstructure ℓ oftheoperatorALsinceitispurelyalgebraic. Thus,itappliestotheoperatorAL inthispaperasitappliestothedifferentoperatorappliedthere.Recallthat R =η P A−1 =η P A−1. (32) ℓ ℓ,υ ℓ ℓ,υ L υX∈Nℓ υX∈Nℓ From u= uυ (33) υX∈Nℓ 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.