ebook img

Multigrid Methods for Constrained Minimization Problems and Application to Saddle Point Problems PDF

0.65 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multigrid Methods for Constrained Minimization Problems and Application to Saddle Point Problems

MULTIGRID METHODS FOR CONSTRAINED MINIMIZATION PROBLEMS AND APPLICATION TO SADDLE POINT PROBLEMS LONGCHEN 6 1 0 ABSTRACT. Thefirstorderconditionoftheconstrainedminimizationproblemleadsto 2 a saddle point problem. A multigrid method using a multiplicative Schwarz smoother n forsaddlepointproblemscanthusbeinterpretedasasuccessivesubspaceoptimization a methodbasedonamultileveldecompositionoftheconstraintspace.Convergencetheoryis J developedforsuccessivesubspaceoptimizationmethodsbasedontwoassumptionsonthe spacedecomposition:stabledecompositionandstrengthenedCauchy-Schwarzinequality, 5 and successfully applied to the saddle point systems arising from mixed finite element 1 methodsforPoissonandStokesequations. Uniformconvergenceisobtainedwithoutthe fullregularityassumptionoftheunderlyingpartialdifferentialequations.Asabyproduct, ] A aV-cyclemultigridmethodfornon-conformingfiniteelementsisdevelopedandprovedto beuniformconvergentwithevenonesmoothingstep. N . h t a m 1. INTRODUCTION [ Given a quadratic energy E(v) defined on a Hilbert space , we consider the con- 1 V strainedminimizationproblem: v 1 (1) minE(v), 9 v 0 ∈K 4 where is the null space of a linear and bounded operator B defined on . By K ⊂ V V 0 introducingtheLagrangemultiplierfortheconstraint,wecanfindtheminimizerof(1)by . solvingasaddlepointsystem.Inthispaper,weshalldesignandanalyzemultigridmethods 1 0 fortheconstrainedminimizationproblem(1)andapplythemtothesaddlepointsystems 6 arisingsfrommixedfiniteelementdiscretizationofPoisson,Darcy,andStokesequations. 1 We shall adapt the constraint decomposition methods developed by Tai for nonlinear v: variationalinequalities[55]totheconstrainedminimizationproblem. Let = N K i=1Ki i beaspacedecomposition.Ourmethodconsistsofsolvingalocalconstrainedminimization X (cid:80) problemineachsubspace whichisequivalenttosolvingasmallsaddlepointproblem. r Ki a Thus our relaxation can be interpreted as a multiplicative overlapping Schwarz method which is known as Vanka smoother [58] in the context of computational fluid dynamics. Withapropermultileveldecomposition,ourmethodbecomestheclassicalV-cyclemulti- gridmethod. Assuming that the decomposition = N satisfies two assumptions: energy K i=1Ki stable decomposition (SD) and strengthened Cauchy-Schwarz inequality (SCS), we are (cid:80) Date:January19,2016. 2010MathematicsSubjectClassification. 65N55;65F10;65N22;65N30; Key words and phrases. Constrained optimization, saddle point system, mixed finite elements, multigrid methods. LChasbeensupportedbyNSFGrantDMS-1418934. 1 2 L.CHEN abletoprovetheconvergenceofourmethod 1 E(uk+1) E(u) 1 E(uk) E(u) , − ≤ − 1+C C − (cid:18) A S(cid:19) (cid:2) (cid:3) where uk is the k-th iteration, and C and C are positive constants in (SD) and (SCS). A S Wealsoextendtheanalysistothecasewherethelocalconstrainedminimizationproblem isnotsolvedexactlybutonegradientiterationisapplied. ItisknownthatnumericallymultiplicativeSchwarzsmootherleadstoanefficientmulti- gridmethodsforsaddlepointproblems[52,53],however,theoreticalanalysisforthecon- vergenceisonlyavailableforlessefficientadditiveversions[52,53]. Ournewframework canfillthisgap. Furthermore, theoptimalchoiceoftherelaxationparameterusedinthe inexactsolversoflocalproblemscanbederivedfromtheminimizationpointofview. We then apply our method to the saddle point systems arising from mixed finite ele- ment methods of Poisson, Darcy, and Stokes equations. By verifying assumptions (SD) and(SCS)formultileveldecompositionsofH(div)elementspaces,wewillprovetheuni- formconvergenceofaV-cyclemultigridmethodformixedfiniteelementmethodsforthe PoissonandDarcyequations. OursmootherisrelatedtotheoverlappingSchwarzmethod developed for H(div) problems in [32, 59, 42, 41, 3]. But our analysis from the energy minimization point of view is more transparent. We note that a similar stable multilevel decompositionfortheRaviart-Thomasspacehasbeenproposedin[59]intwodimensions andin[34,3]inthreedimensions. Ourdecompositionforthreedimensionalcaseisnew and does not require the duality argument and thus relax the full regularity assumption neededin[34,3]. WeusetheequivalencebetweenCrouzeix-Raviart(CR)non-conformingmethodsand mixed methods to develop a V-cycle multigrid method for non-conforming methods of Poissonequationandproveitsuniformconvergence.Existingconvergenceproofsofmulti- gridmethodsfornon-conformingmethods[11,48,15,16,49]cannotcoverV-cycleswith fewsmoothingstepswhileournewframeworkcan. Thetwoingredientsofournewmulti- grid method for non-conforming methods are: the overlapping Schwarz smoothers, and inter-gridtransferoperatorsthroughthenestedfluxspaces. FordiscreteStokesequations,weapplyourtheorytodivergencefreeandnestedfinite element spaces, e.g., Scott-Voligious elements [54]. Again traditional multigrid conver- genceproofsforStokesequationsrequiresthefullregularityassumption[60,12,14,8,68, 47]. Using the framework developed in this paper, we can obtain multigrid convergence withoutthefullregularityassumption. Veryrecently,Brenner,Li,andSung[17]havede- velopednewmultigridmethodsforStokesequationsandhaveprovedtheuniformconver- gencewithoutthefullregularityassumption. Theconvergenceresultof[17]is,however, restricted to W-cycle multigrid methods with sufficient many smoothing steps. Here we consider V-cycle multigrid with only one smoothing. Furthermore, smoothers developed in[17]arelessefficientthanVanka-typesmoothersconsideredhere;seenumericalexam- plesin[52,17]. Ontheotherhand,theframeworkdevelopedin[17]canbeappliedtoany stablemixedfiniteelementdiscretizationofStokesequationandin[18]suchconvergence theoryisalsoextendedtotheDarcysystems,whilethecurrenttheorycanbeonlyapplied to the case when the constrained subspaces are nested. For non-nested constrained sub- spaces,anadditionalprojectorisneededandananalysisforW-cyclemultigridwithoutthe fullregularityassumptioncanbefoundin[23]. ForpopularfiniteelementpairsofStokes equations, a fast multigrid method using least square distributive Gauss-Sedel smoother hasbeendevelopedin[62]forStokesequationsandgeneralizetoOseenproblemin[25]. MULTIGRIDMETHODSFORSADDLEPOINTPROBLEMS 3 Althoughmostoftheabstracttheory,eitherbasedontheXu-Zikatanovidentity[67]or followingthe Tai-Xuapproach [56], hasbeen developedin certainformin theliterature, theapplicationtomultigridmethodsforsolvingsaddlepointsystemsarenewandleadto severalnewcontributionofthemultigridtheoryforsaddlepointsystems: aconvergence proofofV-cyclewithevenonesmoothingstep,aconvergenceproofwithoutfullregularity assumption,andaconvergenceproofforthemultiplicativeSchwarzsmoother. Stablede- compositionofseveralfiniteelementspacesestablishedinthispaperalsohavetheirown interest. Therestofthispaperisstructuredasfollows. InSection2,weintroducethealgorithm. In Section 3, we give a convergence proof using the X-Z identity and in Section 4, we present an alternative proof based on the constraint subspace optimization method. We extend the convergence proof to the inexact local solver in Section 5. In Section 6, 7, and 8, we apply our method to mixed finite element methods for the Poisson and Darcy equations, non-conforming finite element methods for the Poisson equation, and mixed finiteelementmethodsfortheStokesequations,respectively. Inthelastsection,wegive conclusionandoutlookforfuturework. 2. ALGORITHM Let be a Hilbert space equipped with inner product (, ) and be a closed H · · V ⊂ H subspace and thus is also a Hilbert space. Suppose A : is a symmetric and V V → V positivedefinite(SPD)operatorwithrespectto(, ),whichintroducesanewinnerproduct · · (u,v) :=(Au,v)=(u,Av)on .Thenormassociatedto(, )or(, ) willbedenoted A A V · · · · by or , respectively. Let be another Hilbert space and let B : be A (cid:107)·(cid:107) (cid:107)·(cid:107) P V → P a linear operator. With a slight abuse of notation, we still denote the inner product of P by (, ). In most problems of consideration, the inner product (, ) for is the vector · · · · H L2-innerproductwhilefor itisthescalarL2-innerproduct. ThetransposeBT : P P →V istheadjointofBinthe(, )innerproduct,i.e.,(Bv,q)=(v,BTq)forallv ,q . · · ∈V ∈P Foranf ,wedefinetheDirichlet-typeenergy: ∈H 1 (2) E(v)= v 2 (f,v), forv . 2(cid:107) (cid:107)A− ∈V In this paper we always identify a functional in the dual space as an element in (cid:48) H H throughtheRieszmapinducedby(, ).Denoteby =ker(B)thesubspacesatisfyingthe · · K constraintBv =0,i.e.,thenullspaceofB. Weareinterestedinthefollowingconstrained minimizationproblem: (3) minE(v). v ∈K Sincetheenergyisquadraticandconvex, thereexistsauniquesolutionto(3)andthe minimizeruof(3)ischaracterizedasthesolutionoftheequation: Findu suchthat ∈K (4) (Au,v)=(f,v) forallv . ∈K WeintroducetheoperatorA : as(A u,v) = (Au,v)forallu,v andthe K K → K K ∈ K operatorQ : asthe(, )-projection,i.e.,foragivenfunctionf ,Q f K H → K · · ∈ H K ∈ K satisfies(Q f,v) = (f,v)forallv . Thentheoperatorformof(4)is: Findu K ∈ K ∈ K suchthat (5) A u=Q f in . K K K Asitmightbedifficulttofindbasesforthesubspace ,insteadofsolvingthesymmetric K positivedefiniteformulation(5),weshallconsideranequivalentsaddlepointformulation. 4 L.CHEN Let us introduce the Lagrange multiplier p , equation (4) can be rewritten as the ∈ P followin4gsaddlepointsystem: Findu ,pL.CHEsNuchthat ∈V ∈P Let us(iAntruo,dvu)ce+th(ep,LBagvr)an=ge(fm,uvl)tiplier p , equfaotiroanll(4v) can,be rewritten as the 2 P ∈V following(sBadud,leq)pointsystem:=Fi0ndu ,p suchthfoatrallq , 2V 2P ∈P whichwillbewritteni(nAtuh,evo)p+er(apto,Brfvo)rm=(f,v) forallv , 2V (Bu,q) =0 forallq , A BT u f 2P (6) = . whichwillbewrittenintheoBperatOorformp 0 (cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) Let and be two approApriatBeTnormus for spface and , respectively. It is wellkn(cid:107)(o6w·)(cid:107)nVthat(6(cid:107))·is(cid:107)wPellposedifanBdonOlyifthpefo=llow0ing.Vso-callPedBrezziconditions ✓ ◆✓ ◆ ✓ ◆ [19]hold:Let and betwoappropriatenormsforspace and ,respectively. Itis V P k·k k·k V P (1)wCelolnktninouwintythoafto(p6)eriastworesllApoasneddBif:anthdeorenleyxiifstthceofnosltlaonwtisncgs,oc-ca>lle0dsBurcehzztihcaotnditions a b [19]hold: (Au,v) c u v , (Bv,q) c v q , forallu,v ,q . (1)≤Coan(cid:107)tinu(cid:107)iVty(cid:107)of(cid:107)oVperatorsAand≤B:b(cid:107)the(cid:107)reVe(cid:107)xi(cid:107)stPconstantsca,cb >∈0Vsuch∈thPat (2) CoercivityofAinthekernelspace. Thereexistsaconstantα>0suchthat (Au,v) c u v , (Bv,q) c v q , forallu,v ,q . a V V b V P  k k k k  k k k k 2V 2P (Au,u) α u 2 forallu ker(B). (2) CoercivityofAinth≥eke(cid:107)rne(cid:107)lVspace.There∈existsaconstant↵>0suchthat (3) Inf-supconditionofB(.ATuh,eur)eex↵istusa2confsotraanltlβu >k0ers(uBch).that � k kV 2 (Bv,p) (3) Inf-supconditioninoffB.Tshuepreexistsaconstant�β>. 0suchthat p∈P,p(cid:54)=0v∈V,τ(cid:54)=0(cid:107)v(cid:107)V((cid:107)Bp(cid:107)vP,p)≥ inf sup �. aChgooiocdeschoofincoersminsc(cid:107)e·B(cid:107)Vmaanydn(cid:107)o·t(cid:107)bPepa2crPoen,npt6=oin0tuuvo2nuViqs,⌧ui6=ne0[k6v9k]Vankndpokr(cid:107)Pm·(cid:107),�Vc.f=. th(cid:107)e·(cid:107)mAixmeadyfonromtbuelaatilownayosf PoissonCehqouicaetisoonfninorSmesctki·oknV6a.nTdhkr·okuPgahroeuntotthuisnipq(cid:107)au·pe(cid:107)e[Ar6,9w]aenwdikll·kaVss=umke·kthAemwaeylnl-optobseeadlnweasyss agoodchoicesinceBmaynotbecontinuousin norm,c.f.themixedformulationof A of(6)andfocusonitsefficientsolvers. k·k PoissonequationinSection6. Throughoutthispaper,wewillassumethewell-posedness Problems (5) and (6) are equivalent theoretically but will lead to different algorithms. of(6)andfocusonitsefficientsolvers. In practice, the saddle point formulation will be easier to solve when bases of are not Problems(5)and(6)areequivalenttheoreticallybutwillleadtodifferentalgorithms. K availablIenoprraecxtpiceen,stihveestaoddfolermpo.intformulationwillbeeasiertosolvewhenbasesof arenot K Wesahvaalilladbelveeolroepxapnednsaivnealtyozfeormmu.ltigridmethodsforsolvingthesaddlepointsystem(6) basedonsWubespshaacleldceovrerelocptioanndmaentahlyozdesm[6u5lt]igarniddmitsetahdoadpstafotirosnoltvoinogpttihmeiszaadtdiolenpporionbtlseymstsem[5(66,) 55]. Lebtasedonsubspacecorrectionmethods[65]anditsadaptationtooptimizationproblems[56, 55].Let = + + + , ,i=1,...,N, 1 2 N i V V V ··· V V ⊂V = + + + , ,i=1,...,N, beaspacedecompositionVof Vs1atisfVy2ing·t·h·ecoVnNditVioin⇢V beaspacedecompositioVnof satisfyingthecondition = + + V+ , = ker(B),i=1,...,N. 1 2 N i i K K = K + ···+ K+ K, V=∩ ker(B),i=1,...,N. 1 2 N i i Fork 0andagiveKnappKroximKated·s·o·lutiKonukK V,o\nestepoftheSuccessiveSubspace ≥Fork 0andagivenapproximatedsolution∈ukK ,onestepoftheSuccessiveSubspace Optimization�(SSO)method[56]isasfollows: 2K Optimization(SSO)method[56]isasfollows: Algorithm:uk+1 =SSO(uk) v =uk; 0 fori=1:N do e =argmin E(v +w ); vi =v +wei;2Ki i�1 i i i 1 i � end uk+1 =v ; N Algorithm1:SuccessiveSubspaceOptimizationMethod. MULTIGRIDMETHODSFORSADDLEPOINTPROBLEMS 5 IfwewritetheEulerequationofthelocalminimizationproblem,itreadsas (7) (Ae ,φ )=(f Av ,φ ) forallφ . i i i 1 i i i − − ∈K Namely e is the solution of the residual equation restrict to . We can thus treat SSO i i K as the subspace correction method for solving (4) using the space decomposition = K N . Wecananalyzetheconvergencefromthispointofview. i=1Ki UsingthefactAu = f in andv = v +e ,equation(7)isalsoequivalenttothe (cid:48) i i 1 i (cid:80) K − A-orthogonality (8) (u v ,φ ) =0 forallφ , i i A i i − ∈K whichcanbealsowrittenas (9) (E(cid:48)(vi),φi)=0 forallφi i. ∈K Let = B( ). Define A : as for u , Au such that i i i i i i i i i P P ∩ V V → V ∈ V ∈ V (A u ,v ) = (Au ,v )forallv ,andB : asforu ,Bu such i i i i i i i i i i i i i i ∈ V V → P ∈ V ∈ P that (B u ,q ) = (Bu ,q ) for all q . Let Q : be the projection in (, ) i i i i i i i i i ∈ P H → V · · inner product. The constrained minimization problem in the constraint subspace will i K besolvedbysolvingasmallsaddlepointsystemin : i V A BT e Q (f Av ) (10) i i i = i − i−1 . B O p 0 i i (cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) A typical multilevel decomposition is given as follows. First we construct a macro- decomposition = J withnestedsubspaces ... = . Usually V k=1Vk V1 ⊂ V2 ⊂ ⊂ VJ V theyarebasedonasequenceofsuccessivelyrefinedmeshes. Foreachsubspace ,k = k 1,...,J, we introdu(cid:80)ce a micro-decomposition = Nk and set =V Vk i=1Vk,i Kk,i Vk,i ∩ ker(B). Notethattheassumption = J Nk requiresacarefulchoiceofthe K k=1 i=1K(cid:80)k,i micro-decompositionof . Roughlyspeaking,eachsubspace shouldbebigenough k k,i V (cid:80) (cid:80) V to contain a basis function of and each basis function of should be contained in at K K least one . Similar decomposition is required to design robust multigrid methods for k,i V nearlysingularsystem[38]. Remark 2.1. Solving local saddle problems in k,i sequentially in the k-th level can V be interpret as a multiplicative Schwarz smoother which is better known as the Vanka smoother[58]forNavier-Stokesequations. (cid:3) Duetothenestednessofthemacro-decomposition,restrictionandprolongationopera- torsareneededonlyfortwoconsecutivelevels. Insummary,SSObasedonthismultilevel decompositionleadstoaV-cyclemultigridmethodforthesaddlepointproblem(6)witha multiplicativeSchwarzsmoother. Thanks to the assumption , if uk , then uk+1 = SSO(uk) is still in k,i K ⊂ K ∈ K . Namely the iteration remains in the constrained subspace. Uzawa method [57], an- K otherpopulariterativemethodforsolvingthesaddlepointproblem,willnotpreservethe constraintandthusisnotconsideredhere. WeshalluseeithertheunconstrainedSPDformulation(4)and(7)orconstrainedsaddle pointformulation(6)and(10). Theyareequivalentformsfortheconvergenceanalysisbut differentalgorithmically. Weendthissectionwithadiscussionofthenon-homogenousconstraint,i.e.,thesaddle pointproblem A BT u f (11) = . B O p g (cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) 6 L.CHEN To change to the form (6), we can first find a u satisfying Bu = g and let u = ∗ ∈ V ∗ u +δu. Thentheequationforδuisintheform(6). ∗ Thereareseveralwaystofindsuchu . Onewayistosolve ∗ I BT u 0 (12) ∗ = , B O p g (cid:18) (cid:19)(cid:18) ∗(cid:19) (cid:18) (cid:19) whichissupposedtobeeasierthansolving(11). ForStokesequations,solving(12)essen- tiallyrequiresaPoissonsolverforpressureforwhichfastsolversareavailable. ForDarcy equations,Aisaweightedmassmatrixwithpossiblyhighlyoscillatorycoefficients,while (12)isagainjustaPoissonoperator. Whenthespace consistsofdiscontinuouselements,whichisthecaseofmostappli- P cationsconsideredinthispaper,wecanfindsuchu byoneV-cyclewithpost-smoothing ∗ only;seeSection6fordetails. 3. CONVERGENCEANALYSISBASEDONTHEXZIDENTITY Inthissection,weprovideaconvergenceanalysisusingtheSPDformulation(4)and(7). TheanalysisisbasedontheXZidentity[67]forthemultiplicativeiterativemethodsand canbefoundin[66]. DenotedbyP theA-orthogonalprojectiononto fori = 1,...,N. Thentheerror i i K operator of SSO can be written as (I P )(I P ) (I P ), i.e., u uk+1 = N N 1 1 N (I P )(u uk),whereuk+1 =−SSO(uk−). Th−efo·ll·o·win−gXZidentity−wasestab- i=1 − i − lishedin[67] (cid:81) N 2 1 (13) (I P ) =1 , i − A − 1+c0 (cid:13)i(cid:89)=1 (cid:13) (cid:13) (cid:13) where (cid:13) (cid:13) N J 2 c = sup inf P v . 0 i j (cid:107)v(cid:107)A=1(cid:80)Ji=1vi=v,vi∈Ki(cid:88)i=1(cid:13) j=(cid:88)i+1 (cid:13)A Foranelementaryproofof(13),werefertoChen[22(cid:13)]. (cid:13) (cid:13) (cid:13) Inordertoestimatetheconstantc ,weproposetwoimportantpropertiesofthespace 0 decomposition. Stabledecomposition(SD):foreveryv ,thereexistsvi i,i=1,...,N suchthat ∈K ∈K N N v = v , and v 2 C v 2. i (cid:107) i(cid:107)A ≤ A(cid:107) (cid:107)A i=1 i=1 (cid:88) (cid:88) StrengthenedCauchySchwarzinequality(SCS):foranyui iandvj j ∈K ∈K 1/2 1/2 N N N N (u ,v ) C1/2 u 2 v 2 . i j A ≤ S (cid:32) (cid:107) i(cid:107)A(cid:33)  (cid:107) j(cid:107)A i=1j=i+1 i=1 j=1 (cid:88) (cid:88) (cid:88) (cid:88) Withassumptions(SD)and(SCS),weshallprovideaupperboundofcandthusobtaina 0 convergenceproofofSSOmethodforsolvingthesaddlepointproblem(6). Theorem 3.1. Assume that the space decomposition K = Ni=1Ki satisfy assumptions (SD)and(SCS).ForSSOmethod,wehave (cid:80) N 2 1 (I P ) 1 . i − A ≤ − 1+CACS (cid:13)i(cid:89)=1 (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) MULTIGRIDMETHODSFORSADDLEPOINTPROBLEMS 7 Proof. Weapply(SCS)withu =P N v toobtain i i j=i+1 j N N (cid:80) N N N u 2 = (u ,P v ) = (u ,v ) (cid:107) i(cid:107)A i i j A i j A i=1 i=1 j=i+1 i=1j=i+1 (cid:88) (cid:88) (cid:88) (cid:88) (cid:88) 1/2 1/2 N N C1/2 u 2 v 2 , ≤ S (cid:32) (cid:107) i(cid:107)A(cid:33) (cid:32) (cid:107) i(cid:107)A(cid:33) i=1 i=1 (cid:88) (cid:88) whichleadstotheinequality N N (14) u 2 C v 2. (cid:107) i(cid:107)A ≤ S (cid:107) i(cid:107)A i=1 i=1 (cid:88) (cid:88) Consequently,wechoosev = N v asastabledecompositionsatisfying(SD)toget i=1 i N N N N 2 (cid:80) P v = u 2 C v 2 C C v 2, i j A (cid:107) i(cid:107)A ≤ S (cid:107) i(cid:107)A ≤ S A(cid:107) (cid:107)A (cid:88)i=1(cid:13) j=(cid:88)i+1 (cid:13) (cid:88)i=1 (cid:88)i=1 whichimpliesc0(cid:13)(cid:13) CSCA.T(cid:13)(cid:13)hedesiredresultthenfollowsfromtheX-Zidentity(13). (cid:3) ≤ The assumption (SCS) is relatively easy to verify. The key is to construct a stable decompositionoftheconstraintspace . K 4. CONVERGENCEANALYSISBASEDONCONSTRAINEDOPTIMIZATION In this section we provide an alternative proof using the constraint optimization ap- proachestablishedbyTai[55].Italsoprovidesabetterapproachtoextendtheconvergence prooftoinexactand/ornonlinearlocalsolvers. Wewillalwaysdenotebyutheglobalminimizerof(3). Givenaninitialguessu0 , ∈K let uk be the kth iteration in SSO algorithm for k = 1,2, . We aim to prove a linear ··· reductionoftheenergydifference (15) E(uk+1) E(u) ρ E(uk) E(u) , − ≤ − with a contraction factor ρ (0,1). Ideally ρ(cid:2)is independent o(cid:3)f the size of the problem. ∈ Theproofisdevelopedin[56,55]for anonlinearandconvexenergybutsimplifiedhere forthequadraticenergy. WefirstexploretherelationbetweentheenergyandtheA-normoftheerror. Lemma4.1. Foranyw,v ,wehave ∈V 1 (16) E(w)−E(v)= 2(cid:107)w−v(cid:107)2A+(E(cid:48)(v),w−v). Consequentlyfortheminimizeru andanyw , ∈K ∈K 1 (17) E(w) E(u)= w u 2. − 2(cid:107) − (cid:107)A Proof. Verificationof(16)and(17)isstraightforward. (cid:3) Basedontheidentity(17),thetargetinequality(15)becomesamorefamiliarone (18) uk+1 u ρ1/2 uk u . A A (cid:107) − (cid:107) ≤ (cid:107) − (cid:107) Letd = E(uk) E(u)andδ = E(uk) E(uk+1).Thequantityd isthedistance k k k − − of the current energy to the lowest one, δ is the amount of the energy decreased in one k iteration, and they are connected by the identity δ = d d . By Lemma 4.1, we k k k+1 − 8 L.CHEN haved = 1 uk u 2 butingeneralδ = 1 uk uk+1 2 sinceuk+1 maynotbethe k 2(cid:107) − (cid:107)A k (cid:54) 2(cid:107) − (cid:107)A minimizer. Foreachv ,i=1,...,N,inSSO,wedohave i 1 E(v ) E(v )= v v 2, i−1 − i 2(cid:107) i−1− i(cid:107)A since v is the local minimizer and v v = e ; see also the orthogonal- i i 1 i i i − − − ∈ K ity (9). Borrowing the terminology of the convergence theory of adaptive finite element methods[46],weshallpresentourproofbasedonthefollowingtwoinequalities. DiscreteLowerBound. ThereexistsapositiveconstantCLsuchthatfork =0,1,2,... N δ C e 2. k ≥ L (cid:107) i(cid:107)A i=1 (cid:88) UpperBound. ThereexistsapositiveconstantCU suchthatfork =0,1,2,... N d C e 2. k+1 ≤ U (cid:107) i(cid:107)A i=1 (cid:88) Theorem4.2. Assumethatthediscretelowerboundandupperboundholdwithconstants C andC respectively. Wethenhave L U c 0 d d , k+1 k ≤ 1+c 0 wherec =C /C . 0 U L Proof. The proof is straightforward by assumptions and rearrangement of the following inequality N d C e 2 C /C δ =c (d d ). k+1 ≤ U (cid:107) i(cid:107)A ≤ U L k 0 k− k+1 i=1 (cid:88) (cid:3) Verifying the lower bound is relatively easy since E is convex. Indeed we have the followingidentitywhichcharacterizesexactlytheamountofenergydecreasedinonestep of SSO. Again in the sequel, uk+1 = SSO(uk) and e is the ith correction in , for i i K i=1,...,N. Theorem4.3. N 1 E(uk) E(uk+1)= e 2. − 2 (cid:107) i(cid:107)A i=1 (cid:88) Proof. Bytheidentity(16)andtheorthogonality(9),wehave,fori=1,...,N, 1 1 E(v ) E(v )= v v 2 = e 2, i−1 − i 2(cid:107) i−1− i(cid:107)A 2(cid:107) i(cid:107)A andconsequently N N 1 E(uk) E(uk+1)= [E(v ) E(v )]= e 2. − i−1 − i 2 (cid:107) i(cid:107)A i=1 i=1 (cid:88) (cid:88) (cid:3) Proving the upper bound is more delicate. We first present a lemma which can be verifieddirectlybydefinitionandLemma4.1. MULTIGRIDMETHODSFORSADDLEPOINTPROBLEMS 9 Lemma4.4. (19) (E(cid:48)(uk+1)−E(cid:48)(u),uk+1−u)=(cid:107)uk+1−u(cid:107)2A =2 E(uk+1)−E(u) . Wethengiveamultileveldecompositionoftheleft-handside(cid:2)of(19). (cid:3) Lemma4.5. Foranydecompositionuk+1−u= Ni=1wi,wi ∈Ki,i=1,2,...,N, (cid:80) N N (E (uk+1) E (u),uk+1 u)= (e ,w ) . (cid:48) (cid:48) j i A − − i=1 j>i (cid:88)(cid:88) Proof. (E (uk+1) E (u),uk+1 u)=(E (uk+1),uk+1 u) (cid:48) (cid:48) (cid:48) − − − N N N N N = (E (uk+1) E (v ),w )= (E (v ) E (v ),w )= (e ,w ) . (cid:48) (cid:48) i i (cid:48) j (cid:48) j 1 i j i A − − − i=1 i=1 j>i i=1 j>i (cid:88) (cid:88)(cid:88) (cid:88)(cid:88) Inthefirststep,weusethefactE (u)=0in sinceuistheminimizeranduk+1 u . (cid:48) (cid:48) K − ∈K InthesecondstepweuseE (v ) = 0in sincev istheminimizerin andw ; seealso(8). (cid:48) i Ki(cid:48) i Ki i ∈ K(cid:3)i Lemma4.6. Assumethatthespacedecompositionsatisfiesassumptions(SD)and(SCS). Thenwehavetheupperbound N 1 E(uk+1) E(u) C C e 2. − ≤ 2 S A (cid:107) i(cid:107)A i=1 (cid:88) Proof. We shall chose a stable decomposition for uk+1 u = N w ,w ,i = − i=1 i i ∈ Ki 1,2,...,N. ByLemma4.5and(SCS),wehave (cid:80) N N (E (uk+1) E (u),uk+1 u)= (e ,w ) (cid:48) (cid:48) j i A − − i=1 j>i (cid:88)(cid:88) 1/2 1/2 N N C1/2 e 2 w 2 ≤ S  (cid:107) j(cid:107)A (cid:32) (cid:107) i(cid:107)A(cid:33) j=1 i=1 (cid:88) (cid:88)   1/2 N (C C )1/2 e 2 uk+1 u . ≤ S A (cid:32) (cid:107) i(cid:107)A(cid:33) (cid:107) − (cid:107)A i=1 (cid:88) Substitutingtheidentity(seeLemma4.4) uk+1 u 2 =(E (uk+1) E (u),uk+1 u) (cid:107) − (cid:107)A (cid:48) − (cid:48) − intotheaboveinequalityandcancelingone uk+1 u ,wecanobtain A (cid:107) − (cid:107) N uk+1 u 2 C C e 2. (cid:107) − (cid:107)A ≤ S A (cid:107) i(cid:107)A i=1 (cid:88) UsingtheidentityE(uk+1) E(u)= uk+1 u 2/2,weobtainthedesiredresult. (cid:3) − (cid:107) − (cid:107)A Wesummarizeourconvergenceresultintothefollowingtheorem. 10 L.CHEN Theorem4.7. AssumethatthespacedecompositionK = Ni=1Ki satisfiesassumptions (SD)and(SCS).Then (cid:80) 1 E(uk+1) E(u) 1 E(uk) E(u) . − ≤ − 1+C C − (cid:18) A S(cid:19) (cid:2) (cid:3) Remark 4.8. The estimate is consistent with the one obtained by the XZ identity which indicatesthatourenergyestimateissharp. 5. CONVERGENCEANALYSISWITHINEXACTLOCALSOLVERS InthealgorithmSSO,weassumethatthelocalproblemissolvedexactlywhichmaybe costlywhenthedimensionofthelocalspaceislarge. Inthissection,weconsiderinexact solvers using one gradient iteration and establish the corresponding convergence proof. NotethatXZidentitycannotbeappliedtothenonlinearsolversconsideredhere. Recallthatthelocalconstrainedminimizationproblemis:letr =Q (f Av ),find i i i 1 − − e suchthat ∗i ∈Ki A BT e r (20) i i ∗i = i . B O p 0 (cid:18) i (cid:19)(cid:18) ∗i(cid:19) (cid:18) (cid:19) Hereweusee ,p todenotethesolutionobtainedbytheexactsolver.Intheinexactsolver ∗i ∗i proposedbelow,theconstraintisstillsatisfiedbutoperatorA isreplacedbyasimplerone i D ,e.g.,thediagonalofA . Ingeneral,letD beanSPDoperatoron ,wefirstsolvethe i i i i V localproblem D BT s r (21) i i i = i . B O p 0 i i (cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) Thenweapplythelinesearchalongthedirections tofindanoptimalscaling: i (22) minE(v αs ), i 1 i α R − − ∈ whosesolutionis (r ,s ) i i (23) α= . (As ,s ) i i Weupdate v =v αs . i i 1 i − − ThisisonestepofapreconditionedgradientmethodandD isapreconditionerofA . i i Inthissection,wewillalwaysdenotebye thesolutionof(20)ande = αs withs ∗i i i i beingthesolutionof(21)andαgivingby(23). Withsuchchoiceofα, westillhavethe firstordercondition (24) (E(cid:48)(vi),ei)=0. Remark5.1. IntheoriginalVankasmootherforNavier-Stokesequation,Di =ωdiag(Ai) withasuitableparameterω (0.5,0.8)[58]andnolinesearchisapplied,i.e.,α=1. (cid:3) ∈ Usingthefirstordercondition(24),westillhavethefollowingidentity. Lemma5.2. N 1 E(uk) E(uk+1)= e 2. − 2 (cid:107) i(cid:107)A i=1 (cid:88)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.